2. 中南大学附属湘雅医院骨科, 长沙 410008
2. Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
脊柱融合术是重建脊柱稳定性、恢复脊柱正常序列最常用的手术方案之一,目前广泛应用于脊柱失稳、退变、创伤、肿瘤、感染等脊柱疾病[1]。融合失败、假关节形成等是脊柱手术较常见的问题,可引起疼痛、畸形、不稳加重、需要再次手术等严重后果[2]。提高植骨融合率以获得快速、坚固的融合已成为脊柱手术的基本目标。相关促进脊柱辅助融合方法如生物植骨材料、骨形成蛋白等应运而生[3]。但是,目前这些促进脊柱融合的方法仍存在费用高及有效性、安全性不满意等问题[4]。寻求一种安全、经济、方便、有效的促进脊柱融合的辅助方法仍是目前临床需求和研究的重要方向。
1 LIPUS促进脊柱融合的研究现状超声波疗法由于其便利、经济、安全的特点,近年来在骨骼肌肉系统疾病的治疗中得到较为广泛的研究和应用[5]。低强度脉冲超声波(low-intensity pulsed ultrasound stimulations,LIPUS) 频率一般为1~3 MHz,强度小于100 mW/cm2,其作用于机体组织时可由机械力学刺激引起相关的生物效应。近年来的研究表明LIPUS在促进骨折愈合、治疗骨不连和肌腱韧带损伤等方面具有一定作用,特别是应用于促进骨折愈合已经得到临床肯定[6]。骨折治疗领域的相关基础研究证明,LIPUS具有显著的促进骨形成和骨重塑作用[7, 8]。有研究者将其进一步应用于脊柱融合中,初步研究发现LIPUS明显促进脊柱融合。吕红斌等[9]通过建立新西兰兔腰椎后外侧融合模型,发现LIPUS可以通过促进软骨内成骨增强脊柱融合。这与Glazer等[10]的研究结果基本一致,他们发现LIPUS治疗6周后,融合率较对照组提高约65%~93%,组织学切片亦发现在新骨形成上有明显的增加。目前普遍认为,植骨融合分为炎性反应期、纤维骨痂、软骨内成骨和骨重塑4个时期[11]。根据国内外报道,基本一致认为软骨内成骨是脊柱植骨融合的最主要成骨方式[12]。
2 LIPUS促进脊柱融合机制探究骨融合的病理基础是成骨细胞或软骨细胞增殖和分化,促进骨基质形成,重塑期破骨细胞活性增强,促进骨小梁结构形成[12]。同时,血管和神经纤维长入成骨区域,对骨生长有重要意义[13, 14]。研究发现,血管新生伴随骨生长,如果无血液供应很可能导致骨不连[15]。细胞实验发现,LIPUS可以直接促进成骨细胞增殖和成熟,分泌骨基质,促进骨质生成,亦可以促进软骨细胞增殖和分化[16, 17]。在动物模型中,发现LIPUS可以明显促进骨融合区域血管新生[18, 19],促进骨融合区域感觉神经支配[20],但是其促进骨融合的机制尚不清楚。
2.1 LIPUS对骨形成细胞直接作用Ryaby等[21]早期研究发现,LIPUS可以促进成骨细胞TGF-β合成、增强腺苷酸环化酶活性,提示其具有骨折修复和椎骨融合作用。目前普遍认为,骨折区域增加的PEG2和COX-2对骨折修复起决定作用[17, 22]。在成骨细胞模型上观察到LIPUS可以明显增加COX-2合成、增强PEG2活性,PEG2通过激活G蛋白偶联受体进而促进细胞生长和增殖[23, 24]。进一步研究发现,LIPUS导致的局部流体剪切应力改变可以促进COX-2合成,提示细胞表面的分子可以感知局部液体流动并产生下游信号[25, 26]。那么,成骨细胞和软骨细胞是如何“感知”LIPUS信号的呢?Tang等[27]发现,LIPUS可以直接增加细胞表面整合素表达,整合素抗体可以使成骨细胞对LIPUS“敏感性”降低,提示整合素是LIPUS干预的关键上游分子。而PI3K/Akt和ERK是关键的下游分子,通过调节COX-2的活性,进而影响骨重塑。
在由胶原纤维组建的关节软骨细胞三维培养模型上,LIPUS干预组较对照组明显促进软骨细胞增殖,进一步探究发现实验组PI3K/Akt明显增加,而MAPK和磷酸化MAPK水平却没有明显变化,提示LIPUS可以通过激活软骨细胞PI3K/Akt通路刺激软骨细胞增殖[17]。另外一项研究发现,LIPUS可以显著促进Ⅱ型胶原纤维和蛋白聚糖合成,干预2 h和12 h后,TGF-β1 mRNA和蛋白表达明显增加;重组TGF-β1可以再现LIPUS的作用,而TGF-β1的中和抗体可以抑制LIPUS的作用,提示TGF-β1在LIPUS促进软骨细胞增殖中起重要作用[28]。那么骨重塑区域软骨细胞是从哪里来的呢?目前广泛认为TGF-β可以促进骨髓间充质干细胞向软骨细胞分化,因此,可能是 LIPUS促进成骨细胞和软骨细胞分泌TGF-β,进而促进间充质干细胞向软骨细胞分化[29]。Wei等[30]研究发现,将间充质干细胞注入大鼠心脏后,LIPUS干预侧骨折区域间充质干细胞明显增多,提示LIPUS可以招募间充质干细胞,并促进其成骨方向增殖和分化。
2.2 LIPUS促进成骨区域血管新生和感觉神经支配血管新生是骨融合的重要因素,可以为骨折区域细胞提供必要的氧气、营养物质和活性因子。近来发现,骨骼的血管中含有特殊的内皮细胞,这些细胞的信号能够支持骨骼的成熟和再生,对于调节成骨细胞和破骨细胞的平衡,具有重要意义。
动物实验证明,LIPUS可以明显促进局部血液循环,增加骨重塑区域血管新生[19, 20]。LIPUS可以有效地促进骨融合区域血管新生因子的表达,例如IL-8、bFGF和VEGF。Wang 等[31]通过体外研究发现,LIPUS可以激活NO和缺氧诱导因子HIF-1α信号通路,促进成骨细胞分泌VEGF-A;抑制NO生成后,LIPUS促进VEGF表达的作用被明显抑制。进一步研究证实,经过超声干预的成骨细胞培养液可以促进人脐带内皮细胞形成单层内皮小管[31]。Cheung等[32]通过建立大鼠骨质疏松骨折模型,发现2~4周后,超声干预组较对照组骨痂的宽度增加26%~30%,骨折4周后VEGF表达显著提高,提示开始有大量血管新生,血流增多可以增强由纤维骨向骨性骨痂转换;4~8周纤维骨痂开始缩小,软骨内成骨开始增强。因此,LIPUS可以通过上调VEGF表达促进骨重塑区域血管新生,增强软骨内成骨。
近来研究发现LIPUS能够明显增强骨融合区域感觉神经支配,该过程与软骨内成骨密切相关。早在20世纪30年代,Hurrell[33]就发现许多有髓和无髓的神经纤维支配骨组织和骨膜,并推测这些纤维和骨的生长和重塑相关。降钙素基因相关肽(calcitonin gene-related peptide,CGRP)免疫阳性神经纤维对骨形成和骨重塑的作用成为近年来的研究热点。CGRP是一种由降钙素基因初级转录产物选择性剪接产生的神经肽,属于降钙素超家族,脊髓背根神经节中的感觉神经元可以合成和分泌CGRP,其主要分布于骨代谢活跃的部位,在生长板骨软骨交界处尤其丰富[34]。Lam等[35]研究发现,利用LIPUS治疗切断坐骨神经的兔胫骨骨折后,LIPUS无法发挥促进骨折愈合的作用,研究认为神经纤维的作用是LIPUS促进骨折愈合的重要必备条件,提示神经功能在LIPUS促骨形成和重塑机制中具有重要作用。Wang等[36]观察了CGRP在BMP促进兔腰椎后外侧融合中骨融合区的时空表达,结果表明CGRP在新生的软骨和骨髓区大量表达,并且CGRP阳性神经纤维的出现早于软骨形成,提示CGRP在BMP促进融合的过程中可能发挥了促进软骨细胞分化的作用。 Wang等[20]随后在前期研究的基础上增加了LIPUS的干预,即以LIPUS联合BMP作用于兔腰椎后外侧融合,发现了与前期研究极为类似的结果,其认为LIPUS可以促进融合区CGRP阳性神经纤维的分布和其受体的表达。因此,CGRP阳性神经纤维可能在LIPUS促进脊柱融合中起关键作用,但是具体作用机制尚待进一步探究。
3 小结目前,已有动物实验及临床试验证实LIPUS可以明显促进脊柱后外侧融合。其组织学基础主要是软骨细胞增殖和分化。进一步研究发现LIPUS还可促进骨形成细胞增殖和分化,并且促进骨融合区域血管新生和感觉神经支配。揭示超声干预的机制有助于将其推广应用于临床治疗,减少融合失败发生率,提高患者生活质量。
[1] | Abdullah K G, Steinmetz M P, Benzel E C, Mroz T E. The state of lumbar fusion extenders[J]. Spine (Phila Pa 1976),2011,36:E1328-E1334. |
[2] | Chrastil J, Patel A A. Complications associated with posterior and transforaminal lumbar interbody fusion[J]. J Am Acad Orthop Surg,2012,20:283-291. |
[3] | Agarwal R, Williams K, Umscheid C A, Welch W C. Osteoinductive bone graft substitutes for lumbar fusion: a systematic review[J]. J Neurosurg Spine,2009,11:729-740. |
[4] | Cabraja M, Kroppenstedt S. Bone grafting and substitutes in spine surgery[J]. J Neurosurg Sci,2012,56:87-95. |
[5] | Miller D L, Smith N B, Bailey M R, Czarnota G J, Hynynen K, Makin I R. Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations[J]. J Ultrasound Med,2012,31:623-634. |
[6] | Griffin X L, Smith N, Parsons N, Costa M L. Ultrasound and shockwave therapy for acute fractures in adults[J].Cochrane Database Syst Rev,2012,2:CD008579. |
[7] | Urita A, Iwasaki N, Kondo M, Nishio Y, Kamishima T, Minami A. Effect of low-intensity pulsed ultrasound on bone healing at osteotomy sites after forearm bone shortening[J]. J Hand Surg Am,2013,38:498-503. |
[8] | Katano M, Naruse K, Uchida K, Mikuni-Takagaki Y, Takaso M, Itoman M,et al. Low intensity pulsed ultrasound accelerates delayed healing process by reducing the time required for the completion of endochondral ossification in the aged mouse femur fracture model[J]. Exp Anim,2011,60:385-395. |
[9] | 吕红斌,徐大启,王锡阳,胡建中,段春岳,张保亮.低强度脉冲超声对兔腰椎融合区软骨内成骨的影响[J].中南大学学报:医学版,2008,33:688-692. |
[10] | Glazer P A, Heilmann M R, Lotz J C, Bradford D S. Use of ultrasound in spinal arthrodesis. A rabbit model[J]. Spine (Phila Pa 1976),1998,23:1142-1148. |
[11] | Pilitsis J G, Lucas D R, Rengachary S S. Bone healing and spinal fusion[J]. Neurosurg Focus,2002,13:e1. |
[12] | Reid J J, Johnson J S, Wang J C. Challenges to bone formation in spinal fusion[J]. J Biomech,2011,44:213-220. |
[13] | Portal-Núñez S, Lozano D, Esbrit P. Role of angiogenesis on bone formation[J].Histol Histopathol,2012,27:559-566. |
[14] | Suzuki A, Uemura T, Nakamura H. [Control of bone remodeling by nervous system. Neural involvement in fracture healing and bone regeneration][J]. Clin Calcium,2010,20:1820-1827. |
[15] | Hausman M R, Rinker B D. Intractable wounds and infections: the role of impaired vascularity and advanced surgical methods for treatment[J]. Am J Surg,2004,187(5A):44S-55S. |
[16] | Blackwell K A, Raisz L G, Pilbeam C C. Prostaglandins in bone: bad cop, good cop? [J]. Trends Endocrinol Metab,2010,21:294-301. |
[17] | Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, et al. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study[J]. Arthritis Res Ther,2008,10:R77. |
[18] | Zhu H, Cai X, Lin T, Shi Z, Yan S. Low-intensity pulsed ultrasound enhances bone repair in a rabbit model of steroid-associated osteonecrosis[J]. Clin Orthop Relat Res,2015,473:1830-1839. |
[19] | Lu H, Qin L, Cheung W, Lee K, Wong W, Leung K. Low-intensity pulsed ultrasound accelerated bone-tendon junction healing through regulation of vascular endothelial growth factor expression and cartilage formation[J]. Ultrasound Med Biol,2008,34:1248-1260. |
[20] | Wang X Y, Guo X, Cheng J C, Mi Y L, Lai P Y. Involvement of calcitonin gene-related peptide innervation in the promoting effect of low-intensity pulsed ultrasound on spinal fusion without decortication[J]. Spine (Phila Pa 1976),2010,35:E1539-E1545. |
[21] | Ryaby J T, Mathew J, Pilla A A, Duarte-Alves P. Electromagnetics in biology and medicine[M]. Brighton C T, Pollack S R, ed. San Francisco: San Francisco Press, 1991:95-100. |
[22] | Czarkowska-Paczek B, Wesoowska K, Przybylski J. [Physical exercise prevents osteoporosis][J]. Przegl Lek,2011,68:103-106. |
[23] | Sena K, Leven R M, Mazhar K, Sumner D R, Virdi A S. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells[J]. Ultrasound Med Biol,2005,31:703-708. |
[24] | Naruse K, Sekiya H, Harada Y, Iwabuchi S, Kozai Y, Kawamata R, et al. Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2[J].Ultrasound Med Biol,2010,36:1098-1108. |
[25] | Wadhwa S, Godwin S L, Peterson D R, Epstein M A, Raisz L G, Pilbeam C C, et al. Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway[J]. J Bone Miner Res,2002,17:266-274. |
[26] | Roper J, Harrison A, Bass M D. Induction of adhesion-dependent signals using low-intensity ultrasound[J]. J Vis Exp,2012,63:e4024. |
[27] | Tang C H, Yang R S, Huang T H, Lu D Y, Chuang W J, Huang T F, et al. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts[J]. Mol Pharmacol,2006,69:2047-2057. |
[28] | Connelly J T, Wilson C G, Levenston M E. Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs[J]. Osteoarthritis Cartilage,2008,16:1092-1100. |
[29] | Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Transforming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes[J]. Ultrasound Med Biol,2005,31:1713-1721. |
[30] | Wei F Y, Leung K S, Li G, Qin J, Chow S K, Huang S, et al. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing[J]. PLoS One,2014,9:e106722. |
[31] | Wang F S, Kuo Y R, Wang C J, Yang K D, Chang P R, Huang Y T, et al. Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1alpha activation and vascular endothelial growth factor-A expression in human osteoblasts[J]. Bone,2004,35:114-123. |
[32] | Cheung W H, Chow S K, Sun M H, Qin L, Leung K S. Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing[J]. Ultrasound Med Biol,2011,37:231-238. |
[33] | Hurrell D J. The nerve supply of bone[J]. J Anat,1937,72(Pt 1): 54-61. |
[34] | Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P- and CGRP-immunoreactive nerves in bone[J]. Peptides,1988,9:165-171. |
[35] | Lam W L, Guo X, Leung K S, Kwong K S. The role of the sensory nerve response in ultrasound accelerated fracture repair[J]. J Bone Joint Surg Br,2012,94:1433-1438. |
[36] | Wang X Y, Guo X, Qu S X, Weng J, Cheng C Y. Temporal and spatial CGRP innervation in recombinant human bone morphogenetic protein induced spinal fusion in rabbits[J]. Spine (Phila Pa 1976),2009,34:2363-2368. |