第二军医大学学报  2016, Vol. 37 Issue (7): 868-872   PDF    
NLRP3炎症小体的活化及调控机制
刘延刚, 陈永春, 宗英, 马秀娟, 陈基快, 袁伯俊, 陆国才     
第二军医大学热带医学与公共卫生学系卫生毒理学教研室, 上海 200433
摘要: 炎症小体是机体固有免疫的重要组成部分,目前对NLRP3炎症小体的研究最为热门和透彻。NLRP3炎症小体的活化因素包括病原体及其分泌的毒素、晶体和内源性危险信号等。NLRP3炎症小体的活化需要启动和激活两个步骤,其中启动机制主要针对NLRP3的转录和翻译后修饰水平,激活机制与线粒体、离子流动和溶酶体等相关。本文还综述了NLRP3炎症小体在表达、组装、活化等方面存在的负调控机制。
关键词: NLRP3炎症小体     活化机制     负调控     固有免疫     炎症性凋亡    
Activation and regulation of NLRP3 inflammasome: research progress
LIU Yan-gang, CHEN Yong-chun, ZONG Ying, MA Xiu-juan, CHEN Ji-kuai, YUAN Bo-jun, LU Guo-cai     
Department of Health Toxicology, Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai 200433, China
Supported by Major Program of National Science and Technology (2014ZX09J14106-06C, 13CXZ005), National Natural Science Foundation of China (81473291, 81402651, 81402654), and Natural Science Foundation of Shanghai (13ZR144940).
Abstract: Inflammasome is a vital part of innate immunity, and NLRP3 inflammasome is by far the most thoroughly studied inflammasome complexes that have been described. NLRP3-activating signals include toxins secreted by pathogens, crystalline molecules and endogenous danger signals. Activation of NLRP3 inflammasome needs two steps:priming and activating. The priming step affects NLRP3 at the transcriptional and posttranscriptional modification levels; the activating step is associated with ion flowing, mitochondria and lysosomes. In this paper we also reviewed the negative regulation of NLRP3 inflammasome at the expression, assembly and activation levels.
Key words: NLRP3 inflammasome     activation mechanism     negative regulation     innate immunity     pyroptosis    

炎症小体(inflammasome)是一类可识别细胞内病原相关分子模式(pathogen associated molecular patterns, PAMPs)或损伤相关分子模式(damage associated molecular patterns, DAMPs)等的蛋白复合物,通过介导白介素(IL)-1β和IL-18的加工、成熟和分泌,调控炎症相关基因表达等方式产生各种生物学效应。作为机体固有免疫的感受器,炎症小体活化可以抵抗病原体感染和应激损伤,但其活化失控也能造成炎症效应的放大和器官损伤。在炎症小体中,目前对核苷酸结合寡聚化结构域(nucleotide-binding oligomerization domain, NOD)样受体家族含pyrin结构域蛋白3(NOD-like receptor family, pyrin domain-containing protein 3,NLRP3)炎症小体的研究最为热门。国内已有关于NLRP3炎症小体的综述,但其活化及调控机制尚不完全清楚,相关研究层出不穷。本文综述了近几年NLRP3炎症小体活化与调控机制的研究进展。

1 NLRP3炎症小体的结构和功能

NLRP3炎症小体由NOD样受体(NOD-like receptors, NLRs)、凋亡相关的斑点样蛋白(apoptosis-associated speck-like protein containing a CARD, ASC)和半胱氨酸天冬氨酸蛋白酶1 (Caspase-1)组成。其激活后可通过Caspase-1水解IL-1β前体(pro-IL-1β)、IL-18前体(pro-IL-18)和gasdermin D,使其形成并释放具有活性的IL-1β、IL-18和gasdermin D的N端片段[1],产生炎症性凋亡等免疫效应。研究还发现,NLRP3炎症小体可以通过调节NADPH氧化酶来激活Caspase-1[2]

2 NLRP3炎症小体的活化 2.1 NLRP3炎症小体的活化因素 2.1.1 病原体及其分泌的毒素

除李斯特菌和金黄色葡萄球菌外,最近发现人皮质细胞中的痤疮丙酸杆菌、肠道沙门菌、变形杆菌以及伯克菌属等可以通过释放各种类型RNA等途径活化NLRP3炎症小体[3]。单纯疱疹病毒、登革热、呼吸道合胞病毒等病毒[4]以及美洲锥虫、利什曼虫、刚地弓形虫、疟原虫等胞内原虫类寄生虫也能激活NLRP3炎症小体[5]。在疫苗的研究过程中还发现,表达衣原体表位的纳米疫苗可以刺激NLRP3炎症小体活化[6],提示衣原体可能通过活化NLRP3炎症小体作用于机体。此外,病原体除了作为直接信号以外,还可以通过分泌穿孔毒素尼日利亚毒素(nigericin)、伴放线菌细胞致死性外毒素等细胞毒素诱导NLRP3炎症小体激活[7]

2.1.2 晶体

体内外的晶体包括草酸钙、尿酸盐、硅、石棉、铝等均能激活NLRP3炎症小体[4]

2.1.3 内源性危险信号

一些代谢产物如血糖、脂肪酸的增高和细胞应激产物如氧化的线粒体DNA等能诱导NLRP3炎症小体激活,参与多种疾病过程[4]。在肾小管损伤的基础上,尿调节素可聚集成为不规则的类晶体状结构,激活NLRP3炎症小体,促进肾间质性炎症[8]

2.1.4 其他活化因素

鸟苷酸结合蛋白5(guanylate-binding protein 5, Gbp5)可以通过启动NLRP3炎症小体组装介导其活化。此外, 很多疾病如类风湿性关节炎、炎症性肠病、动脉粥样硬化中NLRP3炎症小体的激活因素都尚未完全明确,仍需要进一步探索。

2.2 NLRP3炎症小体的活化机制

NLRP3炎症小体在细胞中的活化分为启动步骤和激活步骤。

2.2.1 启动步骤

主要是针对NLRP3的转录和翻译后修饰水平。当病原菌及其产物、损伤、应激等刺激细胞后,能激活IL-1受体1 (IL-1R1)、Toll样受体(Toll-like receptors, TLRs)、NLRs和细胞因子受体TNFR1和TNFR2等受体,通过如TLR-MyD88-TRIF-MAPK-NF-κB等不同通路激活NF-κB继而促进NLRP3和pro-IL-1β、pro-IL-18转录,为NLRP3炎症小体的活化和发挥作用提供物质基础,并可以降低NLRP3炎症小体的活化域。NLRP3翻译后被泛素标记而不能寡聚化,直到启动信号激活去泛素酶BRCC3使NLRP3去泛素化才具有活性[9]

2.2.2 激活步骤

晶体物质如铝、硅、草酸钙、尿酸盐等在被细胞吞噬后可以使溶酶体破坏,释放的组织蛋白酶(cathepsin) B、L、C、S以及X等多种溶酶体水解酶可以介导NLRP3炎症小体的活化。使用多种组织蛋白酶的抑制剂可以阻断溶酶体破坏导致的NLRP3炎症小体活化及pro-IL-1β的成熟[10],溶酶体破裂释放的Ca2+可以通过激活Ca2+-CAMKⅡ-TAK1-JNK通路,促进ASC寡聚化介导NLRP3炎症小体激活[11]。但是有研究用溶酶体去稳定剂处理巨噬细胞,发现溶酶体破裂只能触发少量NLRP3炎症小体相关的Caspase-1活化,并且不能导致Caspase-1依赖的炎症性凋亡,这说明溶酶体破裂在NLRP3炎症小体的激活中也许并非必要[12]

目前认为各种NLRP3炎症小体刺激剂均可以使线粒体功能发生障碍,导致活性氧(reactive oxygen species,ROS)和(或)线粒体DNA(mitochondrial DNA, mtDNA)释放,从而活化NLRP3炎症小体。内质网应激等情况下释放到胞质的Ca2+可以通过线粒体单向运输体被摄取,继而使线粒体正常的负性跨膜电位降低,激活线粒体外膜电压门控通道,促进相关代谢产物及离子转运并产生ROS,活化NLRP3炎症小体。敲除线粒体外膜上的电压依赖门控通道时ROS的产生减少,NLRP3炎症小体活化受损[7]。Lu等[13]认为由功能障碍线粒体释放的氧化mtDNA也与NLRP3炎症小体的活化相关,他们研究发现α7-烟碱型乙酰胆碱受体信号通路可以通过阻断mtDNA释放抑制NLRP3炎症小体激活。

离子流动也是NLRP3炎症小体激活的重要机制, K+外流被认为是NLRP3炎症小体活化所必需的步骤[14], 细胞表面的P2X7离子通道受体在胞外ATP作用下开放,或胞膜Na,K-ATP酶离子通道受到抑制均能导致K+外流,使NLRP3活化。但是,K+外流的下游信号通路仍然有待研究。

最近,越来越多的研究者开始关注Ca2+在NLRP3炎症小体活化过程中的地位,细胞外Ca2+通过与胞膜Ca2+敏感受体(calcium-sensing receptor,CASR)结合活化胞内磷脂酶C(PLC),PLC催化合成1, 4, 5-三磷酸肌醇(IP3),IP3与IP3受体(IP3R)结合从而启动Ca2+从内质网中释放入胞质;胞质Ca2+可以通过促进NLRP3与ASC的联结活化NLRP3炎症小体[15]。胞外Ca2+内流或Ca2+由胞内钙库释放到胞质并引起线粒体功能障碍是多种激活剂活化NLRP3炎症小体的共同通路[16]

除此之外,RNA解旋酶DHX33 (DExD/H-box helicase 33)作为胞内NLRP3对反转录病毒或细菌的RNA的感受器, 在双链RNA刺激下与E3泛素连接酶TRIM33 (tripartite motif 33)结合并被TRIM33泛素化, 从而与NLRP3和ASC形成DH33-NLRP3-ASC复合体,导致NLRP3炎症小体活化[17]。还有研究发现,血流动力学紊乱可以使血管内皮细胞特异性过表达有活性的固醇调节元件结合蛋白2 (sterol regulatory element binding protein 2,SREBP2),SREBP2可以通过活化NLRP3炎症小体与高血脂协同促进动脉粥样硬化[18]

3 对NLRP3炎症小体的负调控 3.1 对NLRP3炎症小体表达的负调控

一些蛋白如雌激素、锌指蛋白GFⅡ等可以通过抑制NF-κB的活性而抑制NLRP3转录,锌指蛋白GFⅡ和芳香烃受体等还可以与NLRP3启动子上的外源化学物反应元件结合抑制NLRP3转录[19-20]。在髓系高表达的内源性miR-233以及EB病毒感染后B细胞分泌的mir-BART15等可以与NLRP3 mRNA的3′非翻译末端结合,使其成为降解靶点,加速其降解,在翻译水平负性调控NLRP3炎症小体[21]

3.2 对NLRP3炎症小体组装的负调控

胞内cAMP可以与NLRP3的核苷酸结合域相互作用,通过阻止NLRP3组装来抑制NLRP3炎症小体活化[22]。另外,γ干扰素(γ-IFN)可以活化诱导型一氧化氮合酶(iNOS), 促使胞内NO合成增加,而NO被证明可以通过诱导NLRP3亚硝基化来阻止炎症小体的组装[23]。此外,有研究还发现只含pyrin结构域蛋白(pyrin domain-only protein 1,POP1)可以通过与NLRP3或ASC相互作用,抑制NLRP3炎症小体组装[24]

3.3 对NLRP3炎症小体活化的负调控

由于NLRP3炎症小体活化机制比较多样,针对其活化途径的负调控更是复杂。应激状态下的细胞可以通过激活自噬通路减少胞内损伤线粒体和ROS等物质的含量,从而负性调节NLRP3炎症小体活性。一些物质如体内代谢产物β-羟丁酸等,可以通过阻止胞内K+外流,以减少ASC寡聚化和斑点形成,负性调控NLRP3炎症小体[25]。在研究某些自身免疫病中发现,超等位基因PLCG2突变可以增强磷脂酶Cγ2活性,促进胞内Ca2+从内质网释放,激活NLRP3炎症小体[26]。此外,Mao等[27]还发现NO可以通过增强功能障碍线粒体的清除,下调NLRP3炎症小体的活化。

3.4 其他负调控方式

多种物质可以通过影响Caspase-1和IL-1β来调控NLRP3炎症小体的活性。Ⅰ型干扰素(Ⅰ-IFN)可以通过转录因子STAT1的作用促进IL-10的产生,自分泌的IL-10通过作用于IL-10受体(IL-10R)激活转录因子STAT3,继而抑制pro-IL-1α和pro-IL-1β的表达。Jin等[28]还发现,富含亮氨酸重复序列Flightless-Ⅰ相互作用蛋白(leucine-rich repeat Fli-Ⅰ-interacting protein 2,LRRFIP2)通过将其N端结合在NLRP3上,并通过其圈状序列招募Flightless-Ⅰ(Caspase-1的假底物),增强Flighless-Ⅰ与Caspase-1的相互作用,抑制Caspase-1, 从而负性调节NLRP3炎症小体的活化。

4 NLRP3炎症小体与疾病

现已发现NLRP3炎症小体与各系统疾病发生、发展相关的证据。小胶质细胞中β淀粉样蛋白等异常的宿主蛋白可以通过活化NLRP3炎症小体介导神经变性疾病如阿尔茨海默病[29]。肠道沙门菌、变形杆菌可以通过内质网应激导致线粒体损伤,促进NLRP3炎症小体组装和活化,从而介导肠道炎症[30]。研究还发现携带NLRP3相关稀有突变基因(如T348M)等的人群发生cryopyrin相关周期性综合征(cryopyrin-associated periodic syndrome,CAPS)的危险性增加[31]。此外,NLRP3炎症小体在糖尿病、痛风、肥胖、肝病、动脉粥样硬化、冠状动脉内皮功能障碍等代谢性疾病中也有重要作用[32-33]

5 展望

很多研究发现针对NLRP3炎症小体的调控可以不同程度地缓解疾病进程,甚至是阻断某些疾病的关键机制,这预示着将来NLRP3炎症小体可能发展成为多种相关疾病治疗的靶点。例如在猴和人类角膜细胞中,单纯病毒1 (HSV-1)和猿猴病毒40 (SV40)感染可以诱导NLRP3炎症小体活化,并从细胞质再分布到细胞核,推测抑制NLRP3炎症小体活化可能成为预防和治疗这类烈性病毒感染的一个重要的治疗手段[34]。炎症小体靶点药物研发越来越引起人们的重视,目前主要聚焦于疾病与NLRP3炎症小体相关信号通路,开发如IL-1β单抗和IL-1β抑制剂等特定靶点的活化剂或抑制剂,已用于关节炎和中风的治疗研究[35]

尽管近年对NLRP3炎症小体的研究取得了突破性进展,但ROS在NLRP3炎症小体激活过程中究竟是激活剂还是效应剂、线粒体与内质网之间具体的信号交流分子机制、TLR信号通路和NLRP3炎症小体活化及调控的关系等等仍需要进一步探索。

参考文献
[1] MAN S M, KANNEGANTI T D. Gasdermin D:the long-awaited executioner of pyroptosis[J]. Cell Res , 2015, 25 :1183–1184. DOI:10.1038/cr.2015.124
[2] SOKOLOVSKA A, BECKER C E, IP W K, RATHINAM V A, BRUDNER M, PAQUETTE N, et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function[J]. Nat Immunol , 2013, 14 :543–553.
[3] LI Z J, CHOI D K, SOHN K C, SEO M S, LEE H E, LEE Y, et al. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes[J]. J Invest Dermatol , 2014, 134 :2747–2756. DOI:10.1038/jid.2014.221
[4] HARIJITH A, EBENEZER D L, NATARAJAN V. Reactive oxygen species at the crossroads of inflammasome and inflammation[J]. Front Physiol , 2014, 5 :352.
[5] ZAMBONI D S, LIMA-JUNIOR D S. Inflammasomes in host response to protozoan parasites[J]. Immunol Rev , 2015, 265 :156–171. DOI:10.1111/imr.12291
[6] ZHU Y, JIANG J, SAID-SADIER N, BOXX G, CHAMPION C, TETLOW A, et al. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope[J]. Vaccine , 2015, 33 :298–306. DOI:10.1016/j.vaccine.2014.11.028
[7] SHENKER B J, OJCIUS D M, WALKER L P, ZEKAVAT A, SCURON M D, BOESZE-BATTAGLIA K. Aggregatibacter actinomycetemcomitans cytolethal distending toxin activates the NLRP3 inflammasome in human macrophages, leading to the release of proinflammatory cytokines[J]. Infect Immun , 2015, 83 :1487–1496. DOI:10.1128/IAI.03132-14
[8] DARISIPUDI M N, THOMASOVA D, MULAY S R, BRECH D, NOESSNER E, LIAPIS H, et al. Uromodulin triggers IL-1β-dependent innate immunity via the NLRP3 inflammasome[J]. J Am Soc Nephrol , 2012, 23 :1783–1789. DOI:10.1681/ASN.2012040338
[9] PY B F, KIM M S, VAKIFAHMETOGLU-NORBERG H, YUAN J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity[J]. Mol Cell , 2013, 49 :331–338. DOI:10.1016/j.molcel.2012.11.009
[10] ORLOWSKI G M, COLBERT J D, SHARMA S, BOGYO M, ROBERTSON S A, ROCK K L. Multiple cathepsins promote pro-IL-1βsynthesis and NLRP3-mediated IL-1βactivation[J]. J Immunol , 2015, 195 :1685–1697. DOI:10.4049/jimmunol.1500509
[11] OKADA M, MATSUZAWA A, YOSHIMURA A, ICHIJO H. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation[J]. J Biol Chem , 2014, 289 :32926–32936. DOI:10.1074/jbc.M114.579961
[12] LIMA H Jr, JACOBSON L S, GOLDBERG M F, CHANDRAN K, DIAZ-GRIFFERO F, LISANTI M P, et al. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death[J]. Cell Cycle , 2013, 12 :1868–1878. DOI:10.4161/cc.24903
[13] LU B, KWAN K, LEVINE Y A, OLOFSSON P S, YANG H, LI J, et al. α7 Nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release[J]. Mol Med , 2014, 20 :350–358.
[14] MUÑOZ-PLANILLO R, KUFFA P, MARTÍNEZ-COLÓN G, SMITH B L, RAJENDIRAN T M, NÚÑEZ G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter[J]. Immunity , 2013, 38 :1142–1153. DOI:10.1016/j.immuni.2013.05.016
[15] LIU W, ZHANG X, ZHAO M, ZHANG X, CHI J, LIU Y, et al. Activation in M1 but not M2 macrophages contributes to cardiac remodeling after myocardial infarction in rats:a critical role of the calcium sensing receptor/NRLP3 inflammasome[J]. Cell Physiol Biochem , 2015, 35 :2483–2500. DOI:10.1159/000374048
[16] HORNG T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome[J]. Trends Immunol , 2014, 35 :253–261. DOI:10.1016/j.it.2014.02.007
[17] WENG L, MITOMA H, TRICHOT C, BAO M, LIU Y, ZHANG Z, et al. The E3 ubiquitin ligase tripartite motif 33 is essential for cytosolic RNA-induced NLRP3 inflammasome activation[J]. J Immunol , 2014, 193 :3676–3682. DOI:10.4049/jimmunol.1401448
[18] XIAO H, LU M, LIN T Y, CHEN Z, CHEN G, WANG W C, et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility[J]. Circulation , 2013, 128 :632–642. DOI:10.1161/CIRCULATIONAHA.113.002714
[19] 许莉, 段逸群, 陈宏翔, 曾志良, 王辉. 雌激素对白念珠菌诱导的小鼠腹腔巨噬细胞NLRP3表达的影响[J]. 中国麻风皮肤病杂志 , 2014, 30 :259–262.
[20] HUAI W, ZHAO R, SONG H, ZHAO J, ZHANG L, ZHANG L, et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription[J]. Nat Commun , 2014, 5 :4738. DOI:10.1038/ncomms5738
[21] YANG Z, ZHONG L, XIAN R, YUAN B. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage[J]. Mol Immunol , 2015, 62 :267–276.
[22] LEAVY O. Inflammasome:turning on and off NLRP3[J]. Nat Rev Immunol , 2013, 13 :1.
[23] RAYAMAJHI M, MIAO E A. Just say NO to NLRP3[J]. Nat Immunol , 2013, 14 :12–14.
[24] DE ALMEIDA L, KHARE S, MISHARIN A V, PATEL R, RATSIMANDRESY R A, WALLIN M C, er al. The PYRIN domain-only protein POP1 inhibits inflammasome assembly and ameliorates inflammatory disease[J]. Immunity , 2015, 43 :264–276. DOI:10.1016/j.immuni.2015.07.018
[25] YOUM Y H, NGUYEN K Y, GRANT R W, GOLDBERG E L, BODOGAI M, KIM D, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease[J]. Nat Med , 2015, 21 :263–269.
[26] CHAE J J, PARK Y H, PARK C, HWANG I Y, HOFFMANN P, KEHRL J H, et al. Connecting two pathways through Ca2+ signaling:NLRP3 inflammasome activation induced by a hypermorphic PLCG2 mutation[J]. Arthritis Rheumatol , 2015, 67 :563–567.
[27] MAO K, CHEN S, CHEN M, MA Y, WANG Y, HUANG B, et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock[J]. Cell Res , 2013, 23 :201–212. DOI:10.1038/cr.2013.6
[28] JIN J, YU Q, HAN C, HU X, XU S, WANG Q, et al. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-Ⅰ-mediated caspase-1 inhibition[J]. Nat Commun , 2013, 4 :2075.
[29] GOLD M, EL KHOURY J. β-amyloid, microglia, and the inflammasome in Alzheimer's disease[J]. Semin Immunopathol , 2015, 37 :607–611. DOI:10.1007/s00281-015-0518-0
[30] SEO S U, KAMADA N, MUÑOZ-PLANILLO R, KIM Y G, KIM D, KOIZUMI Y, et al. Distinct commensals induce interleukin-1βvia NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury[J]. Immunity , 2015, 42 :744–755. DOI:10.1016/j.immuni.2015.03.004
[31] LEVY R, GÉRARD L, KUEMMERLE-DESCHNER J, LACHMANN H J, KONÉ-PAUT I, CANTARINI L, et al. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome:a series of 136 patients from the Eurofever Registry[J]. Ann Rheum Dis , 2015, 74 :2043–2049.
[32] GARCIA-MARTINEZ I, SHAKER M E, MEHAL W Z. Therapeutic opportunities in damage-associated molecular pattern-driven metabolic diseases[J]. Antioxid Redox Signal , 2015, 23 :1305–1315. DOI:10.1089/ars.2015.6383
[33] 马全鑫, 杨钦钦, 陆晔枫, 陈小真, 陈诚, 寿旗扬, 等. NLRP3炎症小体在早期动脉粥样硬化ZDF大鼠中的表达及阿托伐他汀的干预[J]. 中国比较医学杂志 , 2015, 25 :1–6.
[34] WANG S L, ZHAO G, ZHU W, DONG X M, LIU T, LI Y Y, et al. Herpes simplex virus-1 infection or Simian virus 40-mediated immortalization of corneal cells causes permanent translocation of NLRP3 to the nuclei[J]. Int J Ophthalmol , 2015, 8 :46–51.
[35] TERKELTAUB R, SUNDY J S, SCHUMACHER H R, MURPHY F, BOOKBINDER S, BIEDERMANN S, et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis:results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study[J]. Ann Rheum Dis , 2009, 68 :1613–1617. DOI:10.1136/ard.2009.108936