第二军医大学学报  2015, Vol. 36 Issue (11): 1233-1237   PDF    
粒状头样2基因与消化系统肿瘤关系的研究进展
高依莎, 塔娜, 郑建明    
第二军医大学长海医院病理科, 上海 200433
摘要: 粒状头样2(GRHL2)基因是果蝇粒状头样基因在哺乳动物中的同源基因之一,参与年龄相关的听觉损伤修复、神经管闭合、上皮完整性和创伤修复等,也参与肿瘤的发生、发展。随着对GRHL2基因与肿瘤关系及其作用机制研究的深入,提示其在不同肿瘤中的作用机制不同。本文对GRHL2家族生物学功能及其在消化系统肿瘤中的研究进展进行综述,为GRHL2的深入研究提供背景。
关键词: 粒状头样2     消化系统肿瘤     肝肿瘤     胃肿瘤     结直肠肿瘤    
Relationship between GRHL2 gene and tumor of the digestive system: research progress
GAO Yi-sha, TA Na, ZHENG Jian-ming    
Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
Supported by “1255” Plan for Discipline Construction of Changhai Hospital of Second Military Medical University(CH125510304).
Abstract: Grainyhead-like 2 (GRHL2), an mammalian homolog of Drosophila grainyhead, is associated with age-related hearing impairment repair, neural tube closure, epidermal integrity, and wound healing; it also takes part in the initiation and progression of cancer. As the research going on, GRHL2 has been proven to be of great importance in different molecular mechanisms of different types of cancer. We herein reviewed the biological functions of GRHL2 family and the roles of GRHL2 proteins in digestive system neoplasms, hoping to lay a foundation for more advanced research of GRHL2.
Key words: graniyhead-like 2     digestive system neoplasm     liver neoplasm     stomach neoplasm     colorectal neoplasm    

粒状头样2(grainyhead-like 2,GRHL2)基因是果蝇粒状头样基因在哺乳动物中的同源基因之一,在体内听囊、肠内胚层和表皮外胚层上皮细胞中作为转录因子调控细胞分化[1, 2, 3, 4]

研究表明GRHL2与年龄相关的听觉损伤[5]、神经管闭合[6]、上皮完整[7]、创伤修复[8]等有关,同时调控人体呼吸道上皮的许多生理功能[9]。此外,GRHL2作为抑癌基因,在胃癌、乳腺癌的发生、发展中也具有抑制作用[10, 11]。然而,也有研究表明GRHL2高表达对结直肠癌、口腔鳞状细胞癌等的发病具有促进作用[11, 12, 13]。这些有争议的研究结果表明,GRHL2可能在不同肿瘤细胞中作用不同。本文就GRHL2的生物学功能及其与消化系统肿瘤的关系作一综述,为后续研究奠定基础。

1 GRHL家族概述

GRH(grainyhead)基因家族首先在果蝇中发现,与果蝇胚胎的腹背侧发育、上皮形态发生和中枢神经系统发育相关,是一类可以与调控元件和发育调控基因(包括多巴脱羧酶基因和超级双胸基因)相结合的转录因子[14, 15]。最初的研究将这种转录因子称为结合活性元素(element 1-binding activity)或神经元转录因子1(neuronal transcription factor 1,NTF-1),是果蝇胚胎的致死因子位点之一[16, 17]GRH在果蝇表皮细胞中转录并调节多巴(DOPA)脱羧酶表达来调控表皮发生[16],DOPA脱羧酶可与酪氨酸协同促进果蝇表皮成熟并形成难以渗透的保护屏障[18];果蝇后胚胎神经母细胞的有丝分裂活动随GRH的表达而增强,说明GRH有促进细胞增殖的作用[19]GRH亦可激活果蝇增殖细胞核抗原(PCNA)的启动子区域,在DNA复制中发挥作用[20]GRH基因家族已经被证实是既可起到转录激活作用又可作为转录抑制子的转录因子[21]。果蝇和蠕虫的基因组只有1种 GRH基因,而脊椎动物却含有多种GRH基因。GRH家族从果蝇到人类都表现出了高度的保守性。依照与GRH或者dCP2基因的亲缘关系将GRH的同源基因分为2种:GRHL亚家族和CP2亚家族。CP2亚家族是与CP2更相关的,包括CP-2、LBP-1aLBP-9[22]GRH基因家族参与器官发生、表皮形成和表皮损伤修复、神经管闭合、中枢神经系统发育等[23]

GRHL亚家族中发现了3种哺乳动物同源基因:GRHL1(grainyhead-like 1,又称mammalian granyhead,MGRLBP-32)、GRHL2(grainyhead-like,又称brother of mammalian grainyhead,BOM)和GRHL3(grainyhead-like 3,又称sister of mammalian grainyhead,SOM或粒状头样上皮反式激活因子)。这组哺乳动物粒状头样基因编码的蛋白在N端、DNA结合结构域和C端二聚体相互作用结构域上具有高度同源性[2]GRHL基因亚家族在胚胎发育过程中有着严格的表达模式,并且与GRH基因家族在DNA结合域和蛋白质二聚体上高度一致。尽管其结构相似,在哺乳动物中3种不同的GRHL转录因子异常却会导致不同的疾病。Auden等[1]发现,尽管在表皮发育中3种GRHL基因都呈现高表达,但在表达程度和表达时间上却有各自不同。GRHL1可调节角化细胞中细胞间黏附的必要桥粒钙黏蛋白DSG1的表达,如在GRHL1缺陷的老鼠中可因DSG1表达增高导致毛发锚固(hair anchorage)和表皮分化缺陷[24]GRHL2和GRHL3都能结合调节损伤修复的基因位点Rho GEF 19,但调节表皮屏障形成基因位点谷氨酰胺转移酶1(TGase1)却是GRHL3所特有[25]。而在小鼠的胚胎发育中,GRHL1缺陷小鼠表现出毛发生长延迟和缺失、脚掌皮肤角化增厚[22];而GRHL2和GRHL3可以调控神经管闭合和E-cadherin表达[6]。在肿瘤的发生发展中,Mlacki等[26]的研究结果表明,GRHL1和GRHL3的表达与皮肤鳞状细胞癌的发生正相关,而GRHL2不仅可调控表皮细胞的分化,同时还可以促进或抑制多种肿瘤细胞的增殖。

2 GRHL2的生物学功能

近年来随着GRHL2研究的深入,证实它不仅参与调控胚胎发育、神经管闭合、表皮损伤修复等系统生物发生过程,还可以通过调控上皮表型基因E-cadherinTjp2、Cldn4、Cldn7和Wnt配体等来调控上皮细胞间充质转化(EMT)的发生。在两组独立的人类家族研究中显示,GRHL2基因突变导致常染色体隐性外胚层发育不良,说明GRHL2在表皮发生、体内稳态和人类疾病发生方面有重要作用[27]。同时,GRHL2在人体正常的生理情况下可通过调节黏膜分子和紧密连接来增强肺泡上皮的完整性,而在先天性特发性肺纤维化的发病过程中则可使肺上皮细胞纤维化从而导致疾病的发生[28]。另外,在Han等[29]的研究中发现,GRHL2基因突变与人类渐进性常染色体显性听力损失(DFNA28)相关。近年来越来越多研究显示GRHL2在肿瘤发生中既有促进又有抑制肿瘤发生的作用。例如,在口腔鳞状细胞癌中GRHL2基因促进人端粒反转录酶基因(hTERT)的激活,从而促进肿瘤发生[30];在乳腺癌细胞中通过抑制死亡受体(FAS和DR5)的激活来抑制乳腺癌细胞的凋亡[31]。在肝癌中促进癌细胞的增殖[12],而在发生上皮细胞-间充质转化(EMT)的乳腺癌细胞中其作用又是抑制的[11]。这些证据表明,GRHL2在肿瘤细胞中的功能不同可能与其特异的作用位点密切相关。

3 GRHL2基因与消化系统肿瘤 3.1 GRHL2基因与肝癌

乙型肝炎病毒(HBV)及丙型肝炎病毒(HCV)感染是肝细胞癌(HCC)的重要病因。Tanaka等[12]利用人类高密度寡核苷酸阵列基因芯片(Affymetrix)对17个肝癌细胞株的基因组DNA进行分析,找出10组基因位点作为高通量基因组进行分析,发现这10组基因位点在肝癌细胞中均有不同程度的拷贝数复制增加。越来越多的证据显示,扩增致癌基因可导致肿瘤的发生,于是又选择了70例HBV或HCV相关HCC的人体组织样本,通过对年龄、性别、肿瘤大小、组织分型等进行分类来检测上述10组基因位点的表达,结果显示在染色体8q22.3上GRHL2基因与大肝癌和低分化癌相关。进一步对40例人体肝癌及其癌旁组织的样本行生存分析,显示GRHL2基因拷贝数的增加和肝癌无复发生存率负相关,说明GRHL2基因可作为诊断肝癌复发的独立位点。进一步研究表明,在细胞水平上对GRHL2干扰可抑制肝癌细胞生长,证明了GRHL2可以促进肝癌细胞增殖。

3.2 GRHL2基因与胃癌

GRHL2在胃癌中表达异常,但其为癌基因或者抑癌基因仍不明确。有研究称GRHL2在胃癌组织中高表达但在癌旁正常组织中低表达[32]。但通过免疫组化方法分析48例胃癌及其癌旁正常组织中GRHL2基因的表达,Xiang等[10]发现70%(34/48)癌旁组织GRHL2基因的表达高于癌组织(P<0.05)。采用RT-PCR方法在RNA水平上检测发现在人胃上皮细胞系(GES-1)中GRHL2基因的表达高于另外4株胃癌细胞系,同样在蛋白水平上也证实了这一点。进一步用慢病毒包装质粒将GRHL2基因转染至胃癌细胞SGC7901后,利用MTT比色法和流式细胞术检测细胞增殖活性,发现GRHL2基因促进了SGC7901细胞的凋亡。同时发现,GRHL2基因过表达抑制了原癌基因c-MycBcl-2的增殖。这说明GRHL2基因在胃癌中可能是抑癌基因角色。

3.3 GRHL2基因与结直肠癌

Quan等[13]首先对75例结直肠癌及其癌旁组织进行研究,结果显示在结直肠癌组织中GRHL2基因的表达较癌旁组织明显上调,并且GRHL2基因可能是潜在的致癌基因。进一步利用慢病毒包装shRNA转染至HT29和HCT116两株结直肠癌细胞株中诱导GRHL2基因沉默,结果显示 GRHL2-knockdown(GRHL2-KD)细胞株中处于G0/G1期细胞显著增加而S期细胞则相应减少,提示GRHL2-KD通过调控细胞周期来抑制结直肠癌细胞的增殖。通过统计学分析显示GRHL2的表达与肿瘤直径>3 cm、Ⅲ+Ⅳ期结直肠癌以及高表达Ki-67相关[33]。他们又对临床结直肠癌病例的生存期研究发现,GRHL2高表达的结直肠癌患者的生存期较短,而GRHL2阳性表达是结直肠癌低生存率和低无复发生存的独立预后指标。在体内外对结直肠肿瘤细胞系HT29和HCT116行GRHL2干扰有效地抑制了结直肠癌细胞的增殖和肿瘤的发生。

有研究发现,ZEB1(zinc finger E-box binding homeobox 1)在多种细胞系中和多种基因的表达相互调控,如microRNA-200c能抑制ZEB1基因的表达从而抑制肿瘤细胞的迁移及侵袭能力[34],在造血细胞中ZEB1可负性调控IL-2的表达[35]。Quan等[13]利用蛋白免疫印迹法及qRT-PCR发现在结直肠癌细胞株中ZEB1表达与GRHL2的表达负相关,而在GRHL2-KD细胞株中ZEB1表达增加。结果表明ZEB1表达受GRHL2调控。进一步将sh-ZEB1转染至GRHL2-KD细胞中出现ZEB1表达下调,也证实了这一点。而从mRNA和蛋白水平上在GRHL2-KD细胞中抑制ZEB1基因表达可显著上调GRHL2基因的表达,也就是说GRHL2与ZEB1可以互相抑制。由于ZEB1是E-cadherin的转录抑制子,进一步检测E-cadherin在GRHL2-KD中的表达,与ZEB1不同的是其在GRHL2-KD中表达下调,而在ZEB1沉默的GRHL2-KD细胞株中表达上调,说明在GRHL2-KD细胞中E-cadherin的增殖能力提高。但其并未明确E-cadherin的表达究竟完全受到ZEB1调控还是GRHL2也在其中起到一定作用。但可以肯定的是,GRHL2基因作为结直肠癌的一个致癌基因,也许在未来会成为结直肠癌潜在的诊断和治疗靶点。

3.4 GRHL2基因与其他肿瘤

GRHL2基因在人口腔鳞状细胞癌、乳腺癌中表达上调,起到了促进肿瘤发生的作用[11, 27],而在宫颈癌中表达下调,提示其肿瘤抑制功能[36]。除了肝癌、胃癌、乳腺癌、结直肠癌、口腔鳞状细胞癌等肿瘤外,GRHL2在肺癌、黑素瘤和卵巢癌等肿瘤中亦出现拷贝数异常[31],说明了GRHL2在对肿瘤增殖上所起的作用复杂多样。

4 小结及展望

综上所述,GRHL2作为编码转录因子的基因在体内参与多种生物学功能。研究表明,GRHL2不仅参与胚胎正常的发育过程,也在多种疾病的发生、发展中起重要作用。尽管自2002年Wilanowski等[2]首先报道GRHL2以来,其在胚胎发育、表皮损伤修复、神经管闭合等方面的研究日渐深入,但由于GRHL2在体内参与调节的机制复杂,其功能尚未十分明确。此外,大量研究表明GRHL2在体内与多种肿瘤的发病机制有关,但其在不同肿瘤中的表达存在差异,所以GRHL2在肿瘤发生发展中的作用仍不明确。因此,明确GRHL2在肿瘤及其他疾病发病机制中的作用可能为诊断和治疗相关疾病提供新的线索或潜在靶点。

参考文献
[1] Auden A, Caddy J, Wilanowki T, Ting S B, Cunningham J, Jane S M. Spatial and temporal expression of the grainyhead-like transcription factor family during murine development[J]. Gene Expr Patterns,2006,6: 964-970.
[2] Wilanowski T, Tuckfield A, Cerruti L, O'Connell S, Saint R, Parekh V,et al.A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead[J].Mech Dev,2002,114: 37-50.
[3] Werth M, Walentin K, Aue A, Schonheit J, Wuebken A, Pode-Shakked N, et al. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex[J]. Development,2010,137: 3835-3845.
[4] Varma S, Cao Y X, Tagne J B, Lakshminarayanan M, Li J, Friedman T B, et al. The transcription factors grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation[J].J Biol Chem, 2012,287:37282-37295.
[5] Van Laer L, Van Eyken E, Fransen E, Huyghe J, Topsakal V, Hendrickx J,et al. The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment[J]. Hum Mol Genet,2008,17: 159-169.
[6] Pyrgaki C, Liu A,Niswander L. Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion[J]. Dev Biol,2011,353: 38-49.
[7] Senga K, Mostov K E, Mitaka T, Miyajima A, Tanimizu N. Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25[J].Mol Biol Cell,2012,23:2845-2855.
[8] Moussian B,Uv A E.An ancient control of epithelial barrier formation and wound healing[J].Bioessays,2005,27: 987-990.
[9] Gao X, Vockley C, Pauli F, Newberry K M, Xue Y, Randell S H,et al. Evidence for multiple roles for grainyheadlike 2 in the establishment and maintenance of human mucociliary airway epithelium (vol 110, pg 9356, 2013)[J]. Proc Natl Acad Sci USA, 2014,111: 17684.
[10] Xiang J, Fu X, Ran W, Chen X, Hang Z, Mao H,et al. Expression and role of grainyhead-like 2 in gastric cancer[J]. Med Oncol,2013,30:714.
[11] Cieply B, Riley P 4th, Pifer P M, Widmeyer J, Addison J B, Ivanov A V et al. Suppression of the epithelial-mesenchymal transition by grainyhead-like-2[J]. Cancer Res,2012,72: 2440-2453.
[12] Tanaka Y, Kanai F, Tada M, Tateishi R, Sanada M, Nannya Y,et al. Gain of GRHL2 is associated with early recurrence of hepatocellular carcinoma[J]. J Hepatol,2008,49: 746-757.
[13] Quan Y, Jin R, Huang A, Zhao H, Feng B, Zang L, et al. Downregulation of GRHL2 inhibits the proliferation of colorectal cancer cells by targeting ZEB1[J].Cancer Biol Ther,2014,15:878-887.
[14] Biggin M D,Tjian R.Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts [J].Cell,1988,53: 699-711.
[15] Bray S J, Burke B, Brown N H,HirshJ. Embryonic expression pattern of a family of Drosophila proteins that interact with a central nervous system regulatory element[J].Genes Dev,1989,3: 1130-1145.
[16] Bray S J,Kafatos F C. Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila[J].Genes Dev, 1991,5:1672-1683.
[17] Wieschaus E, Nusslein-Volhard C, Kluding H. Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation[J].Dev Biol,1984,104:172-186.
[18] Stramer B, Martin P. Cell biology: master regulators of sealing and healing[J].Curr Biol,2005,15:R425-R427.
[19] Cenci C, Gould A P. Drosophila grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts[J]. Development,2005,132:3835-3845.
[20] Hayashi Y, Yamagishi M, Nishimoto Y, Taguchi O, Matsukage A, Yamaguchi M. A binding site for the transcription factor grainyhead/nuclear transcription factor-1 contributes to regulation of the Drosophila proliferating cell nuclear antigen gene promoter[J].J Biol Chem,1999,274:35080-35088.
[21] Huang J D, Dubnicoff T, Liaw G J, Bai Y, Valentine S A, Shirokawa J M, et al. Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic[J].Genes Dev,1995,9:3177-3189.
[22] Ting S B, Wilanowski T, Cerruti L, Zhao L L, Cunningham J M, Jane S M,et al. The identification and characterization of human sister-of-mammalian grainyhead (SOM) expands the grainyhead-like family of developmental transcription factors[J]. Biochem J,2003,370: 953-962.
[23] Wang S, Samakovlis C. Grainy head and its target genes in epithelial morphogenesis and wound healing[J].Curr Top Dev Biol,2012,98:35-63.
[24] Wilanowski T, Caddy J, Ting S B, Hislop N R, Cerruti L, Auden A,et al. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice[J].EMBO J,2008,27: 886-897.
[25] Boglev Y, Wilanowski T, Caddy J, Parekh V, Auden A, Darido C,et al. The unique and cooperative roles of the Grainyhead-like transcription factors in epidermal development reflect unexpected target gene specificity[J].Dev Biol,2011,349: 512-522.
[26] Mlacki M, Darido C, Jane S M, Wilanowski T. Loss of Grainyhead-like 1 is associated with disruption of the epidermal barrier and squamous cell carcinoma of the skin[J]. PLoS One,2014,9: e89247.
[27] Petrof G, Nanda A, Howden J, Takeichi T, McMillan J R, Aristodemou S, et al. Mutations in GRHL2 result in an autosomal-recessive ectodermal Dysplasia syndrome[J]. Am J Hum Genet,2014,95: 308-314.
[28] Varma S, Mahavadi P, Sasikumar S, Cushing L, Hyland T, Rosser A E, et al. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis[J].Am J Physiol Lung Cell Mol Physiol,2014,306: L405-L419.
[29] Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z,et al. GRHL 2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28[J].Hum Mol Genet,2011,20: 3213-3226.
[30] Kang X, Chen W, Kim R H, Kang M K, Park N H. Regulation of the hTERT promoter activity by MSH2, the hnRNPs K and D, and GRHL2 in human oral squamous cell carcinoma cells[J].Oncogene,2009,28:565-574.
[31] Dompe N, Rivers C S, Li L, Cordes S, Schwickart M, Punnoose E A, et al. A whole-genome RNAi screen identifies an 8q22 gene cluster that inhibits death receptor-mediated apoptosis[J].Proc Natl Acad Sci USA,2011,108:E943-E951.
[32] Cheng L, Wang P, Yang S, Yang Y, Zhang Q, Zhang W, et al. Identification of genes with a correlation between copy number and expression in gastric cancer[J].BMC Med Genomics,2012,5:14.
[33] Quan Y, Xu M, Cui P, Ye M, Zhuang B, Min Z. Grainyhead-like 2 promotes tumor growth and is associated with poor prognosis in colorectal cancer[J].J Cancer,2015,6:342-350.
[34] Bai W D,Ye X,Zhang M,Zhu H,Xi W,Huang X,et al. MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer[J].Int J Cancer, 2014,135: 1356-1368.
[35] Williams T M, Moolten D, Burlein J, Romano J, Bhaerman R, Godillot A, et al. Identification of a zinc finger protein that inhibits IL-2 gene expression[J].Science,1991,254:1791-1794.
[36] Torres-Reyes L A, Alvarado-Ruiz L, Pina-Sanchez P, Martinez-Silva M G, Ramos-Solano M, Olimon-Andalon V,et al. Expression of transcription factor grainyhead-like 2 is diminished in cervical cancer[J]. Int J Clin Exp Pathol,2014,7: 7409-7418.