第二军医大学学报  2016, Vol. 37 Issue (4): 488-492   PDF    
低氧诱导因子在缺血再灌注损伤中的作用
田洪哲, 曾力    
第二军医大学长海医院器官移植科, 上海 200433
摘要: 缺血再灌注损伤(ischemia/reperfusion injury, IRI)是临床上常见的病理生理过程,缺血缺氧是其主要影响因素。低氧诱导因子(hypoxia-inducible factors,HIF)是一组对细胞缺氧反应性和适应性至关重要的转录因子,缺氧环境下会导致HIF激活,从而提高细胞对机体缺氧的耐受能力。HIF在IRI中的作用已成为当今研究热点,阐明其作用机制,不仅有利于减轻IRI,还可以此为基础进一步探讨HIF在其他病理生理过程的作用。本文对HIF的结构、功能及其在IRI中的具体作用及相关机制进行了综述。
关键词: 低氧诱导因子     再灌注损伤     缺血     缺氧    
Role of hypoxia-inducible factors in ischemia/reperfusion injury: an update
TIAN Hong-zhe, ZENG Li    
Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
Fund:Supported by National Natural Science Foundation of China (81270830).
Abstract: Ischemia/reperfusion injury (IRI) is a common clinical pathophysiological process characterized by ischemia and hypoxia. Hypoxia-inducible factors (HIFs) are a group of transcription factors vital to cell responding and adapting to hypoxia environment. Hypoxia can activate HIF, thus enhancing the tolerance of cells to hypoxia. The role of HIF in IRI has become a research focus of many scientists. Elucidating the related mechanism can not only help to reduce IRI, but also lay a basis for further studying the role of HIF in other pathophysiological processes. In this paper, we reviewed the structure, function of HIF and the specific role and related mechanisms of HIF in IRI.
Key words: hypoxia-inducible factors     reperfusion injury     ischemia     anoxia    

缺血再灌注损伤(ischemia/reperfusion injury,IRI)是临床上各系统均广泛涉及的病理生理过程,同时也是器官移植过程中既无法回避但又一直未能攻克的难题;这一过程主要涉及自由基损伤、钙超载、细胞应激以及天然免疫反应等。缺血、缺氧是IRI的始动因素,也是触发后续反应的关键枢纽。针对这些变化的外部条件,细胞会启动一系列非特异性全身反应对抗损伤,保护细胞和(或)通过细胞凋亡过程去除不能修复的细胞,最终恢复稳态;其中最直接的低氧性应激(hypoxia stress)近年来成为研究热点。缺氧直接作用于低氧感受器,激活低氧诱导因子(hypoxia-inducible factor,HIF)和相关的信号转导通路,引起细胞应答,提高机体缺氧耐受能力。然而HIF在IRI中的具体作用以及相关机制却尚未有定论,本文对此作一综述。

1 HIF的生物学结构和功能

HIF是一种异源二聚体,主要由氧依赖的α亚基和组成型表达的β亚基构成。β亚基又称芳香烃受体核转运子(aryl hydrocarbon receptor nuclear translocator, ARNT), 在细胞内稳定表达。每个α亚基的氨基末端均含有碱性的螺旋-环-螺旋(basic-helix-loop-helix, bHLH)构型和Per/Amt/Sim(PAS)结构,是其形成异源二聚体并与DNA结合所必需的结构。α亚基的两个末端是感受缺氧信号的活性调控区域,C末端有一个富含脯氨酸-丝氨酸-苏氨酸(Pro/Ser/Thr)的氧依赖降解结构域(oxygen-dependent degradation domain,ODDD)。在整个羧基端存在2个反式激活结构域(transactivation domain,TAD),即局部C端的C-TAD和局部N端的N-TAD[1]。这些结构域都是调控缺氧诱导蛋白稳定、核定位和转录激活的调节域,其中C-TAD发挥精细调整作用,N-TAD为激活转录所必需。正常氧含量下,α亚基在体内的含量极少,半衰期低于5 min。α亚基的ODDD上2个位点的脯氨酸残基被HIF脯氨酸羟化酶(prolyl hydroxylase,PH)羟基化,这一信号招募泛素E3连接酶、抑癌因子VHL蛋白(von hippel-lindau protein,pVHL)、延伸因子B(elongin B)、延伸因子C(elongin C)、氯化铜、环指状蛋白(Ring-box-1)等相关成分形成复合体,最终被26S的蛋白酶体降解[2]。在低氧条件下,脯氨酸羟化酶所依赖的α-酮戊二酸、Fe2+以及维生素C盐等辅助因子的改变,导致酶活性受抑制。α亚基C端天冬酰胺结合共激活因子p300/CBP在胞质内积累后转位入核,与β亚基形成稳定的二聚体,增加α亚基的稳定性。二聚体在核内与p300/CBP和RNA 聚合酶Ⅱ(RNA polymeraseⅡ)复合物共同结合在HIF基因的反应元件(HIF response element,HRE)上,激活血管内皮生长因子(vascular endothelial cell growth factor,VEGF)、促红细胞生成素(erythropoietin,EPO)、诱导型一氧化氮合酶 (induced nitric oxide synthase,iNOS)、葡萄糖转运体(glucosetransporter,GLUT)等约100种下游靶基因的转录,提升机体在缺氧条件下的耐受能力[3]

HIF具有3种同形α亚基(HIF-1α,HIF-2α,HIF-3α)和3种同形β亚基(Arnt1,Arnt2,Arnt3)。目前,仅有HIF-1α的研究较为透彻,且被认为与机体缺氧下的调节过程联系最为密切;相比之下HIF-3α则知之甚少。HIF-1α与HIF-2α的结构和功能均较为相似,二者在结构上的区别为,ODDD中脯氨酸残基位于HIF-1α的第402和564位,而HIF-2α是第405和531位;C-TAD中天冬酰胺残基位于HIF-1α的N端803位,而HIF-2α则是N端851位。

运用基因靶向干扰技术发现,HIF-1α-/-小鼠胚胎致死;HIF-2α-/-小鼠胚胎发育不良,偶有存活,但多伴有心肺成熟畸形,血管发育缺陷等[4] 。虽然3种同形α亚基在蛋白结构域上十分相似,但其在机体表达的组织特异性不同。HIF-1α在各种组织中广泛表达,而HIF-2α只在心、肺、肾和小肠等少数实体或空腔脏器中特定表达。在细胞水平上的表达也存在差异,如在肾脏中,HIF-1α只表达在肾小管细胞,HIF-2α则表达在内皮细胞和成纤维细胞;在成神经细胞瘤中,与晚期转移和肿瘤侵袭性较相关的是HIF-2α[5]。虽然二者具有共同的靶基因,如VEGF等,但调节的各自下游基因也不完全相同:如参与糖酵解通路中各种酶的转录水平的调节主要是受HIF-1α调控;肝脏中HIF-2α调控EPO的产生量,而HIF-1α则优先调节促凋亡因子Bcl-2[6]

2 HIF参与多种疾病过程中的IRI的调节

临床上IRI的发生可见于机体各器官,首要表现为缺血缺氧。生物体氧调节极为精密,氧供给与需求失衡时,低氧成为应激源,刺激组织细胞启动低氧性应激反应,导致HIF表达增多,调控下游靶基因,改善缺血缺氧状态。

2.1 HIF与脑血管疾病

脑卒中是常见的脑血管意外,为脑部缺血或出血性损伤,血管再通后依旧有较多的并发症,且病死率和致残率高。Ran等[7]给予新生大鼠和成年大鼠8%的低氧3 h预处理,之后再给予缺氧缺血24 h的手术干预,结果发现大鼠脑损伤症状减轻。其机制可能为前期适度的缺血缺氧导致HIF-1上调,进而带动下游靶基因VEGFEPOiNOSGLUT1上调,使机体适应缺氧环境,从而减轻了损伤。Yan等 [8]研究发现异氟烷预处理可减轻脑IRI,其机制为HIF-1α上调, 激活Akt/mTOR/s6K信号通路。Du等[9]报道将星形胶质细胞在高温下预处理6 h后再模拟IRI,结果发现在此种特殊诱导下,HIF-1α的表达量及结合活性均提高,继而导致细胞活性增高及损伤相关指标下降,损伤减轻。Li等[10]将大脑皮层神经元细胞置于低氧下培养诱导HIF-1α的高表达,减轻了之后的IRI;但将HIF-1α基因敲除后并未降低这种保护作用,表明慢性缺氧预处理减轻IRI的机制可能是HIF-1α非依赖的。Stahr等[11]通过酵母双杂交的方法发现了与PHD3相互作用的β转导素,将其编码基因命名为Morg1。Morg1正常表达时可激活PHD3,导致HIF-1α加速降解;而基因双敲Morg1时会导致胚胎致死。利用同源重组的方法产生Morg1+/-杂合子,抑制Morg1的表达,结果发现与野生型相比,Morg1+/-大鼠脑损伤减轻。其机制可能为ERK通路被激活,抑制了PHD3活性,导致HIF-1α、HIF-2α增多,下游靶基因表达增多,对缺氧的耐受增强。

2.2 HIF与心血管疾病

心绞痛、心肌梗死等常见心血管内科疾病与心脏缺血缺氧关系密切。Date等[12]发现,在大鼠心肌细胞IRI模型中过表达HIF-1α可增强机体对IRI的耐受能力。Kido等[13]也发现在小鼠心肌梗死模型中,HIF-1α过表达缩小了梗死病灶的面积,改善了心功能。Jayachandran等[14]在大鼠心肌缺血后再灌注阶段给予锐刺山楂提取物,同时激活Akt以及HIF-1α通路,结果大鼠表现为心肌肌酸激酶和梗死面积显著降低,心肌损伤减轻。同样,Si等[15]在心肌IRI后使用黄芪甲苷Ⅳ,结果增强了HIF-1α和iNos的表达,改善了心肌缺血;而使用HIF-1α抑制剂可以逆转黄芪甲苷Ⅳ的保护作用,表明高表达HIF-1 α有利于心肌细胞存活。Shohet等[16]研究认为,HIF-1α可能在心脏缺氧时主要调节糖代谢,并在心肌梗死后对诱导新生血管形成具有关键作用;而HIF-2α虽然在肝脏中间代谢物的调节上对HIF-1α起补充作用,但在心脏是否如此仍有待进一步实验验证。Hyvrinen等[17]报道采用RNA沉默干扰PHD2的编码基因(PHD2是正常氧浓度下降解HIF主要的酶),在心脏中可降低92%的PHD2的含量,且相比于野生型,干扰小鼠IRI后的心功能和冠脉血氧流量都较好,反映梗死面积的间接指标乳酸脱氢酶的含量也降低。Nanayakkara等[18]采用染色质免疫共沉淀等方法进一步探讨HIF-1α保护心脏IRI的机制,结果发现HIF-1α可作为转录因子与线粒体蛋白frataxin启动子上的缺氧反应元件相互作用,增加frataxin的表达,有利于稳定线粒体的膜结构和促进心肌细胞的存活。

2.3 HIF与肝脏疾病

肝脏IRI常见于外伤、休克、肝脏肿物切除以及肝移植手术等。近来研究表明线粒体渗透性转变(mitochondrial permeability transition,MPT)在肝脏IRI中起到重要作用,能直接导致线粒体去极化、ATP合成障碍、细胞色素C释放增多[19]。Zhong等[20]观察发现,在肝脏IRI模型中应用PHD抑制剂EDHB,HIF-1α和血红素加氧酶1(HO-1)显著增加,MPT减少,导致线粒体去极化降低,丙氨酸氨基转移酶(alanine aminotransferase,ALT)释放减少。Kasuno等[21]研究证实一氧化氮(NO)通过激活PI3K-Akt通路抑制PHD活性并上调HIF-1α,从而减轻IRI。Guo等[22]也发现使用NO抑制剂左旋-N-位硝基精氨酸甲酯(N-nitro-L-arginine methylester,L-NAME)会终止NO的保护作用,进一步表明此过程是经过Akt-eNOS-NO-HIF通路实现的。此外,Guo等[23]同时发现,在肝缺血后再灌注阶段加入人参皂苷Rb1上调NO、NOS以及HIF-1α的表达,可导致氧自由基清除增多,减轻肝IRI。而Guo等[24]的一项2例临床研究和38例基础研究的荟萃分析也可得出相似结论,表明稳定HIF-1α的表达水平可减轻IRI,提升存活率。

2.4 HIF与肾脏疾病

肾脏的IRI常导致急性肾损伤,表现为广泛的肾小管坏死。Sutton等[25]研究发现,采用瞬时的p53抑制剂可升高位于近端小管、集合管以及髓攀升支粗段HIF-1α的表达量,减轻肾损伤。Yang等[26]报道给予大鼠28 d、每天15 h的间断缺氧,诱导缺氧耐受,可以增加HIF-1α的mRNA和蛋白的表达量,进而增强HIF-1α依赖的抗凋亡基因Bcl-2的表达、减少胞质中的促凋亡基因Bax和线粒体中的细胞色素C的转位,导致肾IRI程度明显减轻。HIF-1α在缺血缺氧的状态下可抑制凋亡,其致瘤倾向也有不少报道[27 , 28]。Wang等[29]通过PHD抑制剂增加HIF-1α的表达,结果使血管紧张素Ⅱ(angiotensin Ⅱ,ANG Ⅱ)的表达上调,进而增加胶原Ⅰ/Ⅲ的沉积和上调金属蛋白酶类组织抑制剂-1(tissue inhibitor of metalloproteinases 1,TIMP-1)的表达, 后者有较强的抗凋亡作用,最终导致肾脏纤维化。既往研究认为HIF-1α在肾脏IRI中起保护作用,但2007年Kojima等[30]发现,基因敲除HIF-2α后,HIF-1α保持不变,但肾脏IRI更为严重。由此推断HIF-2α可能降低氧化应激,从而减少自由基对肾的损伤,发挥肾脏保护作用。然而,Schietke等[31]报道解除pVHL的抑制作用后,HIF-2α增多,并参与肾纤维化、多囊肾和肾肿瘤形成。Yu等[32]对此进一步阐释,认为早期使用PHD抑制剂会选择性地激活HIF-1α,导致纤维化相关基因结缔组织生长因子(connective tissue growth factor,CTGF)和磷酸化的Smad3表达增多,引起肾功能恶化,促使肾纤维化;晚期则主要激活HIF-2α,上调EPO和VEGF的表达,减轻慢性肾损伤。近年大量研究提示在肾脏急慢性损伤中,HIF-2α以保护作用为主。Kapitsinou等[33]研究证实去激活HIF-2α后,肾损伤相关的标志物表达增多,其中血管细胞黏附分子-1(vascular cell adhesion molecule 1,VCAM-1)和极晚期抗原-4(very late antigen 4,VLA-4)均参与此过程。Zheng等[34]通过利用HIF-2α基因敲除鼠模型,证实了七氟烷预处理可以增强HIF-2α的表达,减轻肾IRI。Zhang等[35]发现短暂输尿管阻断可减轻肾IRI,这一过程主要是通过激活HIF-2α实现的。He等[36]采用脂多糖(lipopolysaccharide,LPS)预处理减轻肾IRI损伤,其分子机制主要是内皮细胞HIF-2α升高激活NOS,导致NO合成增多,改善了再灌注后的肾微循环。

3 结 语

较早研究认为HIF-1α在IRI中起主要的作用,但新的证据表明HIF-2α在此过程中也发挥了重要作用。既往相关研究表明在缺血缺氧早期,机体启动代偿机制,HIF-1α、HIF-2α的表达增加,激活下游EPOVEGFGLUT1等靶基因转录表达,引起红细胞大量增殖、血管生成增多以及糖酵解途径增强,促进机体适应缺血缺氧的环境;若持续一定程度后缺血缺氧情况仍不能缓解,则激活核转录因子(NF-κB)转位入核,上调炎症因子以及凋亡相关基因的表达,引发凋亡,启动固有免疫,从而清除不能修复的细胞。此时HIF的持续表达将转而对机体产生有害作用。然而HIF在IRI中的具体机制与通路现在仍莫衷一是,无论是在基础还是临床方面,都有待进一步深入的研究,以期最终能寻找到特异性的药物作用靶点,从而指导临床实践。

参考文献
[1] Jiang B H, Zheng J Z, Leung S W, Roe R, Semenza G L. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension[J]. J Biol Chem, 1997, 272:19253-19260.
[2] Chun Y S, Kim M S, Park J W. Oxygen-dependent and-independent regulation of HIF-1α[J]. J Korean Med Sci, 2002, 17:581-588.
[3] Huang L E, Gu J, Schau M, Bunn H F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci USA, 1998, 95:7987-7992.
[4] Compernolle V, Brusselman S K, Acker T, Hoet P, Tjwa M, Beck H, et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice[J]. Nat Med, 2002, 8:702-710.
[5] Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors-similar but not identical[J]. Mol Cells, 2010, 29:435-442.
[6] Hu C J, Wang L Y, Chodosh L A, Keith B, Simon M C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation[J]. Mol Cell Biol, 2003, 23:9361-9374.
[7] Ran R, Xu H, Lu A, Bernaudin M, Sharp F R. Hypoxia preconditioning in the brain[J]. Dev Neurosci, 2005, 27(2/3/4):87-92.
[8] Yan W, Chen Z, Chen J, Chen H. Isoflurane preconditioning protects rat brain from ischemia reperfusion injury via up-regulating the HIF-1α expression through Akt/mTOR/s6K activation[J]. Cell Mol Biol (Noisy-le-grand), 2016, 62:38-44.
[9] Du F, Zhu L, Qian Z M, Wu X M, Yung W H, Ke Y. Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1α expression and binding activity[J]. Biochim Biophys Acta, 2010, 1802:1048-1053.
[10] Li D, Bai T, Brorson J R. Adaptation to moderate hypoxia protects cortical neurons against ischemia-reperfusion injury and excitotoxicity independently of HIF-1α[J]. Exp Neurol, 2011, 230:302-310.
[11] Stahr A, Frahm C, Kretz A, Bondeva T, Witte O W, Wolf G. Morg1(+/-) heterozygous mice are protected from experimentally induced focal cerebral ischemia[J]. Brain Res, 2012, 1482:22-31.
[12] Date T, Mochizuki S, Belanger A J, Yamakawa M, Luo Z, Vincent K A, et al. Expression of constitutively stable hybrid hypoxia-inducible factor-1α protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury[J]. Am J Physiol Cell Physiol, 2005, 288:C314-C320.
[13] Kido M, Du L, Sullivan C C, Li X, Deutsch R, Jamieson S W, et al. Hypoxia-inducible factor 1-α reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse[J]. J Am Coll Cardiol, 2005, 46:2116-2124.
[14] Jayachandran K S, Khan M, Selvendiran K, Devaraj SN, Kuppusamy P. Crataegus oxycantha extract attenuates apoptotic incidence in myocardial ischemia-reperfusion injury by regulating Akt and HIF-1 signaling pathways[J]. J Cardiovasc Pharmacol, 2010, 56:526-531.
[15] Si J, Wang N, Wang H, Xie J, Yang J, Yi H, et al. HIF-1α signaling activation by post-ischemia treatment with astragaloside Ⅳ attenuates myocardial ischemia-reperfusion injury[J]. PLoS One, 2014, 9:e107832.
[16] Shohet R V, Garcia J A. Keeping the engine primed:HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia[J]. J Mol Med (Berl), 2007, 85:1309-1315.
[17] Hyvärinen J, Hassinen I E, Sormunen R, Mäki J M, Kivirikko K I, Koivunen P, et al. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury[J]. J Biol Chem, 2010, 285:13646-13657.
[18] Nanayakkara G, Alasmari A, Mouli S, Eldoumani H, Quindry J, McGinnis G, et al. Cardioprotective HIF-1α-frataxin signaling against ischemia-reperfusion injury[J]. Am J Physiol Heart Circ Physiol, 2015, 309:H867-H879.
[19] Kim J S, He L, Qian T, Lemasters J J. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes[J]. Curr Mol Med, 2003, 3:527-535.
[20] Zhong Z, Ramshesh V K, Rehman H, Currin R T, Sridharan V, Theruvath T P, et al. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295:G823-G832.
[21] Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, et al. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling[J]. J Biol Chem, 2004, 279:2550-2558.
[22] Guo J Y, Yang T, Sun X G, Zhou N Y, Li F S, Long D, et al. Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway[J]. J Biomed Sci, 2011, 18:79.
[23] Guo Y, Yang T, Lu J, Li S, Wan L, Long D, et al. Rb1 postconditioning attenuates liver warm ischemia-reperfusion injury through ROS-NO-HIF pathway[J]. Life Sci, 2011, 88(13/14):598-605.
[24] Guo Y, Feng L, Zhou Y, Sheng J, Long D, Li S, et al. Systematic review with meta-analysis:HIF-1α attenuates liver ischemia-reperfusion injury[J]. Transplant Rev (Orlando), 2015, 29:127-134.
[25] Sutton T A, Wilkinson J, Mang H E, Knipe N L, Plotkin Z, Hosein M, et al. p53 regulates renal expression of HIF-1α and pVHL under physiological conditions and after ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2008, 295:F1666-F1677.
[26] Yang C C, Lin L C, Wu M S, Chien C T, Lai M K. Repetitive hypoxic preconditioning attenuates renal ischemia/reperfusion induced oxidative injury via upregulating HIF-1α-dependent bcl-2 signaling[J]. Transplantation, 2009, 88:1251-1260.
[27] Powis G, Kirkpatrick L. Hypoxia inducible factor-1α as a cancer drug target[J]. Mol Cancer Ther, 2004, 3:647-654.
[28] Denko N C. Hypoxia, HIF1 and glucose metabolism in the solid tumour[J]. Nat Rev Cancer, 2008, 8:705-713.
[29] Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li P L, et al. Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin Ⅱ in renal medullary interstitial cells[J]. Kidney Int, 2011, 79:300-310.
[30] Kojima I, Tanaka T, Inagi R, Kato H, Yamashita T, Sakiyama A, et al. Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney[J]. J Am Soc Nephrol, 2007, 18:1218-1226.
[31] Schietke R E, Hackenbeck T, Tran M, Günther R, Klanke B, Warnecke C L, et al. Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts[J]. PLoS One, 2012, 7:e31034.
[32] Yu X, Fang Y, Liu H, Zhu J, Zou J, Xu X, et al. The balance of beneficial and deleterious effects of hypoxia-inducible factor activation by prolyl hydroxylase inhibitor in rat remnant kidney depends on the timing of administration[J]. Nephrol Dial Transplant, 2012, 27:3110-3119.
[33] Kapitsinou P P, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury[J]. J Clin Invest, 2014, 124:2396-2409.
[34] Zheng B, Zhan Q, Chen J, Xu H, He Z. Sevoflurane pretreatment enhance HIF-2α expression in mice after renal ischemia/reperfusion injury[J]. Int J Clin Exp Pathol, 2015, 8:13114-13119.
[35] Zhang S, Han C H, Chen X S, Zhang M, Xu L M, Zhang J J, et al. Transient ureteral obstruction prevents against kidney ischemia/reperfusion injury via hypoxia-Inducible factor (HIF)-2α activation[J]. PLoS One, 2012, 7:e29876.
[36] He K, Chen X, Han C, Xu L, Zhang J, Zhang M, et al. Lipopolysaccharide-induced cross-tolerance against renal ischemia-reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production[J]. Kidney Int, 2014, 85:276-288.