第二军医大学  2015, Vol. 36 Issue (2): 201-205   PDF    
金属蛋白酶类及其抑制剂在椎间盘退变中作用研究进展
宋庆鑫, 王琨, 唐沂星, 沈洪兴     
第二军医大学长海医院骨科, 上海 200433
摘要:椎间盘退变(intervertebral disc degeneration, IVDD)可导致多种脊柱相关疾病的发生。细胞外基质(extracellular matrix, ECM)的降解被认为是IVDD的主要病理过程。基质金属蛋白酶(matrix metalloproteinases, MMPs)及含凝血酶敏感蛋白模体的解整合素样金属蛋白酶(a disintegrin and metalloproteinase with thrombospondin motif, ADAMTSs)是参与ECM降解的主要蛋白酶类。本文总结在IVDD中MMPs、ADAMTSs及金属蛋白酶组织抑制剂(tissue inhibitors of metalloproteinases, TIMPs)的基因表达调控相关研究。研究发现人IVDD中MMP-1、2、3、7、8、10、13,ADAMTS-1、4、5出现表达上调,TIMP-3下调、TIMP-1上调。MMPs、ADAMTSs的表达受多因素共同调节,包括机械应力、炎症、氧化应激等,部分参与P38途径。遗传因素也在MMP-1、2、3、9的表达中起重要作用。MMPs、ADAMTSs蛋白表达及酶活性的上调导致ECM降解,进一步导致IVDD的发展。未来的治疗将靶向于导致ECM病理降解的特定MMPs及ADAMTSs。
关键词椎间盘退变     基质金属蛋白酶类     含凝血酶敏感蛋白模体的解整合素样金属蛋白酶     金属蛋白酶类组织抑制剂    
Role of metalloproteinases and their inhibitors in intervertebral disc degeneration: research progress
SONG Qing-xin, WANG Kun, TANG Yi-xing, SHEN Hong-xing     
Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
Abstract: Intervertebral disc degeneration (IVDD) is characterized by the excessive degradation of extracellular matrix (ECM), which underlies many spine-related disorders. Matrix metalloproteinases (MMPs) and a disintegrin metalloproteinases with thrombospondin motifs (ADAMTSs) are believed to be the major proteolytic enzymes responsible for ECM degradation. This review summarizes the current literatures on gene expression and regulation of MMPs, ADAMTSs, and tissue inhibitors of metalloproteinases (TIMPs) in IVDD. Reports have showen that specific MMPs (MMP-1, -2, -3, -7, -8, -10, and -13) and ADAMTS (ADAMTS-1, -4, and -15) are upregulated in human degenerated intervertebral discs. Tissue inhibitor of metalloproteinase-3 is downregulated and TIMP-1 is upregulated in human degenerated intervertebral discs relative to nondegenerated intervertebral discs. Regulation of the MMP and ADAMTS expression is affected by many factors including mechanical, inflammatory, oxidative stress, and so on. Genetic predisposition also plays an important role in expression of MMP-1, -2, -3, and -9. Upregulation of MMP and ADAMTS expression is implicated in ECM destruction, which can lead to the development of IVDD. Future IVDD therapeutics may target specific MMPs and ADAMTSs which is essential in the pathological proteolysis of ECM.
Key words: intervertebral disc degeneration     matrix metalloproteinases     a disintegrin and metalloproteinase with thrombospondin motifs     tissue inhibitor of metalloproteinases    

椎间盘退变(intervertebral disc degeneration,IVDD)可导致多种脊柱相关疾病,对经济及社会造成了严重危害。IVDD导致的腰痛、脊髓压迫、神经根性症状是导致18~64岁人群丧失劳动力的重要原因,而腰痛已成为患者就诊的主要原因之一[1]。目前认为IVDD主要是细胞外基质(extracellular matrix,ECM)分解代谢增加造成的结果[2]。ECM中大分子物质降解可导致一系列的结构改变,包括纤维环(annulus fibrosus,AF)结构的紊乱,髓核(nucleus pulposus,NP)水分丢失及纤维化,终板钙化等。有观点认为NP的异常改变是IVDD的始动因素,NP中蛋白聚糖的丢失导致渗透压的降低,从而导致NP内水分丢失,这些改变可加速ECM降解、椎间盘(intervertebral disc,IVD)结构改变,导致IVDD的发生及发展[3]

过去对于IVDD的研究主要针对于ECM的降解机制,部分侧重于人及动物IVDD中基质金属蛋白酶(matrix metalloproteinases,MMPs)、含凝血酶敏感蛋白模体的解整合素样金属蛋白酶 (a disintegrin and metalloprotease with thrombospondin motifs,ADAMTSs)、金属蛋白酶组织抑制剂 (tissue inhibitor of metalloproteinases,TIMPs)的基因表达与调节。有文献综述了ECM的分解代谢过程,炎症因子在IVDD中作用及MMPs的表达调节机制[4]。然而,目前尚无系统性综述MMPs、ADAMTSs、TIMPs表达及其调控相关的文献,本文综述了MMPs、ADAMTSs、TIMPs在退变间盘老化及退变中的表达及调节的研究进展。 1 概 述

MMPs及ADAMTSs为IVD中主要的分解代谢相关金属蛋白酶。MMPs 是结构中含有金属离子Zn、Ca的蛋白水解酶家族,主要降解蛋白聚糖、明胶蛋白、胶原蛋白及其他MMPs前体等底物。根据底物特征、空间结构及亚细胞定位分为6种:胶原降解酶、明胶酶、基质降解酶、基质溶解酶、膜型MMP及其他类型[5]。MMPs的酶活性受TIMPs的调节,这种调节机制保证了MMPs在组织中恰当的时间及空间发挥活性,从而在机体生长发育、组织修复重塑中发挥重要作用。MMPs是ECM降解的始动因子,而MMPs的表达调控及活性失调是ECM分解代谢相关疾病如骨关节炎(osteoarthritis,OA)、IVDD发生的重要原因之一[6]

ADAMTSs是新发现可结合ECM中相关成分并发挥蛋白降解酶活性的金属蛋白酶家族。ADAMTSs目前已知约20种,根据其结构及功能可分为4类:蛋白聚糖降解酶,vW因子,前胶原N肽酶,未知功能[7]。ADAMTS同样生成为无活性状态,需特定激活酶激活。同时,其活性也可被TIMPs所抑制。

2 MMPs、ADAMTSs、TIMPs在椎间盘中的表达及活性 2.1 椎间盘中MMPs、ADAMTS、TIMPs的表达

MMPs参与正常椎间盘的组织修复与重塑。青少年IVD中MMPs 的mRNA及蛋白表达量较少,而成年人IVD中表达量出现增多,且IVDD中存在多种MMPs的表达上调[8]。Roberts等[9]发现MMP-3、7在IVDD中显著上调。Weiler等[10]发现MMP-1、2、3的表达与IVDD显著相关。Bachmeier等[11]发现椎间盘退变等级与MMP-3的表达存在相关关系,而与MMP-7的表达存在相关性,MMP-8的表达量并不高,然而却在退变过程中出现持续升高趋势。Le Maitre等[12]发现MMP-7、13在IVDD中NP较AF的表达量高。Gruber等[13]发现MMP-28在中、重度退变间盘中出现,但没有发现其表达与退变等级存在相关性。综上,尽管MMP-1、2、3、7、8、9、10、12、13、14均在IVDD进展中表达改变,然而并无直接证据证实何种MMP在IVDD过程ECM的降解中起主要作用。以上研究结论多基于免疫组化结果,仅能判断蛋白表达情况但并不能区分其中具有活性MMPs的比例,而MMPs的蛋白表达量并不与其活性等同。

IVD中早期蛋白聚糖的丢失与IVDD的发生密切相关。Sandy[14]认为ADAMTSs介导的蛋白聚糖降解较MMPs介导的降解在IVDD中更为重要。蛋白聚糖的丢失主要由ADAMTSs介导而不是MMPs。 研究发现正常椎间盘中存在ADAMTS-1、4、5、9、15 mRNA及蛋白的表达,表明其在正常生理功能中发挥作用。进一步研究发现,ADAMTSs的 mRNA表达在正常NP及AF中无显著差异,然而蛋白表达水平在NP中较AF中高,且AF内层的表达较外层高[15]。ADAMTS-4在退变AF中上调较NP明显。ADAMTS-1、4、5、9、15的蛋白表达水平在NP中上调较AF明显,且ADAMTS-4蛋白表达量上调显著[16]。Zhao等[17]在中、重度退变NP及AF中发现ADAMTS-4表达显著上调,而ADAMTS-5的表达却无明显改变。通过基因敲除小鼠研究发现,ADAMTS-5在OA的发生、发展中起重要作用。相反,近期文献报道IVDD中ADAMTSs的作用随退变加重逐渐减弱而MMPs 介导的基质降解作用逐渐增强[18]

已知4个TIMPs亚型中有3个在人IVD中发现:TIMP-1、2、3[19]。在IVDD中TIMP-1、2 mRNA及蛋白水平随MMPs表达上调而上调。 TIMP-3的表达情况与TIMP-1、2不同,TIMP-3在人IVDD中并未发现表达上调,而ADAMTSs则发现上调[20]。这种差异表明TIMP-3/ADAMTSs的表达失调可能在IVDD中发挥重要作用。 2.2 MMPs、ADAMTSs在IVD中酶活性调节

MMPs与ADAMTSs在ECM分解代谢中的重要性一直存在争议。在人正常IVD中发现了MMPs、ADAMTSs介导蛋白聚糖降解后产生的蛋白聚糖片段。同时,在IVDD中这种蛋白聚糖片段量更多。研究发现MMPs介导产生的蛋白聚糖片段仅随年龄增长而逐渐增多,随退变程度增加无明显改变,相反ADAMTSs介导产生的蛋白聚糖片段随年龄增长而逐渐减少,随退变程度增加无明显改变,但IVDD中MMPs介导产生的蛋白聚糖片段量较 ADAMTS介导产生的多,其具体机制仍未完全明确[21]3 MMPs、ADAMTSs、TIMPs基因表达调节

IVDD中MMPs、ADAMTSs、TIMPs等的表达及活性受多种因素调节,包括年龄、机械应力、炎症、氧化应激、吸烟及遗传等因素。 3.1 机械应力

椎间盘作为脊柱的重要组成结构,可承受各方向的机械应力并提供脊柱相应的活动度。

轻度动态应力(1.0 MPa)可上调IVD中MMP-3的表达,而重度动态应力(2.5 MPa)则使其表达下调,体内研究发现,动态应力(1.0 MPa)可促进MMP-3、MMP-13及ADAMTS-4的表达上调,而低应力(0.2 MPa)则对其无明显影响[22]。应力频率与持续时间同样可调节MMPs的表达,在鼠尾动态应力模型中发现,NP中MMP-3、MMP-13的表达较ADAMTS-4对应力频率敏感[23]。相反,AF中金属蛋白酶类的表达对应力频率不敏感。应力频率对NP中金属蛋白酶类的表达影响仍需进一步研究来证实。应力持续时间可显著影响NP细胞中金属蛋白酶类的表达。体外研究发现,NP细胞承受24 h应力较承受4 h应力其MMP-3 mRNA表达上调更显著[24] 。MacLean等[25]发现MMP-3、MMP-13、ADAMTS-4等在NP细胞受压后2 h出现表达上调高峰,而MMP-13在受压后4 h表达与非受压组无显著差异。Hsieh与Lotz[26]发现鼠尾在承受4 d静态压迫后NP中MMP-2的表达显著上调,而在受压7 d后无显著变化。另一项研究发现,鼠尾在承受长时程动态压迫8周后出现 TIMP-1、ADAMTS-4的轻度表达上调[27]。这表明,MMPs、TIMPs对应力存在不同程度的调节反应。

AF中金属蛋白酶类的表达同样对应力程度、频率及持续时间存在不同程度的调节。与NP中相似,较高程度的动态应力可促进AF中MMP-3、MMP-13、ADAMTS-4的表达上调[28]。在炎症条件下,发现TIMP-1的表达在低程度应力条件下出现上调而在高程度应力条件下下调。应力持续时间同样对AF中金属蛋白酶类的表达产生影响[29]。体外研究发现,AF细胞暴露于静态应力4 h出现MMPs的表达下调,而延长压迫至24 h则出现表达上调[30]。短时程应力研究发现0.5~2 h及4 h动态应力可使AF中MMP-3、MMP-13、ADAMTS-4的表达出现上调[31]。Wuertz等[32]发现承受应力连续2周每天1.5 h较每天8 h MMPs的表达较少。 3.2 炎症及氧化应激

炎症与IVDD密切相关。在人退变而未突出的IVD中发现TNF-α、IL-1α、IL-1β、IL-6的表达上调。同样,在AF切开退变动物模型中发现MMP-1、9、13 mRNA的表达显著上调[33]。Studer等[34]发现人及兔NP细胞经过TNF-α、IL-1β处理后TIMP-1/MMP-3蛋白表达比值显著降低,并且蛋白聚糖和1、2型胶原蛋白的表达下调,这表明TNF-α及IL-1β是IVDD的潜在治疗靶点。

目前,越来越多的人认为氧化应激在ECM降解中起重要作用。软骨样细胞在受TNF-α、IL-1、TGF-β等炎症因子刺激后发现活性氧增多。IL-1介导生成活性氧与软骨样细胞DNA损伤有关。尽管IVD内为缺氧环境,然而仍存在需氧代谢,并且,由于椎间盘组织逐渐出现裂缝,使血管长入,使原本低氧环境细胞暴露于高氧环境导致氧化应激的发生。研究发现将人NP细胞暴露于正常氧环境(20%O2)后MMP-1、3的表达较暴露于低氧环境(5%O2)中上调,表明氧化应激可上调IVD中MMPs的表达[35]3.3 MMPs基因多态性

越来越多的证据表明基因多态性在IVDD的发生发展中起重要作用。研究发现IVDD与维生素D受体基因多态性相关,其基因与基质整合及分解代谢相关[36]。Takahashi等[37]发现在日本老年人群中MMP-3基因启动子区域5A/6A基因多态性与腰椎IVDD相关。同样,在中国年轻人群腰椎间盘突出患者中检测出MMP-2 -1306C/T的多态性[38]。 中国南方人群腰椎间盘退变与MMP-1启动子-1607多态性相关,且40岁以上人群相关性更强[39]。中国北方人群腰椎间盘退变检测到MMP-9启动子-1562C/T多态性,MRI证据表明MMP-9 CC/TT基因型同重度IVDD相关[40]。尽管其与更广泛人群发病的相关性仍不明确,然而大量证据表明MMPs启动子区域基因变异与IVDD相关。

4 结论与展望

MMPs及ADAMTSs为IVDD中ECM降解的主要原因。明确这些酶的表达与调节已成为IVDD研究的热点。机械应力、炎症及氧化应激等因素可单独或协同影响MMPs及ADAMTSs的表达。明确IVD基质破坏中特定MMPs及ADAMTSs表达失调的具体机制对进一步了解及治疗IVDD具有重要意义。 5 利益冲突

所有作者声明本文不涉及任何利益冲突。

参考文献
[1] Goode A P, Freburger J K, Carey T S. The influence of rural versus urban residence on utilization and receipt of care for chronic low back pain[J].J Rural Health, 2013, 29:205-214.
[2] Adams M A, Dolan P.Spine biomechanics[J].J Biomech, 2005, 38:1972-1983.
[3] Eyre D R, Muir H.Types Ⅰ and Ⅱ collagens in intervertebral disc.Interchanging radial distributions in annulus fibrosus[J].Biochem J, 1976, 157:267-270.
[4] Le Maitre C L, Pockert A, Buttle D J.Matrix synthesis and degradation in human intervertebral disc degeneration[J].Biochem Soc Trans, 2007, 35:652-655.
[5] Roughley P J.Biology of intervertebral disc aging and degeneration:involvement of the extracellular matrix[J].Spine, 2004, 29:2691-2699.
[6] Cawston T, Carrere S, Catterall J.Matrix metalloproteinases and TIMPs:properties and implications for the treatment of chronic obstructive pulmonary disease[J].Novartis Found Symp, 2001, 234:205-228.
[7] Porter S, Clark I M, Kevorkian L.The ADAMTS metalloproteinases[J].Biochem J, 2005, 386:15-27.
[8] Bachmeier B E, Nerlich A, Mittermaier N.Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration[J].Eur Spine J, 2009, 18:1573-1586.
[9] Roberts S, Caterson B, Menage J.Matrix metalloproteinases and aggrecanase:their role in disorders of the human intervertebral disc[J].Spine, 2000, 25:3005-3013.
[10] Weiler C, Nerlich A G, Zipperer J.2002 SSE Award Competition in Basic Science:expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption[J].Eur Spine J, 2002, 11:308-320.
[11] Bachmeier B E, Nerlich A, Mittermaier N, Weiler C, Lumenta C, Wuertz K, et al.Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration[J].Eur Spine J, 2009, 18:1573-1586.
[12] Le Maitre C L, Freemont A J, Hoyland J A.Human disc degeneration is associated with increased MMP 7 expression[J].Biotech Histochem, 2006, 81:125-131.
[13] Gruber H E, Ingram J A, Hanley E N Jr. Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration[J]. Biotech Histochem, 2005, 80:157-162.
[14] Sandy J D.A contentious issue finds some clarity:on the independent and complementary roles of aggrecanase activity and MMP activity in human joint aggrecanolysis[J].Osteoarthritis Cartilage, 2006, 14:95-100.
[15] Iatridis J C, Godburn K, Wuertz K.Region-dependent aggrecan degradation patterns in the rat intervertberal disc are affected by mechanical loading in vivo[J].Spine, 2011, 36:203-209.
[16] Pockert A J, Richardson S M, Le Maitre C L.Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration[J].Arthritis Rheum, 2009, 60:482-491.
[17] Zhao C Q, Zhang Y H, Jiang S D.ADAMTS-5 and intervertebral disc degeneration:the results of tissue immunohistochemistry and in vitro cell culture[J].J Orthop Res, 2011, 29:718-725.
[18] Glasson S S, Askew R, Sheppard B.Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis[J].Nature, 2005, 434:644-648.
[19] Klawitter M, Quero L, Bertolo A.Human MMP28 expression is unresponsive to inflammatory stimuli and does not correlate to the grade of intervertebral disc degeneration[J].J Negat Results Biomed, 2011, 10:9.
[20] Kashiwagi M, Tortorella M, Nagase H.TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAMTS5) [J].J Biol Chem, 2001, 276:12501-12504.
[21] Pockert A J, Richardson S M, Le Maitre C L, Lyon M, Deakin J A, Buttle D J, et al.Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration[J].Arthritis Rheum, 2009, 60:482-491.
[22] Korecki C L, MacLean J J, Iatridis J C.Dynamic compression effects on intervertebral disc mechanics and biology[J].Spine, 2008, 33:1403-1409.
[23] MacLean J J, Lee C R, Alini M.Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression[J].J Orthop Res, 2004, 22:1193-1200.
[24] Sowa G A, Coelho J P, Bell K M.Alterations in gene expression in response to compression of nucleus pulposus cells[J].Spine J, 2011, 11:36-43.
[25] MacLean J J, Lee C R, Alini M. The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc[J]. J Orthop Res, 2005, 23:1120-1127.
[26] Hsieh A H, Lotz J C. Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs[J]. Spine, 2003, 28:1781-1788.
[27] Chan S C, Ferguson S J, Gantenbein-Ritter B.The effects of dynamic loading on the intervertebral disc[J].Eur Spine J, 2011, 20:1796-1812.
[28] Yurube T, Nishida K, Suzuki T.Matrix metalloproteinase (MMP)-3 gene up-regulation in a rat tail compression loading induced disc degeneration model[J].J Orthop Res, 2010, 28:1026-1032.
[29] Walter B A, Korecki C L, Purmessur D.Complex loading affects intervertebral disc mechanics and biology[J].Osteoarthritis Cartilage, 2011, 19:1011-1018.
[30] Chan S C, Ferguson S J, Wuertz K.Biological response of the intervertebral disc to repetitive short term cyclic torsion[J].Spine, 2011, 30:44-53.
[31] Barbir A, Godburn E K, Michalek A J.Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model [J].Spine, 2011, 36:607-614.
[32] Wuertz K, Godburn K, MacLean J J.In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression [J].J Orthop Res, 2009, 27:1235-1242.
[33] Rousseau M A, Ulrich J A, Bass E C.Stab incision for inducing intervertebral disc degeneration in the rat [J].Spine, 2007, 32:17-24.
[34] Studer R K, Aboka A M, Gilbertson L G.p.38 MAPK inhibition in nucleus pulposus cells:a potential target for treating intervertebral disc degeneration[J].Spine, 2007, 32:2827-2833.
[35] Del Carlo M, Schwartz D, Erickson E A.Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments[J].Free Radic Biol Med, 2007, 42:1350-1358.
[36] Videman T, Gibbons L E, Battié M C, Maravilla K, Vanninen E, Leppävuori J, et al. The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density[J].Spine, 2001, 26:E7-E12.
[37] Takahashi M, Haro H, Wakabayashi Y.The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene[J].J Bone Joint Surg Br, 2001, 83:491-495.
[38] Dong D M, Yao M, Liu B.Association between the -1306C/T polymorphism of matrix metalloproteinase-2 gene and lumbar disc disease in Chinese young adults[J].Eur Spine J, 2007, 16:1958-1961.
[39] Song Y Q, Ho D W, Karppinen J.Association between promoter -1607 polymorphism of MMP1 and lumbar disc disease in Southern Chinese[J].BMC Med Genet, 2008, 9:38.
[40] Sun Z M, Miao L, Zhang Y G, Ming L.Association between the -1562C/T polymorphism of matrix metalloproteinase-9 gene and lumbar disc disease in the young adult population in North China[J].Connect Tissue Res, 2009, 50:181-185.