第二军医大学学报  2016, Vol. 37 Issue (8): 1012-1018   PDF    
晕动病前庭生理机制研究进展
潘磊磊, 祁瑞瑞, 王俊骎, 蔡懿灵     
第二军医大学海军医学系航海特殊损伤防护教研室, 上海 200433
摘要: 晕动病是在航空、航天、航海旅行及作业过程中,由异常加速度刺激引起的生理功能紊乱。已证实前庭系统作为运动感受和加速度信息加工的核心,对晕动病的诱发及自主神经症状的产生起重要作用。虽然晕动病的发生机制尚未完全阐明,但近年来在感觉冲突理论的生理基础、自主神经反射的神经机制等方面有了新的突破。本文综述了前庭-视觉-本体感觉信息整合、前庭-海马及前庭-皮质通路与运动信息加工、前庭-内脏反射通路及前庭递质系统与抗晕动病药物靶点等的研究进展,为促进新型晕动病防治手段的开发和应用提供借鉴。
关键词: 晕动病     前庭系统     感觉冲突     神经递质    
Research progress in vestibular physiological mechanism of motion sickness
PAN Lei-lei, QI Rui-rui, WANG Jun-qin, CAI Yi-ling     
Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai 200433, China
Supported by National Natural Science Foundation of China (81272178) and Key Logistic Scientific Research Project of the PLA (BWS14J024)..
Abstract: Motion sickness is a physiological disorder induced by abnormal acceleration stimuli during spaceflight, aviation or sailing. It has been confirmed that the vestibular system, as the core for locomotion sensing and acceleration information processing, plays key roles in motion sickness initiation and autonomic symptom development. Although the mechanism of motion sickness is still unclear, there have been new breakthroughs in recent years about the physiological basis of sensory conflict theory and the neural mechanism of autonomic reflex. This paper reviewed the progress in the vestibulo-visuo-proprioception information integration, the involvement of vestibulo-hippocampus and vestibulo-cortex in locomotion information processing, vestibulo-autonomic reflex pathway, vestibular neurotransmitter system and anti-motion sickness drug targets, laying a foundation for promoting the development and application of novel countermeasures for motion sickness.
Key words: motion sickness     vestibular system     sensory conflict     neurotransmitter    

晕动病是机体受到异常的运动环境刺激而引起的,以前庭系统和自主神经反应(如面色苍白、出冷汗、呕吐等)为主的症候群,包括航空晕动病(晕机)、航天晕动病(空间晕动病)、晕船、晕车、滑雪晕动病以及模拟器晕动病等。目前,晕动病的发病机制尚未完全阐明,动物及人群研究均证实前庭系统在晕动病的发生中起核心作用,特别是前庭核,其作为前庭传入的初级中枢,与脑内的许多区域有着密切联系。本文就前庭解剖生理学研究进展以及其在晕动病发生中的作用进行探讨。

1 前庭系统与晕动病感觉冲突

感觉冲突理论认为,前庭-视觉-本体感受传入信号相互之间不匹配是导致晕动病的重要原因。研究表明,前庭系统不仅具有接受、整合、调节前庭信息的功能,并且能够整合前庭器官、视觉系统及本体感觉系统的传入信息[1]。感觉冲突与前庭核、小脑、海马及前庭皮质有关,前庭核整合并汇聚不同来源的位置觉信息,形成感觉冲突信号,其他区域则在加速度环境适应和运动学习过程中发挥重要作用。

1.1 前庭与小脑

前庭核根据细胞构筑特点大致分为前庭神经内侧核(medial vestibular nucleus,MVN)、前庭神经下核或前庭神经脊核(spinal vestibular nucleus,SpVN)、前庭神经外侧核(1ateral vestibular nucleus, LVN))或Deiters核、前庭神经上核(superior vestibular nucleus, SVN)等。解剖学研究发现,MVN接受来自前、后半规管以及椭圆囊的传入投射,也接受少量的球囊传入;并投射至眼外肌运动核团[2];视觉通路相关核团与MVN有直接及间接投射。Giolli等[3]发现,大鼠辅助视觉系统的内侧终核及背侧终核投射至对侧的SVN和LVN,而家兔的内侧终核则投射至双侧的SVN及LVN。此外,来自颈段脊柱横突间肌本体感受器的信号也能激活次级前庭神经纤维[4]。视动刺激研究发现,前庭与视觉信息在前庭核内相互作用,而通过一定频率的光学频闪刺激可明显缓解晕机和晕车,表明前庭-视觉-本体整合在晕动病的发生中起关键作用[5];研究还发现,前庭核还存在所谓单一的前庭反应神经元(vestibular only, VO),这些神经元仅对被动运动的前庭信号起反应,并影响前庭姿势反射[6]。这些神经元与小脑吻侧顶核的所谓单模式神经元(unimodal rostral fastigial nucleus,u-rFN)的放电及头部被动运动的加速度外传入信息(exafference)同步,但对相同模式的主动运动的自传入信息(reafference)不起反应,由此认为,这些感觉冲突神经元可提取被动运动信息,但主动运动信息却被抑制[7]。基于上述发现,作者提出了晕动病感觉冲突的自传入抑制理论,但抑制信号的来源和确切机制尚不清楚。逆行追踪技术证实,小脑绒球及旁绒球浦肯野细胞发出纤维投射至SVN、吻端MVN、腹侧LVN以及前庭核的尾侧部分(MVN、SpVN及舌下前置核),由于前庭核接受来自小脑浦肯野细胞的抑制性传入,推测小脑可能参与了主动运动信息的抑制。但动物实验发现,损毁双侧小脑绒球或蚓部并不能抑制大鼠晕动病反应[8],小脑在晕动病适应发生过程中的作用也未见相关报道。

1.2 前庭与海马

感觉冲突理论认为,晕动刺激感觉传入信息与脑内存储的经验信息不匹配是导致晕动病的主要原理。大量文献提示,海马接受前庭信息并进行加工,双侧海马损毁可抑制海马CA1区位置细胞的定位相关放电并影响大鼠的空间记忆[9-10];人群观察发现,慢性获得性双侧前庭损毁可使海马明显萎缩并影响空间记忆能力[11]。Uno等[12]发现,损毁大鼠海马可加重因超重引起的晕动病症状,前庭热刺激可通过伏隔核-海马通路,使海马内乙酰胆碱释放增加,推测海马可能抑制了晕动病过程中的感觉冲突信号。前后平移诱发大鼠感觉冲突过程中,大鼠海马DG区6~9 Hz θ波放电明显增强,而旋转刺激时可诱发大鼠CA1区θ节律,但该放电可被胆碱能M受体所阻断[13-14]。上述研究表明海马可能作为中枢比较器参与了脑内被动运动信息的储存以及与感觉传入信息的比较。

1.3 前庭与皮质

前庭相关皮质也接受视觉信息传入并进行加工。电生理实验发现,非人类灵长类颞叶视觉皮质的MSTd区部分神经元可同时被视觉和前庭刺激激活,前庭损毁可明显降低旋转和平移刺激引起的MSTd区神经元发电[15]。此外,MSTd与顶岛前庭皮质(parieto-insular vestibular cortex, PIVC)区具有间接联系,PIVC存在编码视觉、前庭及躯体感觉的多重感觉信号神经元,前庭与视觉信息在上述区域相互抑制或易化,从而调节躯体感觉反应[16]。动物实验表明,视觉运动刺激可使PIVC神经元出现前庭-视觉相互抑制;功能核磁共振研究发现,长期执行太空飞行任务的宇航员顶岛前庭皮质各部分间的联系及兴奋性下降,形成对晕动刺激的适应性[17]。上述研究提示,在加速度刺激条件下,前庭相关皮质被激活,而其多重感觉整合及调节作用可能导致感觉冲突发生。

2 前庭系统与自主神经反射 2.1 前庭-内脏传出通路

运用示踪技术及电生理记录已经证实MVN尾部在接受半规管的初级传入信息后,直接投射至脑干尾部,包括:孤束核(nucleus tractus solitarius, NTS)的外侧、腹外侧及中间亚核,迷走神经背核(dorsal motor nucleus of the vagus nerve, DMX),疑核,延髓腹外侧区,大缝际核,臂旁核;而SpVN尾端则投射至同侧的上述核团[1]。另外,顺行和逆行追踪实验证明臂旁核尾端内侧及外部内、外侧神经元及Kolliker-Fuse核发支投射至双侧SVN、尾端MVN及SpVN;该区域与前庭核投射至臂旁核的区域部分重叠,非重叠部分的前庭神经元与前庭小脑及前庭运动反射通路相连,这一解剖联系说明前庭及躯体信息的整合是平衡控制通路的重要组成部分,有助于行为及情感变化的信息在前庭核的整合及中转,也提示焦虑与平衡控制之间存在密切关系[18]。上述结果也为晕动病及前庭功能失调时所产生的一系列自主神经功能紊乱的表现提供了解剖学基础。

2.2 前庭-内脏传入汇聚

前庭核及自主神经核团还接受来自胃肠道的感觉信息传入。Yates课题组研究发现,胃内硫酸铜溶液灌注可使实验猫出现呕吐,导致前庭MVN及SpVN内超过1/3的神经元放电增加,并影响前庭刺激后的神经元放电反应[19];不仅如此,垂直面旋转刺激还使去大脑实验猫超过1/3的NTS神经元放电增加,并对NTS接受主动脉压力感受、肺及胃肠传入的神经元活性起调节作用,但胃内硫酸铜溶液灌注并不能改变旋转刺激对接受胃肠传入神经元活性的影响,表明前庭刺激和胃肠传入刺激间在NTS内无叠加效应[20]。此外,臂旁核和延髓外侧被盖区神经元同样受前庭及胃肠传入的双重调控,对不同的神经元既有易化作用又有抑制作用[21],而仅少量的小脑顶核神经元受前庭刺激和胃肠传入的双重调节[22]。上述研究表明前庭-胃肠信息整合主要在脑干和中脑区,对晕动病发生时恶心、呕吐症状的产生具有重要意义。

2.3 前庭-代谢功能调节

最近研究表明,晕动病发生过程中,机体的体温及代谢发生了显著变化,从而提出了代谢异常学说。Nobel等[23]发现,晕动刺激可导致动物及人体末梢血管扩张,促进散热,从而使中心体温下降,并可抑制冷水浸泡后的皮肤血管收缩反应及寒战反应;而Brn 3.1敲除的前庭器官缺失动物在超重(hypergravity)条件下则无上述反应[24];此外,双侧前庭器官化学损毁后,也表现出低体温和体温-活动昼夜节律紊乱[25]。已证实MVN与下丘脑室旁核间存在间接神经通路,与晕动病期间的应激反应有关[26];超重刺激可使小鼠下丘脑室旁核、被内侧核、视交叉上核及弓状区Fos蛋白表达增强[27];神经解剖学研究表明,前庭系统与觉醒-睡眠中枢相关区域存在联系[28];而动物实验进一步发现,晕动刺激引起的体温下降和畏寒与晕动病恶心反应有关[29]。上述研究表明,前庭系统参与代谢及生物节律的调节,晕动病自主神经症状及嗜睡综合征可能与代谢异常有关。我们的前期研究发现,重度晕船个体在晕船期间其静息代谢明显下降,并伴有迷走神经活性的增强;舰船模拟晕动暴露后出现恶心呕吐的受试者血糖水平显著升高,而晕动病易感动物给予胰岛素后晕动病症状显著减轻[30]。最近的全基因组关联研究发现,糖代谢相关基因突变与晕车易感性有关[31],这些结果提示,能量代谢异常与晕动病发生及人体的易感性密切相关。

3 前庭递质系统与晕动病药物靶点 3.1 乙酰胆碱

胆碱能M受体阻断剂东莨菪碱是有效的晕动病预防药物,但其作用部位至今仍不明确。有实验证明前庭神经节内存在胆碱乙酰转移酶,推测乙酰胆碱可能是前庭初级传入递质[32],但也有文献报道乙酰胆碱并非前庭初级传入递质[33]。有实验报道在前庭核内存在2种乙酰胆碱受体,且以M型受体为主[34]。免疫组化实验证实尾端MVN内存在胆碱乙酰转移酶阳性神经元,5%尾端MVN的胆碱能神经元投射至小脑蚓部悬垂-小结,少量尾端MVN胆碱能神经元投射至小脑绒球,前庭-小脑绒球投射在前庭代偿初期具有恢复前庭各核团间神经活动平衡状态的作用[34]。放射自显影实验发现,胆碱能M受体还存在于脑干运动及自主神经核团内,包括孤束核及迷走神经核等[32]。M型受体有5种亚型(M1~M5),其中M1、M3和M5亚型是兴奋性受体,M2和M4是抑制性受体;M1、M2、M5存在于人体前庭器官和前庭神经节中,选择性阻断M3和M5受体后的晕动病预防效果与东莨菪碱类似,提示东莨菪碱可能作用于外周M1和M5受体和/或中枢M1和M3受体[35]

3.2 单胺类神经递质

单胺类神经递质在中枢前庭功能调节网络中起到至关重要的作用,临床上针对晕动病呕吐及前庭功能障碍的治疗药物多数为单胺类递质的受体激动剂或拮抗剂。前庭核内不存在合成单胺类神经递质的神经元,但是前庭核接受其他核团单胺类神经纤维的投射。首先,组胺能系统药物如倍他司丁等已被广泛应用于呕吐及晕动病的临床治疗中,且组胺抑制剂茶苯海明也可缓解晕动刺激引起的体温下降[36]。研究表明,前庭核上存在H1、H2及H3受体,下丘脑结节乳头核组胺能神经纤维投射到整个前庭核尤其是MVN和SVN, 中枢组胺能系统能够调节前庭功能及其损伤后的恢复[37]。高效液相色谱法检测发现,组胺通过H3受体直接抑制γ-氨基丁酸(γ-aminobutyric acid, GABA)释放或通过H1/H2受体间接调节甘氨酸的释放来发挥生理作用;在单侧前庭损伤时,MVN的H3受体表达下调,造成GABA释放失衡[38]。有研究发现,大鼠前庭神经节内表达H3及H4受体,H4阻断剂可显著抑制前庭神经元活性,并缓解前庭损毁动物的行为异常,提示H3及H4受体可能成为新的晕动病防治药物靶点[39]。其次,SVN及LVN接受蓝斑的去甲肾上腺素能神经纤维投射,其中以背侧LVN的Deiters’神经元的胞体及树突近端的投射最密集,提示中枢肾上腺素能神经系统对前庭脊髓反射具有调节作用,可能介导了警觉和失眠对前庭运动通路的调节作用[40]。去甲肾上腺素通过前庭核神经元上的α2或β受体调节谷氨酸能神经递质,对神经元活性起抑制作用[41]。动物实验表明拟肾上腺素药物右旋苯丙胺及莫达非尼可对抗东莨菪碱等药物的嗜睡作用,但可能影响晕动病预防效果以及决策和行为动机的产生[35]。此外,中缝核5-羟色胺(5-hydroxytryptamine, 5-HT)能神经纤维投射至前庭核吻内侧,而中缝隐核的5-HT能神经元则投射于整个前庭核。5-HT对MVN、SVN神经元有抑制作用、兴奋作用和双相作用,5-HT2受体通过抑制钙离子依赖性的钾离子内流介导兴奋作用,而5-HT1受体却介导了5-HT对兴奋性神经递质谷氨酸的兴奋抑制作用[42];目前已发现5-HT1A受体激动剂可能对预防和治疗晕动病有效[43]

3.3 氨基酸类神经递质

氨基酸类神经递质广泛存在于前庭核各个分区。谷氨酸是介导前庭神经初级传入的主要兴奋性递质,其突触后受体类型包括α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid, AMPA)、N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)及代谢型受体。我们前期研究发现,MVN及SpVN谷氨酸能神经元可直接投射至NTS及臂旁核,这些神经元在晕动刺激后被激活,并参与前庭-内脏反射[44]。前庭核GABA能神经元参与的通路主要有:(1)合缝连接的抑制作用;(2)投射至动眼神经和滑车神经核;(3) MVN和SpVN投射至次级橄榄核; (4) MVN头端和LVN投射至内侧前庭脊髓束;(5)内在神经元的胞体轴突之间联系。实验证实前庭核内既存在GABAA受体也存在GABAB受体[45]。前庭核GABA能神经元主要参与了合缝抑制以及前庭补偿机制;单侧迷路切除实验证明,损伤侧MVN的GABA受体对配体的亲和性下降,而损伤对侧MVN的GABA受体对配体的反应性上升,提示在失去了传入信息的兴奋刺激之后,前庭核两侧的兴奋性趋于平衡[46]。GABAA受体抑制剂能增强大鼠头部正弦刺激引起的前庭核神经元平均放电率[46]。此外,前庭核SVN存在对同侧动眼神经核的投射且大部分为GABA能神经元;前庭核也存在向三叉神经感觉核及脊髓C1-C2节段投射的GABA能神经元,提示前庭核对面部、颈部及躯干的初级本体传入具有调节作用。我们前期研究发现,晕动病不敏感大鼠尾侧前庭核GABAA受体α6亚单位的表达高于不敏感动物,给予GABAA受体抑制剂gabazine则可诱发不敏感大鼠的晕动病症状[47]

3.4 肽类神经递质

免疫组化及原位杂交实验证实MVN及SpVN的许多神经元表达脑啡肽mRNA及其多肽分子,且MVN和LVN具有丰富的阿片受体,单侧迷路切除后1~3 d,大鼠同侧MVN内前脑啡肽原mRNA表达增高,提示脑啡肽可能参与了前庭代偿过程[48]。尾端前庭核还存在表达P物质的神经元[49],虽然研究已证实神经激肽1(neurokinin 1, NK1)受体拮抗剂可有效预防化疗引起的呕吐,但对晕动刺激导致的呕吐无防治作用[50-51]。此外,MVN和SVN内还存在促甲状腺激素释放激素及神经紧张素受体阳性神经元[48]。尾端MVN、SpVN和舌下前置核存在表达促肾上腺皮质激素释放因子神经元,这些神经元投射于小脑后蚓部及绒球,可能与小脑的前庭相关功能有关[52]

综上所述,前庭系统整合位置、躯体及内脏感觉,并传递至小脑、海马及前庭皮层等部位进行加工,导致感觉冲突;引起前庭-内脏反射及前庭-代谢紊乱,最终导致晕动病的发生。前庭系统功能受多种神经递质调控,全面深入研究不同递质系统的关键作用,是特异性抗晕药物靶点筛选的核心,可为未来开发快速、高效、不良反应小的新型抗晕药物奠定基础。

参考文献
[1] KHAN S, CHANG R. Anatomy of the vestibular system: a review[J]. NeuroRehabilitation , 2013, 32 :437–443.
[2] BARMACK N H. Central vestibular system: vestibular nuclei and posterior cerebellum[J]. Brain Res Bull , 2003, 60 :511–541. DOI:10.1016/S0361-9230(03)00055-8
[3] GIOLLI R A, BLANKS R H, LUI F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function[J]. Prog Brain Res , 2006, 151 :407–440. DOI:10.1016/S0079-6123(05)51013-6
[4] MARLINSKI V, MCCREA R A. Self-motion signals in vestibular nuclei neurons projecting to the thalamus in the alert squirrel monkey[J]. J Neurophysiol , 2009, 101 :1730–1741. DOI:10.1152/jn.90904.2008
[5] WEBB C M, ESTRADA A, ATHY J R. Motion sickness prevention by an 8-Hz stroboscopic environment during air transport[J]. Aviat Space Environ Med , 2013, 84 :177–183. DOI:10.3357/ASEM.3342.2013
[6] CARRIOT J, BROOKS J X, CULLEN K E. Multimodal integration of self-motion cues in the vestibular system: active versus passive translations[J]. J Neurosci , 2013, 33 :19555–19566. DOI:10.1523/JNEUROSCI.3051-13.2013
[7] OMAN C M, CULLEN K E. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology[J]. Exp Brain Res , 2014, 232 :2483–2492. DOI:10.1007/s00221-014-3973-2
[8] UNO A, TAKEDA N, KITAHARA T, SAKATA Y, YAMATODANI A, KUBO T. Effects of vestibular cerebellum lesion on motion sickness in rats[J]. Acta Otolaryngol , 2000, 120 :386–389. DOI:10.1080/000164800750000612
[9] RUSSELL N A, HORII A, SMITH P F, DARLINGTON C L, BILKEY D K. Long-term effects of permanent vestibular lesions on hippocampal spatial firing[J]. J Neurosci , 2003, 23 :6490–6498.
[10] BAEK J H, ZHENG Y, DARLINGTON C L, SMITH P F. Evidence that spatial memory deficits following bilateral vestibular deafferentation in rats are probably permanent[J]. Neurobiol Learn Mem , 2010, 94 :402–413. DOI:10.1016/j.nlm.2010.08.007
[11] BRANDT T, SCHAUTZER F, HAMILTON D A, BRVNING R, MARKOWITSCH H J, KALLA R, et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans[J]. Brain , 2005, 128 .
[12] UNO A, TAKEDA N, HORII A, SAKATA Y, YAMATODANI A, KUBO T. Effects of amygdala or hippocampus lesion on hypergravity-induced motion sickness in rats[J]. Acta Otolaryngol , 2000, 120 :860–865. DOI:10.1080/000164800750061732
[13] AITAKE M, HORI E, MATSUMOTO J, UMENO K, FUKUDA M, ONO T, et al. Sensory mismatch induces autonomic responses associated with hippocampal theta waves in rats[J]. Behav Brain Res , 2011, 220 :244–253. DOI:10.1016/j.bbr.2011.02.011
[14] ZOU D, AITAKE M, HORI E, UMENO K, FUKUDA M, ONO T, et al. Rat hippocampal theta rhythm during sensory mismatch[J]. Hippocampus , 2009, 19 :350–359. DOI:10.1002/hipo.v19:4
[15] GU Y, DEANGELIS G C, ANGELAKI D E. Causal links between dorsal medial superior temporal area neurons and multisensory heading perception[J]. J Neurosci , 2012, 32 :2299–2313. DOI:10.1523/JNEUROSCI.5154-11.2012
[16] BRANDT T, BARTENSTEIN P, JANEK A, DIETERICH M. Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex[J]. Brain , 1998, 121 (Pt 9) :1749–1758.
[17] DEMERTZI A, VAN OMBERGEN A, TOMILOVSKAYA E, JEURISSEN B, PECHENKOVA E, DI PERRI C, et al. Cortical reorganization in an astronaut's brain after long-duration spaceflight[J]. Brain Struct Funct , 2016, 221 :2873–2876. DOI:10.1007/s00429-015-1054-3
[18] BALABAN C D. Projections from the parabrachial nucleus to the vestibular nuclei: potential substrates for autonomic and limbic influences on vestibular responses[J]. Brain Res , 2004, 996 :126–137. DOI:10.1016/j.brainres.2003.10.026
[19] ARSHIAN M S, PUTERBAUGH S R, MILLER D J, CATANZARO M F, HOBSON C E, MCCALL A A, et al. Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness[J]. Exp Brain Res , 2013, 228 :353–363. DOI:10.1007/s00221-013-3568-3
[20] SUGIYAMA Y, SUZUKI T, DESTEFINO V J, YATES B J. Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes[J]. Am J Physiol Regul Integr Comp Physiol , 2011, 301 .
[21] SUZUKI T, SUGIYAMA Y, YATES B J. Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes[J]. Am J Physiol Regul Integr Comp Physiol , 2012, 302 .
[22] CATANZARO M F, MILLER D J, COTTER L A, MCCALL A A, YATES B J. Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness[J]. Exp Brain Res , 2014, 232 :2581–2589. DOI:10.1007/s00221-014-3898-9
[23] NOBEL G, TRIBUKAIT A, MEKJAVIC I B, EIKEN O. Effects of motion sickness on thermoregulatory responses in a thermoneutral air environment[J]. Eur J Appl Physiol , 2012, 112 :1717–1723. DOI:10.1007/s00421-011-2142-6
[24] FULLER P M, JONES T A, JONES S M, FULLER C A. Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection?[J]. Proc Natl Acad Sci USA , 2002, 99 :15723–15728. DOI:10.1073/pnas.242251499
[25] MARTIN T, MAUVIEUX B, BULLA J, QUARCK G, DAVENNE D, DENISE P, et al. Vestibular loss disrupts daily rhythm in rats[J]. J Appl Physiol (1985) , 2015, 118 :310–318. DOI:10.1152/japplphysiol.00811.2014
[26] MARKIA B, KOVÁCS Z I, PALKOVITS M. Projections from the vestibular nuclei to the hypothalamic paraventricular nucleus: morphological evidence for the existence of a vestibular stress pathway in the rat brain[J]. Brain Struct Funct , 2008, 213 (1/2) :239–245.
[27] FULLER P M, JONES T A, JONES S M, FULLER C A. Evidence for macular gravity receptor modulation of hypothalamic, limbic and autonomic nuclei[J]. Neuroscience , 2004, 129 :461–471. DOI:10.1016/j.neuroscience.2004.05.059
[28] HOROWITZ S S, BLANCHARD J, MORIN L P. Medial vestibular connections with the hypocretin (orexin) system[J]. J Comp Neurol , 2005, 487 :127–146. DOI:10.1002/(ISSN)1096-9861
[29] NGAMPRAMUAN S, CERRI M, DEL VECCHIO F, CORRIGAN J J, KAMPHEE A, DRAGIC A S, et al. Thermoregulatory correlates of nausea in rats and musk shrews[J]. Oncotarget , 2014, 5 :1565–1575. DOI:10.18632/oncotarget
[30] MO F F, QIN H H, WANG X L, SHEN Z L, XU Z, WANG K H, et al. Acute hyperglycemia is related to gastrointestinal symptoms in motion sickness: an experimental study[J]. Physiol Behav , 2012, 105 :394–401. DOI:10.1016/j.physbeh.2011.08.024
[31] HROMATKA B S, TUNG J Y, KIEFER A K, DO C B, HINDS D A, ERIKSSON N. Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis[J]. Hum Mol Genet , 2015, 24 :2700–2708. DOI:10.1093/hmg/ddv028
[32] WAMSLEY J K, LEWIS M S, YOUNG W S 3rd, KUHAR M J. Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem[J]. J Neurosci, 1981, 1: 176-191.
[33] SUN Y, WALLER H J, GODFREY D A, RUBIN A M. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists[J]. Brain Res , 2002, 934 :58–68. DOI:10.1016/S0006-8993(02)02361-2
[34] KITAHARA T, FUKUSHIMA M, TAKEDA N, SAIKA T, UNO A, KUBO T. Role of cholinergic mossy fibers in vestibular nuclei in the development of vestibular compensation[J]. Acta Otolaryngol Suppl , 2001, 545 :101–104.
[35] ZHANG L L, WANG J Q, QI R R, PAN L L, LI M, CAI Y L. Motion sickness: current knowledge and recent advance[J]. CNS Neurosci Ther , 2016, 22 :15–24. DOI:10.1111/cns.12468
[36] NOBEL G, TRIBUKAIT A, MEKJAVIC I B, EIKEN O. Histaminergic and cholinergic neuron systems in the impairment of human thermoregulation during motion sickness[J]. Brain Res Bull , 2010, 82 :193–200. DOI:10.1016/j.brainresbull.2010.04.004
[37] BERGQUIST F, DUTIA M B. Central histaminergic modulation of vestibular function-a review[J]. Shengli Xuebao , 2006, 58 :293–304.
[38] BERGQUIST F, RUTHVEN A, LUDWIG M, DUTIA M B. Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats[J]. J Physiol , 2006, 577 :857–868. DOI:10.1113/jphysiol.2006.120493
[39] DESMADRYL G, GABOYARD-NIAY S, BRUGEAUD A, TRAVO C, BROUSSY A, SALEUR A, et al. Histamine H4 receptor antagonists as potent modulators of mammalian vestibular primary neuron excitability[J]. Br J Pharmacol , 2012, 167 :905–916. DOI:10.1111/j.1476-5381.2012.02049.x
[40] SCHUERGER R J, BALABAN C D. Immunohistochemical demonstration of regionally selective projections from locus coeruleus to the vestibular nuclei in rats[J]. Exp Brain Res , 1993, 92 :351–359.
[41] BARRESI M, CALDERA M, GRASSO C, LI VOLSI G, LICATA F, SANTANGELO F. Noradrenergic modulation of neuronal responses to glutamate in the vestibular complex[J]. Neurosci Lett , 2009, 464 :173–178. DOI:10.1016/j.neulet.2009.08.035
[42] HALBERSTADT A L, BALABAN C D. Selective anterograde tracing of the individual serotonergic and nonserotonergic components of the dorsal raphe nucleus projection to the vestibular nuclei[J]. Neuroscience , 2007, 147 :207–223. DOI:10.1016/j.neuroscience.2007.03.049
[43] AMANO T, AKBAR M, MATSUBAYASHI H, SASA M. Inhibitory effects of tandospirone, a 5-HT1A agonist, on medial vestibular nucleus neurons responding to lateral roll tilt stimulation in rats[J]. Brain Res , 2001, 910 :195–198. DOI:10.1016/S0006-8993(01)02698-1
[44] CAI Y L, MA W L, WANG J Q, LI Y Q, LI M. Excitatory pathways from the vestibular nuclei to the NTS and the PBN and indirect vestibulo-cardiovascular pathway from the vestibular nuclei to the RVLM relayed by the NTS[J]. Brain Res , 2008, 1240 :96–104. DOI:10.1016/j.brainres.2008.08.093
[45] VIBERT N, BERANECK M, BANTIKYAN A, VIDAL P P. Vestibular compensation modifies the sensitivity of vestibular neurones to inhibitory amino acids[J]. Neuroreport , 2000, 11 :1921–1927. DOI:10.1097/00001756-200006260-00023
[46] SUN Y, GODFREY D A, RUBIN A M. Plasticity of gamma-aminobutyrate receptors in the medial vestibular nucleus of rat after inferior cerebellar peduncle transection[J]. J Vestib Res , 2002, 12 :1–14.
[47] WANG J Q, QI R R, ZHOU W, TANG Y F, PAN L L, CAI Y L. Differential gene expression profile in the rat caudal vestibular nucleus is associated with individual differences in motion sickness susceptibility[J]. PLoS One , 2015, 10 .
[48] ZANNI M, GIARDINO L, TOSCHI L, GALETTI G, CALZA L. Distribution of neurotransmitters, neuropeptides, and receptors in the vestibular nuclei complex of the rat: an immunocytochemical, in situ hybridization and quantitative receptor autoradiographic study[J]. Brain Res Bull , 1995, 36 :443–452. DOI:10.1016/0361-9230(94)00193-5
[49] NOMURA I, SENBA E, KUBO T, SHIRAISHI T, MATSUNAGA T, TOHYAMA M, et al. Neuropeptides and gamma-aminobutyric acid in the vestibular nuclei of the rat: an immunohistochemical analysis. I. Distribution[J]. Brain Res , 1984, 311 :109–118. DOI:10.1016/0006-8993(84)91403-3
[50] REID K, PALMER J L, WRIGHT R J, CLEMES S A, TROAKES C, SOMAL H S, et al. Comparison of the neurokinin-1 antagonist GR205171, alone and in combination with the 5-HT3 antagonist ondansetron, hyoscine and placebo in the prevention of motion-induced nausea in man[J]. Br J Clin Pharmacol , 2000, 50 :61–64.
[51] HARGREAVES R, FERREIRA J C, HUGHES D, BRANDS J, HALE J, MATTSON B, et al. Development of aprepitant, the first neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting[J]. Ann N Y Acad Sci , 2011, 1222 :40–48. DOI:10.1111/nyas.2011.1222.issue-1
[52] ERRICO P, BARMACK N H. Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit[J]. J Comp Neurol , 1993, 336 :307–320. DOI:10.1002/(ISSN)1096-9861