糖尿病心肌病(diabetic cardiomyopathy,DCM)是糖尿病主要并发症之一,其独立于其他心血管疾病,其临床特点表现为早期舒张功能障碍、晚期收缩功能障碍和心律失常。糖尿病患者心肌病变主要是由于心肌收缩力改变、肌球蛋白ATP活性降低、钙离子平衡调节异常和离子通道的改变,这些改变导致心力衰竭和心律失常。已证实心功能障碍的发生与细胞内外离子流以及相关离子通道的变化密切相关[1],因此明确DCM患者心肌细胞是否存在电重构以及相关的离子及通道发生了怎样的改变意义重大,有助于阐明 DCM心功能不全的机制。
本文对DCM患者离子通道改变的相关研究进行综述,为更深入了解DCM的发病机制提供帮助,同时为DCM的治疗提供新思路。
1 钙离子通道异常 1.1 Ca2+-ATP酶异常Ca2+-ATP酶在质膜和肌质网上分布丰富,共同参与心肌细胞内钙离子平衡。Dong等[2]通过时间分辨荧光共振能量转移(time-resolved fluorescence resonance energy transfer,TR-FRET)技术发现,肌质网上的钙泵(sarco endoplasmic reticulum calcium adenosine triphosphatase,SERCA)主要受肌质网上的受磷蛋白(phospholamban,PLB)调节,PLB酸化时SERCA对Ca2+的亲和力增加。高血糖和胰岛素抵抗均会抑制SERCA活性,其原因可能是:(1)高血糖时PLB去酸化增强直接抑制了SERCA的活性[3];(2)糖代谢异常,能量供应和细胞膜功能障碍,使细胞膜上的离子通道转运功能下降。内质网和线粒体不能摄取Ca2+,同时Ca2+泵出减少,导致Ca2+超载[4] ;(3) 离子通道活性降低使得动作电位时程延长而引起心律失常。
1.2 L-型钙通道的异常L-型钙通道主要具有Ca2+诱导Ca2+释放机制(calcium-induced calcium release,CICR)[5]。糖尿病可使心室肌细胞L-型钙通道电流密度略有减小,与长期氧化应激损伤和相关代谢途径磷脂酰肌醇-3 羟基激酶(phosphatidylinositol 3 kinase,PI3K)弱化抑制了Cav1.2编码通道的功能有关[6]。同时PI3K的弱化使3,4,5-三磷酸磷脂酰肌醇[phosphatidylinositol (3,4,5)-trisphosphate,PIP3]减少,下游的蛋白激酶 B(protein kinase B,PKB)和蛋白激酶C-λ(protein kinase C-λ,PKC-λ)磷酸化减少,而PKB和PKC-λ的激活可以改善心肌细胞对胰岛素的敏感性[7]。
1.3 Na+-Ca2+交换体(Na+ /Ca2+exchanger,NCX)NCX在DCM患者心肌细胞中的确切作用机制仍不明确。其可能的作用有:(1) 维持细胞内钙稳态,与SERCA、细胞膜上Ca2+泵和线粒体上的Ca2+转运体共同参与细胞内钙的稳态;(2)参与CICR:NCX在动作电位早期通过逆向模式将Ca2+泵入细胞,通过增强钙通道的内流间接增加基质网钙释放。Wang等[8]通过转基因诱导大鼠心肌细胞NCX基因过表达,NCX活性增强会导致肌质网中的Ca2+超载。研究者通过对1型糖尿病Akitains大鼠研究发现,NCX作用会被逆转而将细胞外的Ca2+泵入细胞内,作为一个补充机制来抑制SERCA的活性[9, 10]。
2 钾离子通道的异常 2.1 瞬时外向钾通道(Ito)DCM患者极易发生室性心律失常及猝死[11],而Ito的改变是其发病的电生理基础之一。Ito在心内、外膜心肌上的正常分布密度可维持其正常的动作电位时程离散度,从而起到维持心肌细胞电稳定的作用,一旦Ito发生结构和功能以及分布的紊乱,将导致心肌复极不均衡,使早后除极和晚后除极电位的发生率明显增加,易致折返性心律失常的发生。在对Ito分布梯度改变方面研究发现,糖尿病心脏外膜心肌Ito下降的幅度比内膜更明显[12]。应用膜片钳技术记录糖尿病OLETF大鼠心室肌细胞的Ito密度,发现DCM 组大鼠左心室心肌细胞的 Ito 电流密度低于对照组[12],其主要机制包括:(1)缺乏胰岛素时会使心肌离子通道蛋白Kv4.2、KChIP2合成减少,胰岛素可直接参与K+通道基因表达[13];(2) 糖尿病患者常合并甲状腺素缺乏,而三碘甲状腺原氨酸(T3)可促进心肌Ito转录[14];(3)糖尿病患者神经系统病变时交感神经递质释放减少,刺激Ito基因表达作用减弱;(4)糖尿病引发氧化应激增强,氧化应激反应使超氧化物增加而直接损害Ito的功能。
2.2 超快速激活的延迟整流钾通道(Ikur)大部分对糖尿病心肌细胞钾电流的研究均发现Ikur显著下降,同时胰岛素可以逆转Ikur的下降[15]。Ikur下降幅度在内膜和外膜相同,下降方式具有内、外膜强度一致的频率依赖性。Ikur的存在使心房动作电位1期复极加快,是心房动作电位时程较短的主要原因,与房性折返性心律失常和心房颤动的发生、发展密切相关[16, 17],研究已经证实Ikur抑制剂MK-0448可用于房颤的治疗[17]。研究发现DCM大鼠在2个月大时会出现动作电位延长,同时Ito、Ikur通道电流均明显下降,其相应的编码蛋白(Kv4.2、Kv1.5)表达也下调[18]。这些离子通道的改变先于心力衰竭的发生,可能在心脏猝死方面起到重要作用[19]。
2.3 延迟整流外向钾通道(IK)IK分为快速延迟整流钾电流(IKr)和缓慢延迟整流钾电流(IKs),其基因突变会导致心肌细胞动作电位时程延长,而引起心功能障碍。研究表明胰岛素对IKs的功能有重要影响,IKs激活需要磷酯酰肌醇二磷酸(phosphatidylinosital biphosphate,PIP2),而胰岛素的应用会降低PIP2的含量[20]。IKs在平时几乎不起作用,但是糖尿病时氧化应激活性氧系列产物增加和PKB信号通路减弱导致复极电流如IKr异常降低[21],使IKs开放增加而限制动作电位时程(action potential duration,APD)的过度延长。同时IKs的活性与性别有关,雄性糖尿病大鼠IKs密度低于对照组,而雌性则高于对照组[22]。
2.4 内向整流性钾电流(IK1)糖尿病时心肌细胞上IK1的作用及其编码蛋白的表达均下降[23],Diaz等[24]对心肌缺血的家兔给予IK1抑制剂,心室肌损伤进一步加重,说明IK1具有一定的心肌保护作用,但其机制仍需进一步研究。心肌细胞膜上IK1的密度很高,总电流较大,对维持膜电位的稳定性具有重要作用[25],作为复极后期的主要电流成分加快末期复极,抑制Na+-K+泵,有利于快速复极,防止早期后除极和细胞过度超级化。
2.5 乙酰胆碱激活的钾通道(KAch)KAch是心房肌细胞特有的外向K+流,研究显示糖尿病患者心房肌细胞KAch电流密度减小与胰岛素缺乏使KAch相关G蛋白偶联的内向整流钾通道蛋白表达下降以及经甾体调节元件结合蛋白-1下降使副交感反应减低有关[26];当然糖尿病神经病变使迷走神经递质释放减少可直接造成KAch电流减小。
2.6 ATP敏感性钾通道(KATP)心肌细胞上的KATP可分为肌纤维膜KATP (sarcolemmal KATP,sarcKATP)通道和线粒体KATP (mitochondrial KATP,mitoKATP)通道。正常情况下心肌细胞内ATP合成充足,sarcKATP通道活性很低或处于关闭状态。sarcKATP通道开放使K+外流增加,通过加速3期复极来缩短心肌动作电位,使心肌的有效不应期缩短,心肌兴奋性增加;同时可阻滞Ca2+通过L型钙通道进入细胞,防止心肌细胞内Ca2+超负荷[27]。近期研究发现DCM的发生与线粒体功能受损有密切关系,而mitoKATP对维持线粒体功能起到重要作用,激活后对心肌有保护作用[28]。糖尿病患者血糖长期升高使线粒体KATP功能缺陷,导致细胞凋亡,这也可能是糖尿病患者发生DCM和心脏失去保护功能的原因之一。
2.7 酸敏感的背景钾通道(TASK-1)TASK-1是一种对pH敏感的开放-整流型的双孔弱内向钾通道,没有时间依赖性和电压依赖性[29]。该离子通道除了对细胞外的酸敏感,还对动脉血氧分压敏感。TASK-1被抑制时也会导致ADP延长[30]。双孔钾通道(TWIK-related K+channel 1,TREK-1)是通道家族的重要成员,能被细胞内的ATP、温度、 pH、机械张力、多不饱和脂肪酸、前列腺素类物质及cAMP依赖的蛋白激酶A所激活[31],参与调节细胞膜的背景钾电流,影响动作电位的平台期及动作电位时程。研究发现,TASK-1 和TREK-1在房颤的形成中起到重要作用[32]。糖尿病时TREK-1被激活引起房颤,其机制可能为:(1)糖尿病时心肌能量代谢异常,ATP产生减少;(2)糖尿病时心肌易发生纤维化,导致机械张力增加;(3) Na+-H+交换作用增加,使细胞内pH降低;(4) 糖尿病时心肌主要以脂类供能,导致脂肪酸增多。
3 钠离子通道异常 3.1 快钠通道(INa)快钠通道选择性地允许Na+跨膜通过,激活和失活速度快,其决定了心肌细胞兴奋在心肌细胞间的传导速度。PKC磷酸化可使INa活性减弱[33]。高血糖使心肌细胞、血管平滑肌细胞、内皮细胞二脂酰甘油从头合成增加,进而激活PKC。另外,糖尿病时Ca2+异常及许多心血管生长因子如血管紧张素、内皮素、血管内皮生长因子和渗透因子可通过激活PKC起作用,其可能机制是上述因子作用于细胞膜受体,通过膜磷脂水解生成二脂酰甘油并激活PKC。这些改变使INa幅度下降,导致心房肌传导速度减慢并出现传导阻滞,这就增加了心房肌传导不均一性,有利于折返的形成,同时使折返波的波长减小、心房内所容纳的折返环数目增多,易于房颤的形成与维持。
3.2 Na+-H+交换体(Na+/H+exchanger,NHE)有研究发现高糖能够呈时间和浓度依赖性地增加NHE的活性,PKC抑制剂能够抑制高糖对NHE的激活作用[34],说明高糖能诱导NHE活性升高可能是由PKC通路介导引起的,而PKC本身并不能引起NHE分子的磷酸化,该信号转导途径如何激活NHE仍需进一步研究。Na+-H+交换功能的增强引起细胞内Na+的浓度升高[35],促进NCX反向作用,导致细胞内Ca2+升高[36]。NHE过度激活不但具有介导缺血再灌注心肌损伤的作用,研究结果提示NHE激活还与心肌肥大和心室重构密切相关[37]。一些学者认为糖尿病患者动脉粥样硬化是由于NHE通路的激活引起的,Koliakos等[38]研究发现高血糖会激活单核细胞的NHE-1,导致细胞的黏附和迁移增加。而NHE被抑制时会干扰白介素4的产生以及血小板和白细胞的激活,从而减少微血管堵塞和缺血损伤[39],同时也可以改善胰岛素抵抗[40]。
3.3 Na+-K+交换Na+-K+ ATP酶主要作用是维持细胞内高K+低Na+状态,再通过Na+-Ca2+交换影响细胞内Ca2+水平[41]。长期处于高糖环境的心肌细胞,其钠泵活性明显下降,主要是通过钙蛋白酶的作用抑制心肌细胞膜上Na+-K+ ATP酶的活性[42]。钠泵被抑制时引起细胞内Na+浓度升高,使APD延长[43],同时细胞内的渗透压升高导致细胞水肿,升高的Na+通过细胞膜上的Na+-Ca2+交换排出细胞外,引起胞质内的Ca2+超载。对链脲佐菌素诱导的糖尿病大鼠心肌细胞离子通道的研究发现,胰岛素可通过抑制PI3信号通路,而提高Na+-K+ ATP酶的α2亚基和β1亚基的活性[44]。
4 结 语随着膜片钳技术的发明和分子生物学克隆技术的发展,我们逐步了解到动物与人类心脏电生理有很大的相似性,但也存在着一定的差异。糖尿病时心肌细胞代谢重构是离子通道改变的病理生理基础,DCM代谢重构会导致ATP缺乏,使包括离子泵功能在内的心肌细胞功能受限,以及心肌细胞内代谢紊乱,使心肌细胞离子通道、交换体、泵功能和基因表达异常。造成这些离子通道重构的因素可能有:胰岛素不足直接造成通道蛋白合成减少,氧化应激活性氧产物增加而损伤心肌离子通道,促通道蛋白合成的激素(T3)缺乏,神经营养刺激因素(如交感神经递质)不足,相关激酶(PKA、PKC、PKB等)活性的改变使通道失活或表达下调等。DCM的发生、发展是一个复杂的过程,深入研究DCM中离子通道改变的发病机制,可对DCM的早期干预及研究新的治疗方法提供理论依据。
[1] | Pitt G S. Channeling a new focus for heart failure: insights into ion channels[J]. J Cardiovasc Pharmacol, 2009, 54: 95-97. |
[2] | Dong X, Thomas D D. Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation[J]. Biochem Biophys Res Commun, 2014, 449: 196-201. |
[3] | Billaud M, Lohman A W, Johnstone S R, Biwer L A, Mutchler S, Isakson B E.Regulation of cellular communication by signaling microdomains in the blood vessel wall[J]. Pharmacol Rev, 2014, 66: 513-569. |
[4] | Zhao S M, Wang Y L, Guo C Y, Chen J L, Wu Y Q. Progressive decay of Ca2+ homeostasis in the development of diabetic cardiomyopathy[J]. Cardiovasc Diabetol, 2014,13: 75. |
[5] | Nuss H B, Houser S R. Sodium-calcium exchange-mediated contractions in feline ventricular myocytes[J]. Am J Physiol, 1992, 263(4 Pt 2): H1161-H1169. |
[6] | Lu Z, Jiang Y P, Xu X H, Ballou L M, Cohen I S, Lin R Z. Decreased L-type Ca2+ current in cardiac myocytes of type 1 diabetic akita mice due to reduced phosphatidylinositol 3-kinase signaling[J]. Diabetes, 2007, 56: 2780-2789. |
[7] | Farese R V, Sajan M P, Yang H, Li P, Mastorides S, Gower W R Jr, et al. Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes[J]. J Clin Invest, 2007, 117: 2289-2301. |
[8] | Wang J, Chan T O, Zhang X Q, Gao E, Song J, Koch W J, et al. Induced overexpression of Na+/Ca2+ exchanger transgene: altered myocyte contractility,[Ca2+]i transients, SR Ca2+ contents, and action potential duration[J]. Am J Physiol Heart Circ Physiol, 2009, 297: H590-H601. |
[9] | Zheng Y, Wang L, Zhu Z, Yan X, Zhang L, Xu P, et al. Altered platelet calsequestrin abundance, Na+/Ca2+ exchange and Ca2+ signaling responses with the progression of diabetes mellitus[J]. Thromb Res, 2014, 134: 674-681. |
[10] | LaRocca T J, Fabris F, Chen J, Benhayon D, Zhang S, McCollum L, et al. Na+/Ca2+ exchanger-1 protects against systolic failure in the Akitains2 model of diabetic cardiomyopathy via a CXCR4/NF-κB pathway[J]. Am J Physiol Heart Circ Physiol, 2012, 303: H353-H367. |
[11] | Vinik A I, Maser R E, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope[J]. Diabet Med, 2011, 28: 643-651. |
[12] | Sato T, Kobayashi T, Kuno A, Miki T, Tanno M, Kouzu H, et al. Type 2 diabetes induces subendocardium-predominant reduction in transient outward K+ current with downregulation of Kv4.2 and KChIP2[J]. Am J Physiol Heart Circ Physiol, 2014, 306: H1054-H1065. |
[13] | Wang L H, Li X L, Li Q, Fu Y, Yu H J, Sun Y Q, et al. Berberine alleviates ischemic arrhythmias via recovering depressed Ito and ICa currents in diabetic rats[J]. Phytomedicine, 2012, 19(3/4): 206-210. |
[14] | Gallego M, Alday A, Urrutia J, Casis O. Transient outward potassium channel regulation in healthy and diabetic hearts[J]. Can J Physiol Pharmacol, 2009, 87: 77-83. |
[15] | Shimoni Y. Inhibition of the formation or action of angiotensin Ⅱ reverses attenuated K+ currents in type 1 and type 2 diabetes[J]. J Physiol, 2001, 537(Pt 1): 83-92. |
[16] | Ford J, Milnes J, Wettwer E, Christ T, Rogers M, Sutton K, et al. Human electrophysiological and pharmacological properties of XEN-D0101: a novel atrial-selective Kv1.5/Ikur inhibitor[J]. J Cardiovasc Pharmacol, 2013, 61: 408-415. |
[17] | Loose S, Mueller J, Wettwer E, Knaut M, Ford J, Milnes J, et al. Effects of Ikur blocker MK-0448 on human right atrial action potentials from patients in sinus rhythm and in permanent atrial fibrillation[J]. Front Pharmacol, 2014, 5: 26. |
[18] | Odagiri F, Inoue H, Sugihara M, Suzuki T, Murayama T, Shioya T, et al. Effects of candesartan on electrical remodeling in the hearts of inherited dilated cardiomyopathy model mice[J]. PLoS One, 2014, 9: e101838. |
[19] | Suzuki T, Shioya T, Murayama T, Sugihara M, Odagiri F, Nakazato Y, et al. Multistep ion channel remodeling and lethal arrhythmia precede heart failure in a mouse model of inherited dilated cardiomyopathy[J]. PLoS One, 2012, 7: e35353. |
[20] | Wu M, Obara Y, Norota I, Nagasawa Y, Ishii K. Insulin suppresses IKs (KCNQ1/KCNE1) currents, which require β-subunit KCNE1[J]. Pflugers Arch, 2014, 466: 937-946. |
[21] | Zhang Y, Xiao J, Wang H, Luo X, Wang J, Villeneuve L R, et al. Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits[J]. Am J Physiol Heart Circ Physiol, 2006, 291: H1446-H1455. |
[22] | 王 冰,曹颜秀,洪 远,张佳琳,赵 梅,李雪连,等. 心脏复极储备电流IKs在糖尿病QT间期延长性别差异中的作用[J]. 中国病理生理杂志, 2011, 27: 124-128. |
[23] | Wang L H, Yu C H, Fu Y, Li Q, Sun Y Q. Berberine elicits anti-arrhythmic effects via IK1/Kir2.1 in the rat type 2 diabetic myocardial infarction model[J]. Phytother Res, 2011, 25: 33-37. |
[24] | Diaz R J, Zobel C, Cho H C, Batthish M, Hinek A, Backx P H, et al. Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes[J]. Circ Res, 2004, 95: 325-332. |
[25] | Huang W, Wang Y, Cao Y G, Qi H P, Li L, Bai B, et al. Antiarrhythmic effects and ionic mechanisms of allicin on myocardial injury of diabetic rats induced by streptozotocin[J]. Naunyn Schmiedebergs Arch Pharmacol, 2013, 386: 697-704. |
[26] | Park H J, Zhang Y, Du C, Welzig C M, Madias C, Aronovitz M J, et al. Role of SREBP-1 in the development of parasympathetic dysfunction in the hearts of type 1 diabetic Akita mice[J]. Circ Res, 2009, 105: 287-294. |
[27] | Terzic A, Alekseev A E, Yamada S, Reyes S, Olson T M. Advances in cardiac ATP-sensitive K+ channelopathies from molecules to populations[J]. Circ Arrhythm Electrophysiol, 2011, 4: 577-585. |
[28] | Fancher I S, Dick G M, Hollander J M. Diabetes mellitus reduces the function and expression of ATP-dependent K+ channels in cardiac mitochondria[J]. Life Sci, 2013, 92: 664-668. |
[29] | Seyler C, Li J, Schweizer P A, Katus H A, Thomas D. Inhibition of cardiac two-pore-domain K+ (K2P) channels by the antiarrhythmic drug vernakalant-comparison with flecainide[J]. Eur J Pharmacol, 2014, 724: 51-57. |
[30] | Donner B C, Schullenberg M, Geduldig N, Hüning A, Mersmann J, Zacharowski K, et al. Functional role of TASK-1 in the heart: studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability[J]. Basic Res Cardiol, 2011, 106: 75-87. |
[31] | Goonetilleke L, Quayle J. TREK-1 K+ channels in the cardiovascular system: their significance and potential as a therapeutic target[J]. Cardiovasc Ther, 2012, 30: e23-e29. |
[32] | Schmidt C, Wiedmann F, Schweizer P A, Katus H A, Thomas D. Inhibition of cardiac two-pore-domain K+ (K2P) channels—an emerging antiarrhythmic concept[J]. Eur J Pharmacol, 2014, 738: 250-255. |
[33] | Grant A O. Cardiac ion channels[J]. Circ Arrhythm Electrophysiol,2009,2:185-194. |
[34] | Zolota Z, Koliakos G, Paletas K, Kaloyianni M. NHE-1 and β1 integrin dependent monocyte adhesion and migration after glucose, insulin or PPARγ stimulation[J]. Cell Adh Migr, 2014, 5: 258-265. |
[35] | Dhalla N S, Takeda N, Rodriguez-Leyva D, Elimban V. Mechanisms of subcellular remodeling in heart failure due to diabetes[J]. Heart Fail Rev, 2014, 19: 87-99. |
[36] | Clanachan A S. Contribution of protons to post-ischemic Na+ and Ca2+ overload and left ventricular mechanical dysfunction[J]. J Cardiovasc Electrophysiol, 2006, 17(Suppl 1): S141-S148. |
[37] | Odunewu-Aderibigbe A, Fliegel L. The Na+/H+ exchanger and pH regulation in the heart[J]. IUBMB Life, 2014, 66 :679-685. |
[38] | Koliakos G, Zolota Z, Paletas K, Kaloyianni M. High glucose concentrations stimulate human monocyte sodium/hydrogen exchanger activity and modulate atherosclerosis-related functions[J]. Pflugers Arch, 2004, 449: 298-306. |
[39] | Klinkhardt U, Kuczka K, Harder S. Effects of the NHE-1 inhibitor cariporide alone or together with the P2Y12 antagonist AR-C 69331 MX on CD62p expression and formation of platelet-leukocyte aggregates[J]. Thromb Res, 2003, 111(4/5): 251-257. |
[40] | Russell J C, Proctor S D, Kelly S E, Löhn M, Busch A E, Schäfer S. Insulin-sensitizing and cardiovascular effects of the sodium-hydrogen exchange inhibitor, cariporide, in the JCR: LA-cp rat and db/db mouse[J]. J Cardiovasc Pharmacol, 2005, 46: 746-753. |
[41] | Hilgemann D W, Yaradanakul A, Wang Y, Fuster D. Molecular control of cardiac sodium homeostasis in health and disease[J]. J Cardiovasc Electrophysiol, 2006, 17(Suppl 1): S47-S56. |
[42] | Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J. Calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia[J]. Circ Res, 2005,97: 465-473. |
[43] | Pueyo E, Husti Z, Hornyik T, Baczkó I, Laguna P, Varró A, et al. Mechanisms of ventricular rate adaptation as a predictor of arrhythmic risk[J]. Am J Physiol Heart Circ Physiol, 2010, 298: H1577-H1587. |
[44] | Rosta K, Tulassay E, Enzsoly A, Ronai K, Szantho A, Pandics T, et al. Insulin induced translocation of Na+/K+-ATPase is decreased in the heart of streptozotocin diabetic rats[J]. Acta Pharmacol Sin, 2009, 30: 1616-1624. |