第二军医大学学报  2015, Vol. 36 Issue (11): 1254-1258   PDF    
Treg/Th17与免疫性血小板减少症中医证型的相关性
郑雪倩, 周韶虹, 屠仁枫, 陈英坤, 胡明辉, 胡令彦    
上海中医药大学附属岳阳中西医结合医院血液科, 上海 200437
摘要: 目的 探讨Treg/Th17 失衡在免疫性血小板减少症(ITP)中医"血热妄行"、"阴虚火旺"、"气不摄血"证型中的作用及意义。 方法 ITP患者92例,按中医证型分为血热妄行组30例、阴虚火旺组31例、气不摄血组31例;健康志愿者30例。采集外周血,采用流式细胞术(FCM)检测Th17 细胞和Treg 细胞的数量,RT-PCR检测Foxp3ROR-γt mRNA水平,比较各组间上述指标的差异。 结果 3组不同证型的ITP患者外周血Treg细胞数量均低于正常对照组(P<0.05),且血热妄行组低于气不摄血组和阴虚火旺组(P<0.05),气不摄血组低于阴虚火旺组(P<0.05)。3组不同证型 ITP患者外周血Th17细胞数量高于正常对照组(P<0.05),且血热妄行组高于气不摄血组及阴虚火旺组(P<0.05)。3组Treg/Th17与对照组相比均降低(P<0.05),血热妄行组低于气不摄血组和阴虚火旺组(P<0.05),气不摄血组低于阴虚火旺组(P<0.05)。3组不同证型的ITP患者Foxp3 mRNA水平均低于正常对照组(P<0.05),且各组间两两比较差异有统计学意义(P<0.05)。3组不同证型的ITP患者ROR-γt mRNA水平高于正常对照组(P<0.01)。 结论 ITP患者中Treg 细胞数量减少参与了ITP的发生和发展,Treg/Th17比例失衡在ITP的发病机制中可能有重要作用。Treg细胞数量、Treg/Th17比例、Foxp3 mRNA水平在ITP 各证型间的分布规律为血热妄行组< 气不摄血组< 阴虚火旺组。
关键词: 免疫性血小板减少症     调节性T淋巴细胞     Th17细胞     辨证分型    
Correlation between Treg/Th17 and Traditonal Chinese Medicine syndrome differentiation classification in patients with immune thrombocytopenia
ZHENG Xue-qian, ZHOU Shao-hong, TU Ren-feng, CHEN Ying-kun, HU Ming-hui, HU Ling-yan    
Department of Hemantology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
Supported by Scientific Research Project of Shanghai Municipal Health Bureau (20114035), Project of Huang Zhenqiao National Prominent TCM Doctors Inherited Studio, TCM New Medicine and Nosocomial Research and Development Project of Shanghai Municipal Health Bureau (20112J018), Special Project for Modernization of Traditional Chinese Medicine of Shanghai Science and Technology Committee (10DZ1974100,11DZ1971600), and Science Research Project for Youth of Shanghai Municipal Health Bureau (20124Y017).
Abstract: Objective To explore the role of Treg/Th17 cell ratio imbalance in the pathogenesis of idiopathic thrombocytopenic purpura (ITP) patients with different Traditional Chinese Medicine (TCM) syndrome differentiation classifications: bleeding due to blood-heat, Yin deficiency with fire hyperactivity and Qi deficiency-caused bleeding. Methods A total of 92 patients were divided into the bleeding due to blood-heat group (n=30), Yin deficiency with fire hyperactivity group (n=31) and Qi deficiency-caused bleeding group (n=31) according to the TCM syndrome differentiation classification. The peripheral blood samples were obtained from the patients and 30 volunteers served as healthy controls. The percentages of Treg cells and Th17 cells in the blood samples were analyzed by flow cytometry, and the mRNA levels of Foxp3 and ROR-γt were analyzed by RT-PCR. Results The percentages of Treg cells in the peripheral blood of 3 different TCM syndrome ITP groups were significantly lower than those of control group (P<0.05), that of the bleeding due to blood-heat group was significantly lower than that of Yin deficiency with fire hyperactivity group and Qi deficiency-caused bleeding group (P<0.05), and that of Qi deficiency-caused bleeding group was signficantly lower than that of Yin deficiency with fire hyperactivity group (P<0.05). The percentages of Th17 cells in peripheral blood of 3 different TCM syndrome ITP groups were significantly higher than that of control group(P<0.05), and that of Yin deficiency with fire hyperactivity group was signficanlty higher than that of Qi deficiency-caused bleeding group (P<0.05). The ratios of Treg/Th17 of the 3 different TCM syndrome ITP groups were significantly lower than that of control group (P<0.05), that of the bleeding due to blood-heat group was significantly lower than that of Qi deficiency-caused bleeding group and Yin deficiency with fire hyperactivity group (P<0.05), and that of Qi deficiency-caused bleeding group was significantly lower than that of Yin deficiency with fire hyperactivity group (P<0.05). The Foxp3 mRNA levels of 3 different TCM syndrome ITP groups were significantly lower than that of control group (P<0.05), and there were significant differences between each two groups by the pairwise comparison (P<0.05). While ROR-γ mRNA levels of the 3 different TCM syndrome ITP groups were significantly higher than that of the control group (P<0.01). Conclusion The decreased Treg cells in patients with ITP contributes to the development and progression of ITP. The imbalance of Treg/Th17 ratio may play a critical role in the pathogenesis of ITP. The distribution of the percentages of Treg cells, the ratio of Treg/Th17 and the mRNA level of Foxp3 in a increasing order is: bleeding due to blood-heat group < Qi deficiency-caused bleeding group < Yin deficiency with fire hyperactivity group.
Key words: immune thrombocytopenia     regulatory T-lymphocytes     Th17 cells     syndrome differentiation classification    

免疫性血小板减少症(immune thrombo-cytopenia,ITP)是最常见的一种出血性疾病,由于血小板抗体致敏的血小板导致血小板免疫性破坏过多,以广泛皮肤黏膜及内脏出血、血小板减少、骨髓巨核细胞发育成熟障碍、血小板生存时间缩短等为特征。其发病机制目前尚未完全阐明。ITP在祖国医学上证属“紫癜病”病证门类,根据发病机制分为血热妄行、阴虚火旺、气不摄血等证型[1]。本研究拟从现代免疫学角度开展对不同中医证型ITP病因的探讨。

既往观点认为,血小板的减少是因为机体体液免疫异常,B淋巴细胞产生大量血小板膜糖蛋白特异性自身抗体,介导血小板被单核吞噬细胞系统破坏[2]。研究发现T细胞亚群之间的平衡紊乱也可能导致ITP发病[3]。Th17 细胞是最新发现的一种新的T细胞亚群,其和CD4+CD25+调节性 T 细胞 (Treg)之间的平衡失调被认为是诱发ITP发生的机制之一[4]。本研究着眼于ITP患者中Treg细胞、Th17 细胞的水平与中医证型的关系,评价其在辅助ITP中医辨证分型中的价值。

1 资料和方法 1.1 一般资料

所有ITP病例均来源于2012年8月至2014年1月本科门诊及住院的ITP患者,共92例。年龄16~68岁,中位年龄49岁,平均年龄(50.32±14.87)岁;其中16~20岁3例(3.26%),21~40岁32例(34.78%),41~60岁37例(40.22%),60岁以上20例(21.74%)。男性42例,女性50例。对照组为健康志愿者,共30例,年龄23~58岁,中位年龄34岁,平均年龄(47.56±12.84)岁,男性16例、女性14例。两组性别及年龄差异无统计学意义。

1.2 诊断标准 1.2.1 西医诊断标准

西医诊断标准参照张之南主编的《血液病诊断及疗效标准》[5]有关ITP的诊断标准。(1)至少2次检查显示血小板计数减少,血细胞形态无异常。(2)脾脏一般不增大。(3)骨髓检查:巨核细胞数增多或正常、有成熟障碍。(4)以下5项中应具有其中1项:泼尼松治疗有效;切脾治疗有效;PAIgG增多;PAC3增多;血小板寿命缩短。(5)须排除其他继发性血小板减少症。

1.2.2 中医诊断依据

ITP中医证型标准参照国家中药管理局“十一五”重点专科协作组紫癜病证候分型,病例辨证分型由2名副高以上职称医师完成。(1)血热妄行证。主症:出血(肌肤紫斑、鼻衄、齿衄、或月经过多)量多,色红。 次症:①起病急骤;②发热、烦渴;③中脘胀满,或关节腰腹疼痛;④小便黄赤;⑤大便干结;⑥舌质红,苔黄或黄腻;⑦脉滑数或弦数。(2)气不摄血证。主症:肌肤斑色淡红。 次症:①鼻衄、齿衄、肌衄,月经量多;②病程较长,时发时止,稍劳即发; ③神疲乏力,头晕,气短,自汗;④面色苍白或萎黄;⑤食少,便溏或便干不爽;⑥舌质淡,苔薄白;⑦脉濡细。(3)阴虚火旺证。主症:肌肤斑色鲜红或紫暗。 次症:①起病缓慢,时发时止;②五心烦热、口干、潮热盗汗;③头晕目眩;④腰酸耳鸣;⑤鼻衄,齿衄,月经量多;⑥舌红少津,苔薄或剥;⑦脉细数。

以上3证型均为具备主症+次症①~③中的一项+次症④~⑦中的2项,即可确诊。

1.3 纳入条件 1.3.1 纳入标准

(1)符合ITP西医诊断标准、中医证型标准。(2)入选前没有使用或已经停用糖皮质激素及免疫抑制剂2周以上。(3)患者同意接受本项试验,并签署知情同意书。

1.3.2 排除标准

(1)继发性血小板减少性紫癜,如结缔组织病、免疫系统疾病、血液系统肿瘤、脾功能亢进等。(2)妊娠期或哺乳期患者。(3)合并有较严重的心肝肾等器质性病变者。(4)有脑出血或较严重内脏出血者。(5)合并其他免疫性疾病者、精神病患者。

1.4 流式细胞术检测Treg细胞和Th17 细胞

取所有纳入研究的人员外周血5~10 mL,肝素抗凝。用淋巴细胞分离液分离外周血单个核细胞(PBMCs),调整细胞密度为1×107/mL。(1)取PBMCs悬液100 μL,分别加入HRP-CD3、FITC-CD4及PE-CD25,混匀,温室避光孵育15 min,加入破膜剂200 μL,混匀,温室避光孵育15 min,用磷酸盐缓冲液(PBS)洗涤3次,上流式细胞仪检测。(2)另取PBMCs悬液100 μL,加入FITC-CD4,混匀,室温避光孵育15 min,加入破膜剂200 μL,混匀,室温避光孵育15 min,再加入PE-IL17A 10 μL,混匀,室温避光孵育15 min,PSB洗涤3次后,上流式细胞仪检测。检测结果分别以Treg细胞、Th17 细胞占CD4+ T细胞的百分率表示。

1.5 RT-PCR检测Foxp3ROR-γt mRNA表达

将收集到的外周血样本加入红细胞裂解液,收集白细胞,加入1 mL TRIzol液,充分吹打混匀。22℃条件下静置5 min,加入氯仿0.2 mL,颠倒15 s后,22℃条件下静置3 min。静置液在4℃条件下离心15 min,取上清液0.5 mL,加入0.5 mL异丙醇并混匀。再22℃静置10 min,再次离心10 min,弃上清液,真空干燥5 min。用40 μL DEPC处理水溶解,-80℃保存。以Foxp3ROR-γt mRNA特异性引物扩增。

1.6 统计学处理

采用SPSS 18.0软件进行统计分析。实验数据为非正态分布数据,以中位数(四分位间距)表示,采用多个独立样本两两比较的Nemenyi法进行检验,检验水准(α)为0.05。

2 结 果 2.1 不同中医证型ITP患者血小板计数、Treg细胞水平、Th17细胞水平比较

ITP患者92例,阴虚火旺组31例,气不摄血组31例,血热妄行组30例。由表 1可见:ITP患者各证型组血小板计数和Treg细胞水平均低于正常对照组(P<0.05,P<0.01);在各证型组间,血热妄行组低于阴虚火旺组和气不摄血组(P<0.05,P<0.01),气不摄血组低于阴虚火旺组(P<0.05)。ITP患者各证型组Th17细胞水平高于正常对照组(P<0.05);在各证型组间,血热妄行组高于阴虚火旺组和气不摄血组(P<0.05)。ITP患者各证型组Treg/Th17水平低于正常对照组(P<0.05);在各证型组间,血热妄行组低于阴虚火旺组和气不摄血组(P<0.05)。

表 1 不同中医证型ITP患者血小板计数、Treg细胞、Th17细胞及ROR-γtFoxp3 mRNA水平的比较
2.2 不同中医证型ITP患者ROR-γtFoxp3 mRNA水平比较

表 1可见:ITP患者各证型组ROR-γt mRNA水平均高于正常对照组(P<0.01);在各证型组间,血热妄行组高于阴虚火旺组和气不摄血组(P<0.05),气不摄血组高于阴虚火旺组(P<0.05)。ITP患者各证型组Foxp3 mRNA水平均低于正常对照组(P<0.05);在各证型组间,血热妄行组低于阴虚火旺组和气不摄血组(P<0.05),气不摄血组低于阴虚火旺组(P<0.05)。

3 讨 论

ITP既往称为特发性血小板减少性紫癜,以自身免疫紊乱为特征,单独引起血小板减少,而不伴有红系、髓系以及淋巴系的异常[6, 7]。传统观点认为,ITP中血小板减少是由于血小板抗自身抗体促进了血小板的破坏[8]、巨核细胞增生异常以及血小板生成减少[9, 10]

证据表明T细胞异常表达可能与ITP的发病机制有关,如Th1/Th2比例失衡、Th17细胞和白介素-17(IL-17)水平升高、毒性T淋巴细胞对血小板的破坏等[11, 12, 13]。Treg是一种表面标志为CD4+CD25+Foxp3+的T细胞,约占CD4+ T细胞的5%~10%[14],具有免疫无能和免疫抑制等功能。ITP患者Treg数量降低,减弱了对自身免疫反应的抑制作用,从而出现了针对自身血小板的免疫反应[15]。Th17细胞是一种不同于Th1、Th2亚群的新型CD4+T细胞亚群,其特征是高分泌IL-17[16],具有独立分化和发育调节机制[17]。Th17分泌的细胞因子IL-17是一种多效性细胞因子,其通过诱导多种促炎因子(如IL-6和TNF-α)和趋化因子来介导组织炎症反应,并且IL-17可招募和刺激中性粒细胞和巨噬细胞导致细胞和组织破坏,促进肿瘤和自身免疫发生[18]。Ji等[4]研究发现,Th17细胞表达在ITP患者中较正常对照组升高。Th17细胞与Treg细胞之间的平衡在免疫稳态中有重要作用[19],ROR-γtFoxp3是它们各自的特异性转录因子。Th17细胞分化与Treg细胞诱导存在一定的相互排斥的关系,细胞因子TGF-β、IL-6对初始CD4+ T细胞分化为Th17细胞或Treg细胞具有主要调节作用,正常情况下,TGF-β诱导Foxp3表达,使初始CD4+ T细胞分化为CD4+CD25+ Treg细胞,但是当有较高浓度的IL-6存在时,IL-6和TGF-β共同作用诱导转录因子ROR-γt表达,使初始CD4+ T细胞分化为Th17细胞[18],此时高浓度IL-6则抑制TGF-β诱导的Foxp3表达[18],并且抑制Treg细胞。

本研究发现,在不同证型的ITP患者中,Treg细胞的表达均低于正常对照组,Th17细胞的表达均高于正常对照组,与既往研究结果相一致。Foxp3水平与Treg细胞水平均降低,ROR-γt水平升高,Th17细胞增加,Treg/Th17水平减低。说明ITP患者Treg细胞的生成受到了抑制,并且其特异性转录因子的表达也随之降低,而ROR-γt表达增强,Th17细胞增加,分泌IL-17增多;另一方面由于Foxp3的水平受到抑制,对ROR-γt及Th17细胞的抑制作用减弱,Treg细胞的免疫保护功能受限,两方面的因素均导致体内免疫紊乱,从而导致ITP的发病。

ITP归属于中医学的“血证”、“发斑”范畴。《景岳全书·血证》认为“血动之由,惟气惟火耳”,血证的病因病机高度概括为“气”和“火”。脾主统血,脾气虚则血液失其约束行于脉外,发为紫癜;又火之异常有实火、虚火之分,火热盛可迫血妄行,血溢脉外发为紫癜;阴虚可致火旺,灼伤血络亦能出现紫癜的症状。说明中医证型中气虚、血热、阴虚是ITP不同的致病因素,根据其发病机制不同可将ITP分为血热妄行、阴虚火旺、气不摄血3个证型。本研究证实ITP患者存在Treg/Th17细胞平衡失调,且Treg细胞表达水平、Foxp3 mRNA水平在ITP各证型间的分布规律为血热妄行组<气不摄血组<阴虚火旺组;在3组不同的中医证型中,血小板的分布表现出在阴虚火旺、气不摄血、血热妄行证型中递减的趋势。结合ITP病情随着血小板的减少呈现病情加重的情况,可以认为3种中医证型中血热妄行导致的发病其病情较重。这与Treg及Foxp3的表达也是相对应的。

本研究初步探讨了Treg、Th17及Treg/Th17比例失衡在ITP与中医证型中的关系。然而由于样本量的局限,本研究未探讨复杂证型中不同免疫指标分布情况。

参考文献
[1] 郑筱萸. 中药新药临床研究指导原则:试行[M]. 北京: 中国医药科技出版社, 2002: 181-182.
[2] Hou M, Lv B, He Q, Lu L, Shi Y, Ji X, et al. Both splenic CD5+ B and CD5- B cells produce platelet glycoprotein-specific autoantibodies in chronic ITP[J]. Thromb Res, 2003, 110:1-5.
[3] Johnsen J. Pathogenesis in immune thrombocytopenia: new insights[J]. Hematology Am Soc Hematol Educ Program, 2012, 2012: 306-312.
[4] Ji L, Zhan Y, Hua F, Li F, Zou S, Wang W, et al. The ratio of Treg/Th17 cells correlates with the disease activity of primary immune thrombocytopenia[J]. PLoS One, 2012, 7: e50909.
[5] 张之南,沈 悌. 血液病诊断及疗效标准[M].3版.北京:科学出版社, 2007:172-173.
[6] McMillan R. The pathogenesis of chronic immune thrombocytopenic purpura[J]. Semin Hematol, 2007, 44(4 Suppl 5): S3-S11.
[7] Provan D, Stasi R, Newland A C, Blanchette V S, Bolton-Maggs P, Bussel J B, et al. International consensus report on the investigation and management of primary immune thrombocytopenia[J]. Blood, 2010, 115: 168-186.
[8] Harrington W J, Minnich V, Hollingsworth J W, Moore C V. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura[J]. J Lab Clin Med, 1951, 38: 1-10.
[9] Ballem P J, Segal G M, Stratton J R, Gernsheimer T, Adamson J W, Slichter S J.Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance[J].J Clin Invest, 1987, 80: 33-40.
[10] McMillan R, Nugent D.The effect of antiplatelet autoantibodies on megakaryocytopoiesis[J]. Int J Hematol, 2005, 81: 94-99.
[11] Panitsas F P, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou G L, Zoumbos N C, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response[J]. Blood, 2004, 103: 2645-2647.
[12] Hu Y, Ma D X, Shan N N, Zhu Y Y, Liu X G, Zhang L, et al. Increased number of Tc17 and correlation with Th17 cells in patients with immune thrombocytopenia[J]. PLoS One, 2011, 6: e26522.
[13] Audia S, Samson M, Mahévas M, Ferrand C, Trad M, Ciudad M, et al. Preferential splenic CD8+ T-cell activation in rituximab-nonresponder patients with immune thrombocytopenia[J]. Blood, 2013, 122: 2477-2486.
[14] Sakaguchi S.Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self[J]. Nat Immunol, 2005, 6: 345-352.
[15] Liu B, Zhao H, Poon M C, Han Z, Gu D, Xu M, et al. Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura[J]. Eur J Haematol, 2007, 78: 139-143.
[16] Park H, Li Z, Yang X O, Chang S H, Nurieva R, Wang Y H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6: 1133-1141.
[17] Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human ROR-γt+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors[J]. Proc Natl Acad Sci USA, 2010, 107: 19402-19407.
[18] Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance[J]. Eur J Immunol, 2010, 40: 1830-1835.
[19] Kimura A, Kishimoto T. Th17 cells in inflammation[J]. Int Immunopharmacol, 2011, 11: 319-322.