第二军医大学  2015, Vol. 36 Issue (4): 423-428   PDF    
α-synuclein硝基化修饰在帕金森病中的研究进展
王彦1, 俞仲望2, 朱臻宇1    
1. 第二军医大学药学院药物分析学教研室, 上海 200433;
2. 第二军医大学基础部神经生物学教研室, 上海 200433
摘要:帕金森病是以中脑黑质多巴胺能神经元病变和胞内路易小体形成为特征的疾病。氧化应激导致的α-synuclein蛋白硝基化修饰很可能与帕金森病发生、发展相关。本文简述了α-synuclein和硝基化α-synuclein的理化性质、结构特征,综述了近年来关于其在生理和病理条件下的作用和效应方面的研究进展,并进一步探讨了导致帕金森病发生、发展的可能机制,为防治帕金森病提供新的线索。
关键词帕金森病;α突触核蛋白;硝基化    
Nitration of α-synuclein in Parkinson disease: recent progress
WANG Yan1, YU Zhong-wang2, ZHU Zhen-yu1    
1. Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China;
2. Department of Neurobiology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
Abstract: Parkinson disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantial nigra and the formation of intracellular Lewy body. Protein nitration due to oxidative and nitrative stress has been linked to the pathogenesis of PD. Here we described the biophysical and biochemical properties of α-synuclein and nitrated α-synuclein protein and reviewed their biological consequences; finally we discussed their roles in the mechanism and prevention/treatment of PD.
Key words: Parkinson disease;α-synuclein;nitration    

帕金森病(Parkinson disease,PD)是神经退行性疾病的一种,主要表现为中脑黑质多巴胺能神经元退行性变和胞质内路易小体形成。其中路易小体主要由淀粉样纤维组成,构成该纤维的主要成分是α-synuclein(简称α-syn)蛋白,该蛋白的氨基酸序列中存在多个潜在的硝基化修饰位点。本文拟对α-syn蛋白及其硝基化修饰、功能及其与疾病的关系进行综述,以更全面了解硝基化修饰α-syn与PD间的关系,为进一步探讨PD的发病机制反防治策略制定奠定基础。

1 α-syn蛋白的结构与性质

α-syn属于syn蛋白家族,该蛋白家族在人体中共存在3种亚型,包括α、β和γ-syn,最主要的是α-syn[1],其结构分为以下3部分:(1)N端,包含有11个氨基酸重复序列形成的4个α螺旋,这一结构与载脂蛋白A2的脂质结合区相似,使其更易与细胞脂质表面膜结合或解离[2]。(2)中央区域,包含有非淀粉样β成分区(NAC区),该区域可以从无规律卷曲变换为β折叠二级结构,具有很强的聚合倾向[3]。最近的研究表明,该区域包含一个分子伴侣结合区,与靶蛋白结合后会致使α-syn形成β折叠并相互聚集[4]。(3)C端,该段富含脯氨酸残基,决定了α-syn蛋白的聚集速度[5]。有报道显示,该区段能在生理状态下形成螺旋状态的四聚体,这一结构不利于α-syn的聚集[6]

很长一段时间内人们认为α-syn不存在特定的二级结构,它们以随意卷曲的形式存在[7]。直至Wang等[8]发现在生理状态下该蛋白以螺旋式的四聚体状态存在。还有报道显示该蛋白以混乱的单体形式存在于中枢神经系统、红细胞、哺乳动物体细胞以及大肠杆菌中[9]。不同的环境下,α-syn的二级结构及生理病理功能都是不同的。 2 α-syn的生理作用及其在PD中的细胞效应 2.1 α-syn的生理作用

文献报道,α-syn基因敲除小鼠与普通小鼠在器官水平没有区别,甚至它们在囊泡和突触前蛋白分布上也没有明显的区别[10]。而关于α-syn功能有:(1)多巴胺信号调节。蛋白组学研究并分析了能与该蛋白结合的配体,发现α-syn能抑制酪氨酸羟化酶(TH)的酶活性,抑制多巴胺的表达[11, 12]。(2)调节囊泡运输功能。研究发现α-syn易于和富含磷脂酸的囊泡相结合,提示其参与了囊泡运势,是囊泡中递质释放的负调节因子[13]。(3)参与神经突触膜电位形成[14]。(4)调节多种突触蛋白骨架因子的表达、亚细胞分布和活性。(5)参与控制神经递质的释放[15]以及调节神经突触的可塑性[16]。(6)保护神经功能。实验表明,过表达的α-syn蛋白具有神经保护作用,可以保护SHSY-5Y细胞(一种多巴胺细胞系)免受多巴胺毒性侵蚀[17, 18]。(7)抑制神经细胞凋亡并保护其不被氧化[19]。Cheng等[20]发现该蛋白能促进网格蛋白介导的N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor,NMDA)胞吞作用,因此削弱了由NMDA介导的多巴胺能神经元的凋亡。以上的研究结果表明,该蛋白对神经细胞主要具有保护作用,事实是否真的如此?研究发现nmol/L的Tat-α-syn具有神经保护作用,而μmol/L的该蛋白参与了神经毒性机制[21]2.2 α-syn在神经退行性疾病中的细胞效应

一直以来,α-syn蛋白被认为是PD的致病原因之一[22],但其致病机制至今仍不清楚。α-syn基因的突变和多态性会导致家族性PD的发生[23],其堆积和聚合会导致多巴胺能神经元功能障碍和丢失。

许多研究结果显示,α-syn会改变神经突触的生理状态,Feng等[24]发现过表达的α-syn蛋白可以改变突触膜电位,并在离子通道的形成中起到重要的作用,这一现象或许能够揭示PD中神经突触前与突触后变化的原因。蛋白组学和脂质组学显示,α-syn的聚集能通过诱导神经突触功能障碍使PD患者的神经细胞死亡。α-syn可以影响突触囊泡相关蛋白的功能,例如其能够与突触囊泡相关蛋白synapsin1相结合,过表达的α-syn会导致严重的突触囊泡胞吐循环障碍[25]。α-syn的过表达会导致内质网到高尔基体的囊泡运输障碍,从而导致胞吞胞吐并进而导致PD的发生[26]。研究表明该蛋白能够在细胞间进行传递[27],并具有朊病毒样特征[28]。该蛋白可以从宿主转移至受体神经细胞[29],并存在于肠黏膜下神经细胞中[30]和皮肤神经末梢中[31],这些特征都与朊病毒感染疾病有共通之处。Luth等[32]通过荧光在体外实时测定线粒体的参数发现,α-syn寡聚体可以通过减少Ca2+的保留时间使线粒体功能紊乱,从而导致PD。 通过基因敲除小鼠的研究发现内源性的α-syn能够影响C57BL小鼠黑质中多巴胺神经元[33]。在前脑和海马小颗粒神经元中异常表达α-syn的小鼠存在智力障碍[34]。Subramaniam等[35]发现,突变的α-syn可选择性损伤中脑黑质,而非VTA区多巴胺神经元中A-type Kv4.3钾通道,导致神经元放电频率增加,出现应激反应。 然而α-syn在PD形成过程中的分子机制究竟是什么,是如何使多巴胺能神经元功能及生存能力丢失的仍旧不清楚。 3 硝基化修饰α-syn及其在PD中的效应 3.1 硝基化修饰α-syn的结构与性质

α-syn的硝基化是一种翻译后修饰,是氧化损伤的表现。硝基化基团主要通过多NO自由基反应取代在酪氨酸酚上的3’-H原子上[36]。α-syn有4个酪氨酸残基,分别位于39 (N端)、125、 133和 136 (C 端)位,这些酪氨酸残基非常容易被取代,有时甚至能被亚剂量级别的亚硝酸盐所取代。在体内,39位酪氨酸残基的硝基化会导致α-syn寡聚化反应的加速[37]。125位酪氨酸残基的硝基化会导致α-syn二聚体的形成[38]。另有报道指出硝基化能够改变α-syn的结构和功能[39]

PD患者的路易小体中,α-syn被发现是硝基化存在的[40],硝基化的α-syn被建议作为临床诊断PD的生物标志物[41]。通常在生物样品中硝基化α-syn含量很低,它们的存在会促使α-syn聚集形成纤维丝,使用单克隆抗体显示PD患者的路易小体、路易神经节、胶质细胞包涵体和串珠样变神经轴突中都含有高水平聚集的硝基化α-syn。 3.2 硝基化修饰α-syn在PD中的效应 3.2.1 孔洞理论

许多与PD相关的蛋白聚合物(例如β肽、朊蛋白、 α-syn蛋白等),都能在特定环境下形成能改变细胞膜通透性的孔洞结构。这可能是α-syn蛋白产生毒性的机制之一。

α-syn低聚物能够以β折叠结构轻柔地结合在囊泡的脂质分子层上,这一结合导致膜上形成直径大约为2.5 nm的孔洞,引起膜通透性的改变[42]。这些孔洞样的结构会使钙离子异常流动并导致PD的发生,细胞内钙离子含量的提高可能会特异性提高突触中一氧化氮的产量,而一氧化氮含量增加则会抑制线粒体呼吸从而导致各类自由基的产生。这一机制会促进硝基化α-syn的生成[43],而硝基化α-syn的形成又能够使膜孔洞结构更加稳定。 3.2.2 减缓α-syn降解

α-syn相关疾病(包括PD)是通过抗泛素抗体被认识的,此类抗体阐明了细胞内蛋白质降解和syn相关疾病之间的关系。硝基化的单体α-syn被20S蛋白酶降解的速度相对于未被修饰的α-syn下降,被钙调蛋白Ⅰ降解的速度也慢于未被修饰的[44]。 氧化及硝基化的α-syn通过自吞噬途径抑制了降解[45]。经过修饰的α-syn可以抵御降解,因此这些蛋白在细胞内半衰期和浓度会增加,这一现象可以促进α-syn的低聚化和毒性。细胞和整体动物实验发现,未能自嗜降解的细胞外α-syn将给细胞创造不利的微环境,并产生毒性作用[46]3.2.3 加速α-syn聚合

Stone等[47]发现NO合酶水平增高会导致硝基化α-syn增加及聚集。选择性硝基化修饰第39位酪氨酸的α-syn能够抑制自身与细胞膜的结合[37],造成这一现象的原因可能是带有负电子的硝基酪氨酸与带有负电子的细胞膜产生了静电斥力。继而,导致游离α-syn水平升高,增多的α-syn会聚集形成具有细胞毒性的原纤维。

有研究表明,不仅仅是39位酪氨酸,125、133和136位酪氨酸的硝基化也会导致膜结合率下降,可能的原因是这些膜结合区域外的修饰会改变整个蛋白的结构使膜结合区的结构也有所改变[48]。 大脑中激活小胶质细胞存在的炎症组织中能够找到低剂量的过氧亚硝酸盐区域,使α-syn C端的酪氨酸硝基化,从而降低膜结合率,促使游离α-syn聚集。 3.2.4 激活炎症反应

硝基化α-syn会引起免疫应答而使1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)神经毒性加重[49],而MPTP对选择性敲除诱导型NO合酶小鼠的毒性减弱[50]。使用硝基化α-syn免疫的小鼠激活Th17细胞,产生IL-17A并且减弱了CD4+ CD25+T细胞的调节作用,促进小胶质细胞的促炎症因子释放以及硝基化应激[51]。硝基化应激产生更多的硝基化α-syn,启动由Th17细胞介导的自身免疫应答,进一步加剧小胶质细胞的激活,从而形成正反馈的级联放大效应。

研究显示硝基化α-syn能够抑制分子伴侣介导的自身降解[52],导致高水平α-syn蛋白的堆积会刺激小胶质细胞释放炎症因子[53],进一步激活下游的星状细胞,这两种细胞的激活能够级联放大下游的ROS和RNS通路[54]。硝基化α-syn也可刺激自适应免疫应答,通过产生一些未知抗原干预免疫耐受性。同时,其能够通过激活并增殖特殊效应的T细胞以使黑质中的多巴胺能神经元衰退[55]3.2.5 促进神经元凋亡及其他

此外Liu等[53]通过体外实验发现,硝基化修饰的α-syn能够诱导iNOS和抑制FAK信号通路,提出了促多巴胺细胞凋亡作用的另一种假设。39位酪氨酸硝基化显著降低α-syn与囊泡结合能力,减少α螺旋构象形成[44]。Yu等[56]发现硝基化修饰α-syn对中脑黑质多巴胺神经元有直接毒性作用,下调多巴胺受体水平、影响动物行为,为硝基化应激和α-syn相关病理变化提供了一个直接联系的证据。

4 小 结

自由基是高度活泼的不成对电子,虽然为了行使包括机体免疫防御和炎症反应等正常生理功能,人体自身产生一定数量的自由基,但大量存在的自由基对机体有明确的损伤作用[57]。尤其在人体进入老年期后,生物分子的氧化将因为自身修复能力的衰退而大为增加。研究表明,在超过80岁高龄的老年人中几乎有50%的蛋白被氧化修饰[58]。 活泼的自由基攻击蛋白质大分子,造成包括硝基化修饰在内的蛋白异常修饰。高水平的·NO自由基是·NO2 自由基及由其造成的硝基化反应产生的必要条件。而·NO自由基仅由NO合酶诱导产生,该酶由具炎症反应的激活态小胶质细胞所表达产生[59]。所以α-syn的硝基化仅发生在PD的后期阶段,并激活下游的异常通路,导致神经元细胞的不可逆损伤死亡。

硝基化修饰的α-syn会基于不同的细胞和代谢环境,对神经元细胞产生毒性作用,从而导致PD的发生发展。但并不是所有的神经细胞都对α-syn敏感,其中多巴胺神经元是最敏感脆弱的,它极易受硝基化α-syn影响,其作用机制是:硝基化α-syn聚集形成寡聚物,对细胞膜通透性、崩解性产生负面影响,进而对神经递质囊泡及线粒体产生损伤,这些毒性机制与和PD密切相关的黑质损伤有关。

根据硝基化α-syn性质设计药物减低其毒性,达到防治PD的目的具有重要意义。其治疗策略可以是:(1)选择性Ⅱ型NO合酶抑制剂(NOS-2),可以显著降低大脑中α-syn不可逆硝基化过程,目前已经建立了两倍表达α-syn和NOS-2的模型工具鼠用以研究该类药物[60]。(2)免疫治疗,由于细胞间的α-syn和硝基化α-syn的传递在疾病中具有重要作用,因此研制特殊的抗体是一种很有前景的治疗方法,目前抗α-syn抗体已经进入动物模型研究阶段[61]。(3)以活性氧类为靶标的干扰治疗策略,·O2-主要由NADPH氧化酶家族产生,比如NOX1[62]。其抑制剂可以穿过血脑屏障,可单独使用也可和NOS-2抑制剂联合使用,能够降低与PD相关的硝基化修饰蛋白含量。深入探究生理状态下的α-syn和硝基化修饰的α-syn的功能,也许是剖析并防治PD病因的一个重要突破口。

参考文献
[1] Clayton D F,George J M.The synucleins:a family of proteins involved in synaptic function,plasticity,neurodegeneration and disease [J] .Trends Neurosci,1998,21:249-254.
[2] Vamvaca K,Volles M J,Lansbury P T Jr.The first N-terminal amino acids of α-synuclein are essential for alpha-helical structure formation in vitro and membrane binding in yeast[J].J Mol Biol,2009,389:413-424.
[3] Han H,Weinreb P H,Lansbury P T Jr.The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid:is NAC a common trigger or target in neurodegenerative disease [J].Chem Biol,1995,2:163-169.
[4] Rekas A,Ahn K J,Kim J,Carver J A.The chaperone activity of alpha-synuclein:utilizing deletion mutants to map its interaction with target proteins [J].Proteins,2012,80:1316-1325.
[5] Meuvis J,Gerard M,Desender L,Baekelandt V,Engelborghs Y.The conformation and the aggregation kinetics of alpha-synuclein depend on the proline residues in its C-terminal region[J].Biochemistry,2010,49:9345-9352.
[6] Bartels T,Choi J G,Selkoe D J.Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation[J].Nature,2011,477:107-110 .
[7] Weinreb P H,Zhen W,Poon A W,Conway K A, Lansbury P T Jr.NACP,a protein implicated in Alzheimer's disease and learning,is natively unfolded [J].Biochemistry,1996,35:13709-13715.
[8] Wang W,Perovic I,Chittuluru J,Kaganovich A,Nguyen L T T,Liao J,et al.A soluble alpha-synuclein construct forms a dynamic tetramer [J].Proc Nat Acad Sci USA,2011,108:17797-17802 .
[9] Fauvet B,Mbefo M K,Fares M B,Desobry C,Michael S,Ardah M T,et al.Alpha-synuclein in the central nervous system and from erythrocytes,mammalian cells and E.coli exists predominantly as a disordered monomer[J].J Biol Chem,2012,287:15345-15364.
[10] Wan O W,Chung K K.The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson's disease[J].PLoS One,2012,7:e38545.
[11] Perez R G,Waymire J C,Lin E,Liu J J,Guo F,Zigmond M J.A role for alpha-synuclein in the regulation of dopamine biosynthesis[J].J Neurosci,2002,22:3090-3099.
[12] Sherer T B,Kim J H,Betarbet R,Greenamyre J T.Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation[J].Exp Neurol,2003,179:9-16.
[13] Davidson W S,Jonas A,Clayton D F,George J M.Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes[J].J Biol Chem,1998,273:9443-9449.
[14] Scott D A,Tabarean I,Tang Y,Cartier A,Masliah E,Roy S.A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration[J].J Neurosci,2010,30:8083-8095.
[15] Nemani V M,Lu W,Berge V,Nakamura K,Onoa B,Lee M K,et al.Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis[J].Neuron,2010,65:66-79.
[16] George J M,Jin H,Woods W S,Clayton D F.Characterization of a novel protein regulated during the critical period for song learning in the zebra fish [J].Neuron,1995,15:361-372.
[17] Gorbatyuk O S,Li S,Nash K,Gorbatyuk M,Lewin A S,Sullivan L F,et al.In vivo RNA imediated alpha-synuclein silencing induces nigrostriatal degeneration [J].Mol Ther,2010,18:1450-1457.
[18] Colapinto M,Mila S,Giraudo S,Stefanazzi P,Molteni M,Rossetti C,et al.Alpha-synuclein protects SH-SY5Y cells from dopamine toxicity [J].Biochem Biophys Res Commun,2006,349:1294-1300.
[19] Hashimoto M,Hsu L J,Rockenstein E,Takenouchi T,Mallory M,Masliah E.Alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells[J].J Biol Chem,2002,277:11465-11472.
[20] Cheng F,Li X,Li Y,Wang C,Wang T,Liu G,et al.Alpha-synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death [J].J Neurochem,2011,119:815-825.
[21] Batelli S,Albani D,Rametta R,Polito L,Prato F,Pesaresi M,et al.DJ-1 modulates alpha-synuclein aggregation state in a cellular model of oxidative stress:relevance for Parkinson's disease and involvement of HSP70 [J].PLoS One,2008,3:e1884 .
[22] Cookson M R,van der Brug M.Cell systems and the toxic mechanism(s) of alpha-synuclein[J].Exp Neurol,2008,209:5-11.
[23] Belin A C,Westerlund M.Parkinson's disease:a genetic perspective[J].FEBS J,2008,275:1377-1383.
[24] Feng L R,Federoff H J,Vicini S,Maguire-Zeiss K A.Alpha-synuclein mediates alterations in membrane conductance:a potential role for alpha-synuclein oligomers in cell vulnerability [J].Eur J Neurosci,2010,32:10-17.
[25] Nemani V M,Lu W,Berge V,Nakamura K,Onoa B,Lee M K,et al.Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis [J].Neuron,2010,65:66-79.
[26] Sancenon V,Lee S A,Patrick C,Griffith J,Paulino A,Outeiro T F,et al.Suppression of alpha-synuclein toxicity and vesicle Trafficking defects by phosphorylation at S129 in yeast depends on genetic context [J] .Hum Mol Genet,2012,21:2432-2449.
[27] Steiner J A,Angot E,Brundin P.A deadly spread:cellular mechanisms of alpha-synuclein transfer [J].Cell Death Diff,2011,18:1425-1433.
[28] Dehay B.Alpha-synuclein,a prion-like protein [J].Mov Disorders,2011,26:774.
[29] Dunning C J,Reyes J F,Steiner J A,Brundin P.Can Parkinson' s disease pathology be propagated from one neuron to another? [J].Prog Neurobiol,2011,97:205-219.
[30] Shannon K M,Keshavarzian A,Mutlu E,Dodiya H B,Daian D,Jaglin J A,et al.Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease[J].Mov Disorders,2011,27:709-715.
[31] Holmqvist S,Chutna O,Bousset L,Aldrin-Kirk P,Li W,Björklund T,et al.Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats[J].Acta Neuropathol,2014,128:805-820.
[32] Luth E S,Stavrovskaya I G,Bartels T,Kristal B S,Selkoe D J .Soluble,prefibrillar α-synuclein oligomers promote complex Ⅰ-dependent,Ca2+-induced mitochondrial dysfunction[J].J Biol Chem,2014,289:21490-21507.
[33] Garcia-Reitboeck P,Anichtchik O,Dalley J W,Ninkina N,Tofaris G K,Buchman V L,et al.Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra[J].Exp Neurol,2013,248:542-545.
[34] Hall K,Yang S,Sauchanka O,Spillantini M G,Anichtchik O.Behavioural deficits in transgenic mice expressing human truncated (1-120 amino acid) alpha-synuclein[J].Exp Neurol,2014,20,264C:8-13.
[35] Subramaniam M,Althof D,Gispert S,Schwenk J,Auburger G,Kulik A,et al.Mutant α-synuclein enhances firing frequencies in dopamine substantia nigra neurons by oxidative impairment of A-type potassium channels[J].J Neurosci,2014,8,34:13586-13599.
[36] Radi R.Nitric oxide,oxidants,and protein tyrosine nitration [J].Proc Natl Acad Sci USA,2004,101:4003-4008.
[37] Danielson S R,Held J M,Schilling B,Oo M,Gibson B W,Andersen J K.Preferentially increased nitration of α-Synuclein at tyrosine-39 in a cellular oxidative model of Parkinson's disease [J].Anal Chem,2009,81:7823-7828.
[38] Takahashi T,Yamashita H,Nakamura T,Nagano Y,Nakamura S.Tyrosine 125 of α-synuclein plays a critical role for dimerization following nitrative stress [J].Brain Res,2002,938(1-2):73-80.
[39] Schildknecht S,Karreman C,Daiber A,Zhao C,Hamacher J,Perlman D,et al.Autocatalytic nitration of prostaglandin endoperoxide synthase-2 by nitrite inhibits prostanoid formation in rat alveolar macrophages[J].Antioxid Redox Signal,2012,17:1393-1406.
[40] Giasson B I,Duda J E,Murray I V,Chen Q,Souza J M,Hurtig H I,et al.Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions [J].Science,2000,290:985-989.
[41] Fernández E,García-Moreno J M,Martín de Pablos A,Chacón J.May the evaluation of nitrosative stress through selective increase of 3-nitrotyrosine proteins other than nitroalbumin and dominant tyrosine-125/136 nitrosylation of serum α-synuclein serve for diagnosis of sporadic Parkinson's disease? [J].Antioxid Redox Signal,2013,19:912-918.
[42] Lashuel H A,Petre B M,Wall J,Simon M,Nowak R J,Lansbury P T,et al.Alpha-synuclein,especially the Parkinson's disease-associated mutants,forms pore-like annular and tubular protofibrils [J].J Mol Biol,2002,322:1089-1102.
[43] Radi R,Cassina A,Hodara R,Quijano C,Castro L.Peroxynitrite reactions and formation in mitochondria [J].Free Radic Biol Med,2002,33:1451-1464.
[44] Hodara R,Norris E H,Giasson B I,Mishizen-Eberz A J,Lynch D R,Lee V M,et al.Functional consequences of alpha-synuclein tyrosine nitration:diminished binding to lipid vesicles and increased fibril formation[J].J Biol Chem,2004,279:47746-47753.
[45] Martinez-Vicente M,Talloczy Z,Kaushik S,Massey A C,Mazzulli J,Mosharov E V,et al.Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy [J].J Clin Invest,2008,118:777-788.
[46] Poehler A M,Xiang W,Spitzer P,May V,Meixner H,Rockenstein E,et al.Autophagy modulates SNCA/alpha-synuclein release,thereby generating a hostile microenvironment[J].Autophagy,2014,30:e36436.
[47] Stone D K,Kiyota T,Mosley R L,Gendelman H E.A model of nitric oxide induced alpha-synuclein misfolding in Parkinson's disease [J].Neurosci Lett,2012,523:167-173.
[48] Sevcsik E,Trexler A J,Dunn J M,Rhoades E.Allostery in a disordered protein:oxidative modifications to α-synuclein act distally to regulate membrane binding [J].J Am Chem Soc,2011,133:7152-7158.
[49] Benner E J,Banerjee R,Reynolds A D,Sherman S,Pisarev V M,Tsiperson V,et al.Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons [J].PLoS One,2008,3:e1376.
[50] Liberatore G T,Jackson-Lewis V,Vukosavic S,Mandir A S,Vila M,McAuliffe W G,et al.Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease [J].Nat Med,1999,5:1403-1409.
[51] Gao H M,Kotzbauer P T,Uryu K,Leight S,Trojanowski J Q, Lee V M.Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration [J].J Neurosci,2008,28:7687-7698.
[52] Xilouri M,Vogiatzi T,Vekrellis K,Park D,Stefanis L.Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy [J].PLoS One,2009,4:e5515.
[53] Liu Y,Qiang M,Wei Y,He R.A novel molecular mechanism for nitrated α-synuclein-induced cell death[J].J Mol Cell Biol,2011,3:239-249.
[54] Gao H M,Kotzbauer P T,Uryu K,Leight S,Trojanowski J Q,Lee V M.Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration [J].Neuroscience,2008,28:7687-7698.
[55] Reynolds A D,Stone D K,Hutter J A,Benner E J,Mosley R L,Gendelman H E.Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson's disease [J].J Immunol,2010,184:2261-2271.
[56] Yu Z,Xu X,Xiang Z,Zhou J,Zhang Z,Hu C,et al.Nitrated alpha-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats [J].PLoS One,2010,5:e9956.
[57] Brieger K,Schiavone S,Miller F J Jr,Krause K H.Reactive oxygen species:from health to disease [J].Swiss Med Wkly,2012,142:w13659.
[58] Starke-Reed P E,Oliver C N.Protein oxidation and proteolysis during aging and oxidative stress [J].Arch Biochem Biophys,1989,275:559-567.
[59] Hewett J A,Hewett S J.Induction of nitric oxide synthase-2 expression and measurement of nitric oxide production in enriched primary cortical astrocyte cultures [J].Methods Mol Biol,2012,814:251-263.
[60] Stone D K,Kiyota T,Mosley R L,Gendelman H E.A model of nitric oxide induced α -synuclein misfolding in Parkinson's disease [J].Neurosci Lett,2012,523:167-173.
[61] Bae E J,Lee H J,Rockenstein E,Ho D H,Park E B,Yang N Y,et al.Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission [J].J Neurosci,2012,32:13454-13469.
[62] Chéret C,Gervais A,Lelli A,Colin C,Amar L,Ravassard P,et al.Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase [J].J Neurosci,2008,28:12039-12051.