2. 第二军医大学翔安干休所, 上海 200433
2. The Xiang'an Cadre Santatorium, Second Military Medical University, Shanghai 200433, China
Irisin是2012年美国哈佛大学Spiegelman教授研究发现的,并以希腊女神“Iris”命名,是一种可以诱导脂肪细胞转化,即调控白色脂肪组织“棕色化”的肌肉因子(myokines)[1]。研究发现Irisin从骨骼肌合成分泌后释放到血液中,能诱导白色脂肪细胞转变为具有分解代谢脂肪特征的棕色脂肪细胞,后者利用氧化呼吸链以消耗氢离子和热能形式释放能量[1, 2, 3]。另有多项研究发现,肌细胞在运动中能增加Irisin的合成和分泌。Irisin能上调解偶联蛋白(uncoupling protein 1,UCP-1)的表达,从而参与改善糖脂代谢和降低体质量;同时能促进betatrophin表达,提高胰岛素敏感性,其结果可能会阻止肥胖和2型糖尿病(type 2 diabetes mellitus,T2DM)的发生[4, 5]。基于Irisin的临床作用,本研究对Irisin与老年T2DM的有关研究进展进行了综述,旨在为老年2型糖尿病的有效防治提供参考。
1 Irisin的生物合成与分泌运动能经神经和内分泌通路调节糖脂代谢,故骨骼肌一直被认为仅是人体最大的运动器官。激素Irisin的发现,提示骨骼肌还是一种活跃的内分泌器官,能释放肌肉因子[3]。研究表明肌肉因子如Irisin可通过骨骼肌与脂肪组织、肝脏、大脑及其他外周组织相联系而发挥关键作用[6]。
运动可以通过Ca2+依赖信号通路和促分裂原活化的蛋白激酶(mitogen-activited protein kinase,MAPK) p38通路诱导肌肉组织中过氧化物酶体增殖物激活受体γ辅助激活因子1α(peroxisome proliferator-activated receptor γ coactivetor-Iα,PGC-1α)表达增加[7],后者能促使Ⅲ型纤维蛋白域包含蛋白5(fibronectin type Ⅲ domain containing protein 5,FNDC5)的表达。研究表明FNDC5的N端是一个信号肽,中间是Ⅲ型纤连蛋白结构域(FND),其后为疏水氨基酸区(H)和C末端(C)[2]。FNDC5被蛋白水解酶剪切后形成的可分泌多肽片段即为Irisin。Irisin可诱导脂肪细胞激活,调节UCP-1的表达,引起线粒体氧化呼吸的电子传递和脂肪细胞氧耗的增加,导致白色脂肪细胞转化为棕色脂肪细胞[8]。而棕色脂肪组织(brown adipose tissue,BAT)则可通过氧化脂肪酸产热,促进能量的消耗。
2 Irisin对白色脂肪组织的棕色化作用相关研究发现运动可诱导骨骼肌表达PGC-1α,从而促进FNDC5表达,导致循环中Irisin水平升高,并作用于白色脂肪细胞,引起与白色脂肪棕色样改变相关的一系列组织反应,最终增加脂肪组织分解代谢,能量消耗增多[1],进而改善与肥胖、T2DM密切相关的胰岛素抵抗状态。脂肪组织贮存体内富余的能量是导致肥胖症的根本病因。目前认为哺乳动物体内有两种脂肪组织,即白色脂肪组织(white adipose tissue,WAT)和BAT[9]。WAT主要以三酰甘油形式贮存多余能量,而BAT则以热能形式消耗贮存的能量。以往研究认为BAT主要分布于新生儿及冬眠动物,以助其御寒。但多项研究表明在小鼠及成人体内也存在BAT,主要分布于颈部、锁骨附近及脊柱旁等部位[10, 11, 12, 13]。BAT通过线粒体的氧化磷酸化解偶联作用将能量转化为热能,消耗大量脂肪和葡萄糖,故BAT在能量调节中起重要作用[14, 15, 16]。在某些因素诱导下,啮齿类动物WAT内会出现棕色样脂肪细胞,将此细胞命名为“米色脂肪细胞”。成人体内的棕色脂肪就是主要以米色脂肪形式存在[17, 18],它起源于非Myf5+的细胞系,有别于经典的BAT,具有棕色脂肪和白色脂肪的双重属性。米色脂肪在Irisin等因素诱导下可高表达UCP-1,引起白色脂肪细胞棕色样变,从而明显促进机体能量消耗、减轻体质量、改善糖脂代谢。
3 Irisin与老年T2DMT2DM是以一系列代谢紊乱,如胰岛素抵抗、胰岛素分泌减少和葡萄糖产生增加为特征的异质性疾病,长期静坐、缺乏运动等静止性生活方式是T2DM、肥胖和心血管疾病的主要危险因素。多项研究证实,Irisin可以增强骨骼肌、脂肪组织及肝脏等对胰岛素的敏感性,因此研究体外合成Irisin的模拟运动,对缺少一定强度锻炼的老年T2DM患者进行疾病防治有着重要意义[19, 20]。
运动能诱导Irisin分泌,Bostrm等[1]发现小鼠经过长期耐力运动,Irisin水平显著升高;健康成人进行10周的耐力性训练后,相比不运动者其Irisin水平增加了2倍。故有规律的中等强度运动不仅是T2DM的基础治疗方法,而且还可能延缓或阻止肥胖和T2DM的发生。老年T2DM患者多伴有心脑血管疾病、周围神经病变、骨关节退行性变等多种并发症或合并症,因而不适合首选中等强度的运动,也无法长期坚持,故现有的运动不能有效促进Irisin分泌。此外,BAT在人体组织中具有明显的年龄和个体差异,随着年龄增长,BAT明显减少。所以,激活米色脂肪细胞、诱导WAT转变BAT或提供外源性Irisin等方式[21, 22],可能会给肥胖和T2DM,尤其是老年T2DM患者的治疗提供新思路和新方法。
3.1 Irisin是老年患者糖代谢的关键调节激素老年患者体力活动相对较少、心脑血管等共存疾病多、年龄相关胰岛素抵抗及胰岛β细胞分泌功能减退等是其糖代谢异常的易感因素。研究证实,生活方式干预和适当增加运动是预防老年T2DM和糖调节受损发生的有效措施[23]。静止性生活方式是代谢综合征的高危因素,活动量减少会使胰岛素刺激的葡萄糖摄取及葡萄糖转运蛋白 4(glucose transporter 4,GLUT4)的量减少,导致胰岛素敏感性下降[24]。运动不仅可以促进骨骼肌细胞内的自噬作用,增加骨骼肌胰岛素敏感性,提高葡萄糖代谢能力,有效防治代谢性疾病发生[25];同时还可以诱导肌肉组织表达PGC-1α,最终促使骨骼肌、心脏、肝脏、肾脏和外周神经鞘等组织分泌Irisin,再通过PGC 1α-Irisin-UCP1通路促进能量消耗、刺激线粒体生物合成、促进胰岛β细胞增殖和提高葡萄糖耐量,减轻胰岛素抵抗[1]。故经常运动对增加能量消耗、改善能量平衡具有积极作用。
Wu等[17]给高脂饮食小鼠导入含FNDC5腺病毒后,发现其糖耐量得到明显改善,空腹胰岛素水平降低,表明Irisin可改善胰岛素抵抗。Stengel等[26]报道,肥胖并胰岛素抵抗患者血浆Irisin水平与血浆胰岛素水平呈正相关。Park等[27]研究显示Irisin水平与肥胖患者的胰岛素抵抗程度密切相关,提示肥胖和代谢综合征也可能会导致与胰岛素抵抗和瘦素抵抗相似的Irisin抵抗。Sesti等[28]观察发现,192名白种成年人的循环Irisin水平与胰岛素敏感性呈负相关,这可能与胰岛素敏感性减退,反应性刺激脂肪及肌肉组织释放Irisin以代偿潜在的胰岛素抵抗有关。而老年人与年龄呈正相关的胰岛素抵抗是体内血糖调节失衡的一个主要原因,因此,Irisin在老年糖尿病患者血糖调节失衡中起着重要作用。Choi等[29]研究发现,T2DM患者血清Irisin水平明显低于糖耐量正常者,提示Irisin可能在糖代谢和T2DM发生中起重要作用,Irisin水平降低增加了T2DM的发病风险。 Liu等[30]的研究也得出同样结论。Moreno-Navarrete等[5]研究证实,肥胖和T2DM患者肌肉内FNDC5基因表达、循环和脂肪组织中Irisin水平均明显降低。T2DM伴胰岛素抵抗者循环Irisin水平明显降低的原因可能与肌因子p38MAPK-PGC-1α-Irisin-UCP1通路异常有关,也可能与胰岛素抵抗进行性加重及糖稳态受损程度相关。因此,在糖尿病治疗中,Irisin在降低胰岛素抵抗方面可能发挥重要的调节作用。但是,目前的研究不能排除种族、性别及样本大小对试验结果的影响,故Irisin生物学机制仍有待进一步明确。
3.2 Irisin刺激神经细胞生长及改善老年T2DM患者认知功能Wrann等[31]研究发现,运动不仅能促使Irisin分泌,还能刺激神经细胞新生,从而改善认知和减缓大脑退化。相关研究也显示FNDC5和PGC-1α除存在于肌肉组织外,也存在于大脑,两者在神经发育方面可能具有一定作用[32, 33, 34]。脑源性神经营养因子(brain derived neurotrophic factor,BNDF)是中枢神经系统分泌的一种碱性蛋白,在神经元的生长、分化、存活和修复中起重要作用。研究提示BDNF与学习和记忆功能密切相关[35, 36]。
老年人是认知功能障碍的高发人群,高龄又是糖尿病的危险因素。T2DM患者痴呆的风险比正常人高出2倍,是血管性痴呆的重要危险因子,也是阿尔兹海默病的主要致病因素。大量研究表明T2DM 患者存在不同程度的认知功能减退或障碍。Gregg等[37]通过对老年人群的前瞻性研究发现,糖尿病患者存在记忆等各种认知障碍,而且病程越长认知评分越低。王想[38]的研究也证实,老年T2DM患者认知功能明显低于正常人群,并推测BDNF水平与认知功能减退有关。BDNF的减少是老年T2DM患者认知功能下降的主要原因之一。而Irisin水平的升高则能增加BDNF,激活学习和记忆相关基因的表达,提示Irisin水平的升高可能对老年T2DM合并抑郁症、阿尔茨海默病等神经精神性疾病患者的大脑功能具有改善作用[39, 40, 41, 42] 。
3.3 Irisin减缓老年T2DM患者老化新陈代谢紊乱会造成老年T2DM患者老龄化进程加速,而能量限制(calorie restriction,CR)或经常运动能延缓老化,并逆转代谢异常[43]。Song等[44]研究证实,老龄化和不健康生活方式会加重DNA损伤。端粒(telomere)是位于染色体两极的特殊重复片段,细胞每次复制时其端粒的长度均会变短,故端粒长度和细胞寿命成反比,端粒缩短是细胞衰老的特征。端粒越短,其结构完整性就越弱,易导致染色体末端的脱帽(即端粒功能紊乱)和DNA损伤应答的激活,从而导致细胞衰老和寿命缩短。研究表明端粒缩短会诱导端粒酶等血清标志物即衰老基因相关标志物的增加,糖尿病患者循环中这些标志物表达明显升高[45, 46]。已有许多研究报道较短的端粒与糖尿病相关,并推测端粒缩短程度的加重会加速β细胞衰竭而最终导致糖尿病发生[47, 48]。还有研究表明,端粒缩短与糖尿病并发症如糖尿病肾病、微量白蛋白尿和上皮癌症等密切相关。Rana等[49]研究显示,营养失衡明显影响到老龄化进程,适度的CR可延长哺乳动物寿命;而运动后骨骼肌释放的Irisin可诱发类似CR样作用。此外,有研究显示血浆Irisin水平与端粒长度明显相关,推测Irisin可通过延长端粒而延缓衰老[45, 49]。但是,Irisin在外周抗老化功能的确切机制仍未阐明,可能与减轻或阻止氧化应激及炎症状态[50]、调节端粒酶反转录酶表达[51],激活p38 MAPK和细胞外相关信号通路[52]或通过WAT发挥作用有关。总之,Irisin可能在T2DM、代谢性疾病和衰老的有效防治中发挥重要作用[53]。
4 结 论Irisin是一种新的肌源性激素,可模拟运动诱导棕色脂肪细胞形成,以增加能量消耗,并促进β细胞再生从而阻止糖尿病和肥胖等代谢性疾病发生;FNDC5/Irisin能增加BDNF,激活学习及记忆基因的功能,从而改善老年糖尿病患者认知功能和延缓大脑退化;能通过延长端粒进而延缓衰老。因此,对于很难实现生活方式改变或无法进行中等强度有氧运动的人群,尤其是老年人,补充外源性Irisin可能有效防治T2DM等代谢性疾病,但确切疗效及Irisin的作用机制等仍有待进一步研究。
[1] | Boström P, Wu J, Jedrychowski M P, Korde A, Ye L, Lo J C, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis [J]. Nature, 2012, 481: 463-468. |
[2] | Pukajło K, Kolackov K, Łaczmański Ł, Daroszewski J. [Irisin-a new mediator of energy homeostasis] [J]. Postepy Hig Med Dosw (Online), 2015, 69: 233-242. |
[3] | Pedersen B K,Febbraio M A.Muscles,exercise and obesity skeletal muscle as a secretory organ[J].Nat Rev Endocrinol,2012,8:457-465. |
[4] | Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur N K, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals[J]. J Biol Chem, 2007, 282: 30014-30021. |
[5] | Moreno-Navarrete J M, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F,et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance[J]. J Clin Endocrinol Metab, 2013, 98: E769-E778. |
[6] | Eckardt K, Görgens S W, Raschke S, Eckel J. Myokines in insulin resistance and type 2 diabetes[J]. Diabetologia, 2014, 57: 1087-1099. |
[7] | Akhmetov I I, Rgozkin V A. [The role of PGC-1α in the regulation of skeletal muscle metabolism] [J]. Fiziol Cheloveka, 2013, 39: 123-132. |
[8] | Carey A L, Vorlander C, Reddy-Luthmoodoo M, Natoli A K, Formosa M F, Bertovic D A, et al. Reduced UCP-1 content in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity[J]. PLoS One, 2014, 9: e91997. |
[9] | Cinti S. The adipose organ at a glance[J]. Dis Model Mech, 2012, 5: 588-594. |
[10] | Cypess A M, Lehman S, Williams G, Tal I, Rodman D, Goldfine A B, et al. Identification and importance of brown adipose tissue in adult humans[J]. N Engl J Med, 2009, 360: 1509-1517. |
[11] | van Marken Lichtenbelt W D, Vanhommerig J W, Smulders N M, Drossaerts J M, Kemerink G J, Bouvy N D, et al. Cold-activated brown adipose tissue in healthy men[J]. N Engl J Med, 2009, 360: 1500-1508. |
[12] | Virtanen K A, Lidell M E, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults[J]. N Engl J Med, 2009, 360: 1518-1525. |
[13] | Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans[J]. Am J Physiol Endocrinol Metab, 2007, 293: E444-E452. |
[14] | 刘 琰, 肖柳玲, 钱淑文, 汤其群. 棕色脂肪基础研究进展[J]. 中华糖尿病杂志, 2013, 5: 510-513. |
[15] | 张 韵. 棕色脂肪形成的研究进展[J]. 国际病理科学与临床杂志, 2013, 33: 458-461. |
[16] | Virtanen K A. BAT thermogenesis: linking shivering to exercise[J]. Cell Metab, 2014, 19: 352-354. |
[17] | Wu J, Boström P, Sparks L M, Ye L, Choi J H, Giang A H, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J]. Cell, 2012, 150: 366-376. |
[18] | Petrovic N, Walden T B, Shabalina I G, Timmons J A, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically com-petent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes[J]. J Biol Chem, 2010, 285: 7153-7164. |
[19] | Pedersen L, Hojman P. Muscle-to-organ cross talk mediated by myokines[J]. Adipocyte, 2012, 1: 164-167. |
[20] | Eckardt K, Görgens S W, Raschke S, Eckel J. Myokines in insulin resistance and type 2 diabetes[J]. Diabetologia, 2014, 57: 1087-1099. |
[21] | Novelle M G, Contreras C, Romero-Picó A, López M, Diéguez C. Irisin, two years later[J]. Int J Endocrinol, 2013, 2013: 746281. |
[22] | Nedergaard J, Cannon B. The changed metabolic world with human brown adipose tissue: therapeutic visions[J]. Cell Metab, 2010, 11: 268-272. |
[23] | Ansari R M. Effect of physical activity and obesity on type 2 diabetes in a middle-aged population[J]. J Environ Public Health, 2009, 2009: 195285. |
[24] | Thyfault J P, Booth F W. Lack of regular physical exercise or too much inactivity[J]. Curr Opin Clin Nutr Metab Care, 2011, 14: 374-378. |
[25] | He C, Bassik M C, Moresi V, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis[J]. Nature, 2012, 481: 511-515. |
[26] | Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp B F. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity-correlation with body mass index[J]. Peptides, 2013, 39: 125-130. |
[27] | Park K H, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung K E, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome[J]. J Clin Endocrinol Metab, 2013, 98: 4899-4907. |
[28] | Sesti G,Andreozzi F,Fiorentino T V,Mannino G C,Sciacqua A,Marini M A,et al. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects[J]. Acta Diabetol, 2014, 51: 705-713. |
[29] | Choi Y K, Kim M K, Bae K H, Seo H A, Jeong J Y, Lee W K, et al. Serum irisin levels in new-onset type 2 diabetes[J]. Diabetes Res Clin Pract, 2013, 100: 96-101. |
[30] | Liu J J, Wong M D, Toy W C, Tan C S, Liu S, Ng X W, et al. Lower circulating irisin is associated with type 2 diabetes mellitus[J]. J Diabetes Complications, 2013, 27: 365-369. |
[31] | Wrann C D, White J P, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J]. Cell Metab, 2013, 18: 649-659. |
[32] | Hashemi M S, Ghaedi K, Salamian A, Karbalaie K, Emadi-Baygi M, Tanhaei S, et al. FNDC5 knockdown significantly decreased neural differentiation rate ofmouse embryonic stem cells[J]. Neuroscience, 2013, 231: 296-304. |
[33] | Huh J Y, Panagiotou G, Mougios V, Brinkoetter M, Vamvini M T, Schneider B E, et al. FNDC5 and irisin in humans: Ⅰ. Predictors of circulating concentrationsin serum and Ⅱ. mRNA expression and circulating concentrations inresponse to weight loss and exercise[J]. Metabolism, 2012, 61: 1725-1738. |
[34] | Moon H S, Dincer F, Mantzoros C S. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines[J]. Metabolism, 2013, 62: 1131-1136. |
[35] | Peng S, Zhang Y, Zhang J, Wang H, Ren B. Effect of ketamine on ERK expression in hippocampal neural cell and the ability of learning behavior in minor rats[J]. Mol Biol Rep, 2010, 37: 3137-3142. |
[36] | Zhen Y F,Zhang J,Liu X Y,Fang H, Tian L B, Zhou D H, et al.Low BDNF is associated with cognitive deficits in patients with type 2 diabetes [J]. Psychopharmacology (Ber1), 2013, 227: 93-100. |
[37] | Gregg E W, Yaffe K, Cauley J A, Rolka D B, Blackwell T L, Narayan K M, et al. Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group[J]. Arch Intern Med, 2000, 160: 174-180. |
[38] | 王 想. 血清脑源性神经营养因子在老年2型糖尿病中的表达及对认知功能的影响[J]. 中国实用神经疾病杂志, 2012, 15: 20-22. |
[39] | Cooney G M, Dwan K, Greig C A, Lawlor D A, Rimer J, Waugh F R, et al. Exercise for depression[J]. Cochrane Database Syst Rev, 2013, 9: CD004366. |
[40] | Silveira H, Moraes H, Oliveira N, Coutinho E S, Laks J, Deslandes A. Physical exercise and clinically depressed patients: a systematic review and meta-analysis[J]. Neuropsychobiology, 2013, 67: 61-68. |
[41] | Buchman A S, Boyle P A, Yu L, Shah R C, Wilson R S, Bennett D A. Total daily physical activity and the risk of AD and cognitive decline in older adults[J]. Neurology, 2012, 78: 1323-1329. |
[42] | Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review[J]. Int Psychogeriatr, 2014, 26: 9-18. |
[43] | Finelli C, Sommella L, Gioia S, La Sala N, Tarantino G. Should visceral fat be reduced to increase longevity? [J]. Ageing Res Rev, 2013, 12: 996-1004. |
[44] | Song Z, Von Figura G, Liu Y, Kraus J M, Torrice C, Dillon P, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood[J].Aging Cell, 2010, 9:607-615. |
[45] | Salpea K D, Humphries S E. Telomere length in atherosclerosis and diabetes[J]. Atherosclerosis, 2010, 209: 35-38. |
[46] | 孙 莹,邹亚学,郑梅竹,潘风光,张玉静. 端粒、端粒酶与细胞衰老及肿瘤的研究进展(综述)[J]. 河北科技师范学院学报,2007,21:73-77. |
[47] | Olivieri F, Lorenzi M, Antonicelli R, Testa R, Sirolla C, Cardelli M, et al. Leukocyte telomere shortening in elderly Type2DM patients with previous myocardial infarction[J]. Atherosclerosis, 2009, 206: 588-593. |
[48] | Salpea K D, Talmud P J, Cooper J A, Maubarret C G, Stephens J W, Abelak K, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation[J]. Atherosclerosis, 2010, 209: 42-50. |
[49] | Rana K S, Arif M, Hill E J, Aldred S, Nagel D A, Nevill A, et al. Plasma irisin levels predict telomere length in healthy adults[J]. Age (Dordr), 2014, 36: 995-1001. |
[50] | Kark J D , Goldberger N, Kimura M, Sinnreich R, Aviv A. Energy intake and leukocyte telomere length in young adults[J]. Am J Clin Nutr, 2012, 95: 479-487. |
[51] | Matsuo T, Shimose S, Kubo T, Fujimori J, Yasunaga Y, Sugita T, et al. Correlation between p38 mitogen-activated protein kinase and human telomerase reverse transcriptase in sarcomas[J]. J Exp Clin Cancer Res, 2012, 31:5. |
[52] | Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling[J]. Diabetes, 2014, 63: 514-525. |
[53] | Castillo-Quan J I . From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and Obesity [J]. Dis Model Mech, 2012, 5: 293-295. |