第二军医大学  2014, Vol. 35 Issue (5): 549-554   PDF    
致病真菌几丁质合成调控的研究进展
郑楠薪, 胡丹丹, 姜远英, 王彦    
第二军医大学药学院, 上海 200433
摘要:几丁质广泛存在于致病真菌的细胞壁,是真菌细胞壁的必需成分。几丁质合成酶是几丁质生物合成中的关键酶,其活性被严格地调控。几丁质合成酶及其调控分子有望成为抗真菌药物作用的靶点。本文综述了几丁质合成酶的分类、功能及其调控的最新进展,展望了将几丁质合成酶及其调控分子作为抗真菌药物作用靶点的潜在应用前景。
关键词真菌     壳多糖     壳多糖合酶     调控机制     药物靶点    
Regulation of chitin synthesis in pathogenic fungi:an update
ZHENG Nan-xin, HU Dan-dan, JIANG Yuan-ying, WANG Yan    
College of Pharmacy, Second Military Medical University, Shanghai 200433, China
Abstract: Chitin, an essential component of the cell wall, exists widely in pathogenic fungi. Chitin synthase (CHS) is a key enzyme for biosynthesis of chitin, and its activity is strictly regulated; therefore it can be inferred that CHS and its regulation factors are potential targets of anti-fungal therapy. This article reviews the recent research progress on classification, function, and regulation of CHS, and discusses the possibilities of using CHS and its regulation factors as anti-fungal targets.
Key words: fungi     chitin     chitin synthase     regulation mechanism     drug target    

随着生物医学科学的进步,造血干细胞移植、实体器官移植、高强度免疫抑制剂的应用、癌症患者的放/化疗、广谱抗生素的大量使用以及艾滋病在全球的持续蔓延,深部真菌感染的发病率及死亡率在全球呈显著上升趋势[ 1 ]。当前治疗深部真菌感染的药物品种有限,主要包括三唑类、多烯类、5-氟胞嘧啶和棘白菌素类药物[ 2 ]。随着深部真菌感染发病率的增加,抗真菌药物的市场份额与日俱增。然而,目前的抗真菌药物尚存在毒性大、有效率低、价格昂贵或者耐药性严重等问题[ 2,3,4 ],困扰着临床抗真菌治疗的有效实施,因此抗真菌新药的开发显得尤为重要。

细胞壁是真菌抵御渗透压和机械力损伤的重要屏障[ 5 ]。真菌细胞壁主要由葡聚糖、甘露聚糖和几丁质等组成。作用于真菌细胞壁的药物由于对哺乳动物细胞的影响小、不良反应少,具有良好的应用前景。棘白菌素类药物(如卡泊芬净、米卡芬净和阿尼芬净)通过抑制β-1,3-D-葡聚糖合成影响细胞壁,发挥抗真菌作用[ 3 ]。目前还没有作用于几丁质或者甘露聚糖的药物成功应用于临床,但抑制几丁质合成或影响其合成调控被公认为理想的抗真菌药物作用靶点[ 6 ]。鉴于此,本文对几丁质合成及其调控的研究进展做一综述。 1 几丁质和几丁质合成酶(chitin synthase,CHS) 1.1 几丁质是真菌细胞壁的重要组成成分

真菌几丁质是N-乙酰葡糖胺(GlcNAc)通过β-1,4糖苷键链状聚合而成的聚糖,分布于细胞壁的内层。几丁质微丝与β-1,3-D-葡聚糖共价交联,形成真菌细胞壁的三维网状结构,共同抵御渗透压和机械力[ 5 ]。一部分几丁质在一种或多种几丁质脱酰酶的作用下,去乙酰化生成脱乙酰几丁质,脱乙酰几丁质也参与细胞壁的构成。

1.2 CHS

几丁质的合成过程非常复杂,合成反应大致分为3个阶段[ 7 ]。前两个阶段的反应在细胞质内完成,为第3阶段的反应提供UDP-N-乙酰葡糖胺(UDP-GlcNAc)[ 8 ]。第3阶段的反应在细胞膜上进行,以UDP-N-乙酰葡糖胺为原料聚合生成几丁质[ 9 ]。CHS是第3阶段反应的关键酶,催化几丁质生物合成特有的反应[ 7 ]

CHS数量很多,利用Nio-Vega和Roncero的分类方法,可以将CHS分为七类[ 10,11 ]。不同种类的CHS可能在不同的真菌中起不同的作用。Ⅰ类CHS合成的几丁质仅占细胞壁几丁质的很少一部分[ 6 ]。虽然Ⅱ类CHS合成几丁质的量也很少,但是某些Ⅱ类CHS对真菌的生命过程有重要影响[ 12 ]。Ⅳ类CHS是合成细胞壁几丁质的主力,某些Ⅳ类CHS的缺失会导致真菌致病力的减弱[ 13 ]。Ⅲ、Ⅴ、Ⅵ、Ⅶ类CHS只存在于丝状真菌和部分双相真菌,对这些真菌的生命过程可能有重要影响[ 6 ]。以灰霉(Botrytis cinerea)为例,属于Ⅲ类CHS的BcChs3a对灰霉的致病力有显著影响,属于Ⅶ类CHS的BcChs7在灰霉致病过程中发挥作用,而属于Ⅵ类CHS的BcChs6是灰霉生长发育所必需的[ 14 ]2 CHS在多个环节受到调控

在真菌生长、应激和形态改变的过程中,细胞壁的组成成分和精细结构会发生动态变化,细胞壁组分合成相关的酶在转录、蛋白活化等多个环节受到调控[ 6 ]。另外,几丁质和其他细胞壁组分的合成大多是在极化生长的位置发生,因此,CHS的功能还与其所在空间位置息息相关[ 15 ]

2.1 CHS在转录水平受到调控

CHS在转录水平与细胞周期和细胞状态相关。Spellman等[ 16 ]研究了酿酒酵母(Saccharomyces cerevisiae)的mRNA水平与细胞周期的相关性,结果表明ScCHS2的表达在M期达到高峰,而ScCHS1的表达在M/G1期达到高峰,基因表达高峰出现的时期可能与基因功能有对应关系。Cte等的研究[ 17 ]表明,白念珠菌(Candida albicans)在G2期时,其CaCHS1(与酿酒酵母的ScCHS2同源)、CaCHS8和CaCHS3的表达达到峰值。CHS的转录表达水平还与细胞状态相关。在丝状真菌构巢曲霉(Aspergillus nidulans)中,AnCHSAAnCHSBAnCHSCAnCHSD基因在菌丝中的基础表达水平并不相同,但在分生孢子受精时,它们的表达会同时增加[ 18 ]。Rogg等[ 19 ]发现构巢曲霉经棘白菌素处理后AnCHSAAnCHSC基因的转录水平增加。AnCHSC的转录由转录因子AbaA激活,AnCHSA的转录激活可能也与AbaA有关[ 20 ]

2.2 CHS的表达受到多条信号通路的调控

在白念珠菌中,PKC、HOG和MAP这3条信号通路,以及钙调神经磷酸酶通路共同调节CHS基因的表达[ 21 ]。在酿酒酵母中,跨膜蛋白ScWsc1和ScMid2起着监测细胞壁的作用,当酿酒酵母细胞壁发生异常时,ScWsc1 和ScMid2招募鸟苷酸交换因子Rom2向小G蛋白Rho1发出信号,Rho1激活包括PKC在内的诸多因子,触发MAPK的级联反应,最终作用于转录因子,影响细胞壁相关基因的表达[ 7 ]。此外,酿酒酵母的HOG通路也能影响MAPK通路,调控细胞壁组分的生物合成[ 22 ]

2.3 蛋白酶解步骤调控CHS的成熟

据推测,CHS存在两种状态:一种是没有活性的酶原状态,一种是有活性的激活状态[ 7 ]。在酿酒酵母中,3种CHS酶ScCHS1、ScCHS2和ScCHS3都具有酶原的性质[ 7 ]。就ScCHS2而言,已证明胰蛋白酶可以作用于一种未知的可溶性蛋白酶,这种蛋白酶一旦被激活,就能进而激活ScCHS2的活性[ 23 ]。就ScCHS3而言,Meissner等[ 24 ]的研究表明,蛋白酶ScSte24在ScCHS3介导的几丁质生物合成中起重要作用,而ScSte24恰恰是一种存在于内质网上的金属蛋白酶[ 25 ]

2.4 CHS的细胞内定位受到调控

真菌细胞对几丁质生物合成的控制还可以通过改变CHS在细胞内的定位实现,CHS会被运送到需要合成几丁质的位置(如极化生长处、菌丝处、细胞分裂隔壁形成处和细胞表面等)[ 6 ]。在白念珠菌中,Ⅳ类合成酶CaCHS3会被运送到出芽的芽尖处、菌丝处,在细胞分裂前会被重新定位到隔壁形成的位置[ 6 ]。在构巢曲霉中,Ⅲ类合成酶AnCHSB也是在极化生长处、菌丝处和分生孢子发育时隔壁形成的位置行使功能[ 26 ]。在酿酒酵母胞质分裂过程中,ScCHS2会被运送到隔壁位置,Wloka等[ 27 ]发现ScCHS2借助Ⅱ型肌球蛋白Myo1的脚手架作用参与隔壁的形成,Oh等[ 28 ]发现ScCHS2还会与位于胞质分裂位置的ScHof1蛋白发生相互作用,调控隔壁的形成。位于高尔基体外侧网络(TGN)的ScCHS3可以被运输到细胞表面,Starr等[ 29 ]发现内涵体的蛋白质外壳能调节这一运输过程。

2.5 化学修饰和分子间相互作用对CHS的影响

磷酸化和去磷酸化过程能控制CHS的细胞内定位。在白念珠菌中,CaCHS3的正确定位受到磷酸化过程的严格调控[ 30 ]。在酿酒酵母中,ScCHS2的定位也受到磷酸化的影响[ 23 ],ScCHS2被磷酸化后滞留于内质网[ 31 ]。Jakobsen等[ 32 ]进一步的研究发现被CDK1磷酸化的ScCHS2很难被包装入转运小泡,所以滞留于内质网;而被磷酸酶Cdc14p去磷酸化的ScCHS2能被选择性地包装入转运小泡,进而被转运出内质网。Oh等[ 33 ]的研究则表明ScCHS2的磷酸化可以由激酶Dbf2直接介导。

异戊烯化过程也能对CHS 产生影响[ 34 ]。酿酒酵母的ScCHS4与ScCHS3之间有密切关系,ScCHS4不仅能激活ScCHS3,还能介导ScCHS3和ScBni4之间的相互作用,从而促进几丁质的生物合成并完成几丁质的准确定位[ 34,35 ]。ScCHS4的成熟过程中要经历异戊烯化,只有异戊烯化的ScCHS4才能够调节ScCHS3的活性[ 34,35 ],因此,在酿酒酵母中异戊烯化能通过影响ScCHS4影响ScCHS3,进而影响几丁质的生物合成和定位。

肌球蛋白马达样结构域(MMD)能帮助CHS准确定位[ 36,37 ]。如果一种CHS的N端有MMD,C端有CHS结构域,那么这种CHS大多被归类于Ⅴ类或Ⅶ类CHS。最典型的例子是构巢曲霉的AnCsmA和AnCsmB,它们分别属于Ⅴ类和Ⅶ类CHS,其功能既存在差异又可能存在互补性[ 38 ]。MMDs能通过将CHS锚定在肌动蛋白细胞骨架上帮助CHS定位到极化增长的位置[ 39 ]

3 CHS可作为抗真菌药物的作用靶点3.1 几丁质合成的代偿性增多能增强真菌对药物的耐受程度

真菌细胞壁的组分和微观结构处于动态变化中,阻止细胞壁中一种成分的合成会导致另一种组分代偿性地增多[ 40 ]。例如在白念珠菌中,利用卡泊芬净抑制β-1,3-葡聚糖合成会导致几丁质合成的代偿性增高[ 41 ]。如前所述,几丁质合成的增加受到PKC通路、HOG通路、MAPK通路以及钙调神经磷酸酶通路调控[ 21 ]。在白念珠菌和烟曲霉菌(Aspergillus fumigatus)中应用PKC和钙调神经磷酸酶通路激活剂,菌株几丁质含量增加的同时,对卡泊芬净的敏感性降低[ 41 ]。此外,在某些细胞壁相关基因发生突变的白念珠菌中,几丁质含量增高的同时也出现了对卡泊芬净的敏感性降低[ 42 ]。在高浓度卡泊芬净中白念珠菌会形成耐药菌落,这些菌落与野生型菌落相比具有更高的几丁质含量,几丁质含量的增加可能是对卡泊芬净耐药的原因之一[ 41 ];将耐药克隆在没有卡泊芬净选择压力的条件下培养,几丁质的含量会回落[ 41 ]。上述现象表明白念珠菌对卡泊芬净具有天然适应能力,这种适应能力可能是通过代偿性地增加几丁质含量实现的[ 41 ]

几丁质含量增多不仅出现在白念珠菌中,在热带念珠菌(Candida tropicalis)、近平滑念珠菌(Candida parapsilosis)、季也蒙念珠菌(Candida guilliermondii)和烟曲霉菌的临床分离株中,也发现了给予卡泊芬净后几丁质含量增加的现象[ 43 ]。另外,这些种类的念珠菌在含卡泊芬净的培养基中培养时,出现反常性增长的概率也比较高[ 44 ]。相比起来,光滑念珠菌(Candida glabrata)和克柔念珠菌(Candida krusei)的分离株没有发现卡泊芬净处理后几丁质含量增加的现象,同时也很少或没有出现反常性增长的现象[ 45 ]

3.2 抑制CHS和相关信号通路是潜在的抗真菌靶标

几丁质和脱乙酰几丁质几乎存在于所有已知的致病真菌中,但在哺乳动物细胞中并不存在,因此抑制几丁质生物合成不会对人体产生严重的不良反应,这也是抗真菌药物研发的一条思路[ 6 ]。此外,几丁质合成的代偿性增多会导致对抗真菌药物的耐药,那么现有抗真菌药物与CHS抑制剂合用可能发挥抗菌增效作用[ 40 ]

具体地说,现有的CHS抑制剂包括尼克霉素和多氧霉素类,它们能特异性地抑制Ⅰ类CHS,但它们对其他类CHS无效,体内抗真菌效果也不理想[ 6 ],新型的CHS抑制剂有待研发。然而,现有的CHS抑制剂能增强棘白菌素类药物对病原真菌的抗菌能力[ 46 ]:棘白菌素类药物单用对烟曲霉菌只具有抑制作用,然而棘白菌素类药物与尼克霉素Z合用导致异常细胞壁的形成,进而导致孢子的极端肿胀,起到协同杀菌作用[ 40,43 ]。在Clemons等[ 47 ]的体内实验中,对鼠的肺部和系统性曲霉菌病进行治疗时,米卡芬净与尼克霉素Z合用,与单用米卡芬净相比,能显著提高小鼠的存活率。与此相似,对临床分离的白念珠菌、烟曲霉菌、根霉菌(Rhizopus spp.)和粗球孢子菌(Coccidioides immitis),阿尼芬净与尼克霉素Z合用也能起到协同作用[ 40 ]。以上例子说明CHS抑制剂与棘白菌素类药物合用,均能起协同抗真菌效果,这可能是因为CHS抑制剂与棘白菌素类药物分别抑制细胞壁的几丁质和β-1,3-葡聚糖的合成,同时抑制2种真菌细胞壁骨架成分,对真菌细胞壁的完整性影响更大[ 40 ]。除了CHS抑制剂,CHS相关信号通路阻断剂和棘白菌素类药物合用,也具有成为协同抗真菌的潜力。在白念珠菌和烟曲霉菌中,钙调神经磷酸酶通路阻断剂和棘白菌素类药物合用能产生协同抗真菌的效果[ 6 ]

新的CHS抑制剂也在不断地被发现和合成。Yutani等[ 48 ]发现反式茴香脑能通过抑制CHS的活性起到抗真菌作用。Magellan等[ 49 ]发现2,3,5-tri-O-benzyl-d-ribose和2,5-functionalized imidazole均能抑制CHS的活性,通过麦胚凝集素(WGA)实验发现这2种化合物对灰霉的CHS有靶向抑制作用。

综上所述,几丁质是真菌细胞壁的必需成分,CHS是几丁质生物合成中的关键酶,其表达在各个水平受到调控。CHS和相关信号通路抑制剂有望成为抗真菌的靶标。

4 利益冲突

所有作者声明本文不涉及任何利益冲突。

参考文献
[1] Pfaller M A,Diekema D J. Epidemiology of invasive mycoses in North America[J].Crit Rev Microbiol,2010,36:1-53.
[2] Dranitsaris G,Khoury H.Posaconazole versus fluconazole or itraconazole for prevention of invasive fungal infections in patients undergoing intensive cytotoxic therapy for acute myeloid leukemia or myelodysplasia:a cost effectiveness analysis[J].Support Care Cancer,2011,19:1807-1813.
[3] Kathiravan M K,Salake A B,Chothe A S,Dudhe P B,Watode R P,Mukta M S,et al.The biology and chemistry of antifungal agents:a review[J].Bioorg Med Chem,2012,20:5678-5698.
[4] Pfaller M A.Antifungal drug resistance:mechanisms,epidemiology,and consequences for treatment[J].Am J Med,2012,125(1 Suppl):S3-S13.
[5] Latqé J P.The cell wall:a carbohydrate armour for the fungal cell[J].Mol Microbiol,2007,66:279-290.
[6] Lenardon M D,Munro C A,Gow N A.Chitin synthesis and fungal pathogenesis[J].Curr Opin Microbiol,2010,13:416-423.
[7] Merzendorfer H.The cellular basis of chitin synthesis in fungi and insects:common principles and differences[J].Eur J Cell Biol,2011,90:759-769.
[8] Franois J,Parrou J L.Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae[J].FEMS Microbiol Rev,2001,25:125-145.
[9] Watanabe H,Azuma M,Igarashi K,Ooshima H.Analysis of chitin at the hyphal tip of Candida albicans using calcofluor white[J].Biosci Biotechnol Biochem,2005,69:1798-1801.
[10] Niño-Vega G A,Carrero L,San-Blas G.Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases[J].Med Mycol,2004,42:51-57.
[11] Roncero C.The genetic complexity of chitin synthesis in fungi[J].Curr Genet,2002,41:367-378.
[12] Munro C A,Winter K,Buchan A,Henry K,Becker J M,Brown A J,et al.Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity[J].Mol Microbiol,2001,39:1414-1426.
[13] Bulawa C E,Miller D W,Henry L K,Becker J M.Attenuated virulence of chitin-deficient mutants of Candida albicans[J].Proc Natl Acad Sci USA,1995,92:10570-10574.
[14] Morcx S,Kunz C,Choquer M,Assie S,Blondet E,Simond-Côte E,et al.Disruption of Bcchs4,Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class Ⅵ chitin synthase (Bcchs6)[J].Fungal Genet Biol,2013(52):1-8.
[15] Blankenship J R,Fanning S,Hamaker J J,Mitchell A P.An extensive circuitry for cell wall regulation in Candida albicans[J].PLoS Pathog,2010,6:e1000752.
[16] Spellman P T,Sherlock G,Zhang M Q,Iyer V R,Anders K,Eisen M B,et al.Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[J].Mol Biol Cell,1998,9:3273-3297.
[17] Côte P,Hogues H,Whiteway M.Transcriptional analysis of the Candida albicans cell cycle[J].Mol Biol Cell,2009,20:3363-3373.
[18] Fujiwara M,Ichinomiya M,Motoyama T,Horiuchi H,Ohta A,Takagi M.Evidence that the Aspergillus nidulans class Ⅰ and class Ⅱchitin synthase genes,chsC and chsA,share critical roles in hyphal wall integrity and conidiophore development[J].J Biochem,2000,127:359-366.
[19] Rogg L E,Fortwendel J R,Juvvadi P R,Lilley A,Steinbach W J.The chitin synthase genes chsA and chsC are not required for cell wall stress responses in the human pathogen Aspergillus fumigatus[J].Biochem Biophys Res Commun,2011,411:549-554.
[20] Park B C,Park Y H,Park H M.Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans[J].FEMS Microbiol Lett,2003,220:241-246.
[21] Munro C A,Selvaggini S,de Bruijn I,Walker L,Lenardon M D,Gerssen B,et al.The PKC,HOG and Ca2+ signaling pathways coordinately regulate chitin synthesis in Candida albicans[J].Mol Microbiol,2007,63:1399-1413.
[22] Bermejo C,Rodríguez E,García R,Rodríguez-Peña J M,Rodríguez de la Concepción M L,Rivas C,et al.The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress[J].Mol Biol Cell,2008,19:1113-1124.
[23] Martínez-Rucobo F W,Eckhardt-Strelau L,Terwisscha van Scheltinga A C.Yeast chitin synthase 2 activity is modulated by proteolysis and phosphorylation[J].Biochem J,2009,417:547-554.
[24] Meissner D,Odman-Naresh J,Vogelpohl I,Merzendorfer H.A novel role of the yeast CaaX protease Ste24 in chitin synthesis[J].Mol Biol Cell,2010,21:2425-2433.
[25] Tam A,Nouvet F J,Fujimura-Kamada K,Slunt H,Sisodia S S,Michaelis S.Dual roles for Ste24p in yeast a-factor maturation:NH2-terminal proteolysis and COOH-terminal CAAX processing[J].J Cell Biol,1998,142:635-649.
[26] Fukuda K,Yamada K,Deoka K,Yamashita S,Ohta A,Horiuchi H.Class Ⅲ chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development[J].Eukaryot Cell,2009,8:945-956.
[27] Wloka C,Vallen E A,Thé L,Fang X,Oh Y,Bi E.Immobile myosin-Ⅱplays a scaffolding role during cytokinesis in budding yeast[J].J Cell Biol,2013,200:271-286.
[28] Oh Y,Schreiter J,Nishihama R,Wloka C,Bi E.Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle[J].Mol Biol Cell,2013,24:1305-1320.
[29] Starr T L,Pagant S,Wang C W,Schekman R.Sorting signals that mediate traffic of chitin synthase Ⅲ between the TGN/endosomes and to the plasma membrane in yeast[J].PLoS One,2012,7:e46386.
[30] Lenardon M D,Milne S A,Mora-Montes H M,Kaffarnik F A,Peck S C,Brown A J,et al.Phosphorylation regulates polarisation of chitin synthesis in Candida albicans[J].J Cell Sci,2010,123:2199-2206.
[31] Teh E M,Chai C C,Yeong F M.Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites[J].Cell Cycle,2009,8:2964-2974.
[32] Jakobsen M K,Cheng Z,Lam S K,Roth-Johnson E,Barfield R M,Schekman R.Phosphorylation of Chs2p regulates interaction with COPII[J].J Cell Sci,2013,126(Pt 10):2151-2156.
[33] Oh Y,Chang K J,Orlean P,Wloka C,Deshaies R,Bi E.Mitotic exit kinase Dbf2 directly phosphorylates chitin synthase Chs2 to regulate cytokinesis in budding yeast[J].Mol Biol Cell,2012,23:2445-2456.
[34] Reyes A,Sanz M,Duran A,Roncero C.Chitin synthaseⅢ requires Chs4p-dependent translocation of Chs3p into the plasma membrane[J].J Cell Sci,2007,120(Pt 12):1998-2009.
[35] Grabińska K A,Magnelli P,Robbins P W.Prenylation of Saccharomyces cerevisiae Chs4p affects chitin synthase Ⅲactivity and chitin chain length[J].Eukaryot Cell,2007,6:328-336.
[36] Liu H,Kauffman S,Becker J M,Szaniszlo P J.Wangiella (Exophiala) dermatitidis WdChs5p,a class Ⅴchitin synthase,is essential for sustained cell growth at temperature of infection[J].Eukaryot Cell,2004,3:40-51.
[37] Takeshita N,Yamashita S,Ohta A,Horiuchi H.Aspergillus nidulans class Ⅴ and Ⅵ chitin synthases CsmA and CsmB,each with a myosin motor-like domain,perform compensatory functions that are essential for hyphal tip growth[J].Mol Microbiol,2006,59:1380-1394.
[38] Tsuizaki M,Ohta A,Horiuchi H.Myosin motor-like domain of class Ⅵ chitin synthase CsmB of Aspergillus nidulans is not functionally equivalent to that of class Ⅴ chitin synthase CsmA[J].Biosci Biotechnol Biochem,2013,77:369-374.
[39] Tsuizaki M,Takeshita N,Ohta A,Horiuchi H.Myosin motor-like domain of the class Ⅵ chitin synthase CsmB is essential to its functions in Aspergillus nidulans[J].Biosci Biotechnol Biochem,2009,73:1163-1167.
[40] Walker L A,Gow N A,Munro C A.Fungal echinocandin resistance[J].Fungal Genet Biol,2010,47:117-126.
[41] Walker L A,Munro C A,de Bruijn I,Lenardon M D,McKinnon A,Gow N A.Stimulation of chitin synthesis rescues Candida albicans from echinocandins[J].PLoS Pathog,2008,4:e1000040.
[42] Plaine A,Walker L,Da Costa G,Mora-Montes H M,McKinnon A,Gow N A,et al.Functional analysis of Candida albicans GPI-anchored proteins:roles in cell wall integrity and caspofungin sensitivity[J].Fungal Genet Biol,2008,45:1404-1414.
[43] Fortwendel J R,Juvvadi P R,Perfect B Z,Rogg L E,Perfect R,Steinbach W J.Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin[J].Antimicrob Agents Chemother,2010,54:1555-1563.
[44] Antachopoulos C,Meletiadis J,Sein T,Roilides E, Walsh T J.Comparative in vitro pharmacodynamics of caspofungin,micafungin,and anidulafungin against germinated and nongerminated Aspergillus conidia[J].Antimicrob Agents Chemother,2008,52:321-328.
[45] Chamilos G,Lewis R E,Albert N,Kontoyiannis D P.Paradoxical effect of echinocandins across Candida species in vitro:evidence for echinocandin-specific and Candida species-related differences[J].Antimicrob Agents Chemother,2007,51:2257-2259.
[46] Sandovsky-Losica H,Shwartzman R,Lahat Y,Segal E.Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin,voriconazole or amphotericin B[J].J Antimicrob Chemother,2008,62:635-637.
[47] Clemons K V,Espiritu M,Parmar R,Stevens D A.Assessment of the paradoxical effect of caspofungin in therapy of candidiasis[J].Antimicrob Agents Chemother,2006,50:1293-1297.
[48] Yutani M,Hashimoto Y,Ogita A,Kubo I,Tanaka T,Fujita K.Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole[J].Phytother Res,2011,25:1707-1713.
[49] Magellan H,Boccara M,Drujon T,Soulié M C,Guillou C,Dubois J,et al.Discovery of two new inhibitors of Botrytis cinerea chitin synthase by a chemical library screening[J].Bioorg Med Chem,2013,21:4997-5003.