胰腺癌是一种死亡率极高的恶性肿瘤。根据美国国家癌症研究所统计,在癌症导致的死亡中胰腺癌排第4位[1]。 胰腺癌的致死率在过去40年里没有明显变化,仅在年龄超过70岁的人群中有所上升[1]。我国胰腺癌的发病率位于常见肿瘤的第10位,致死率位居第4[2]。然而,胰腺癌的早期发现会显著改善患者预后。胰腺癌原发灶<20 mm不伴有淋巴结和远处转移的患者,手术完全切除后5年生存率为30%~60%;原发灶<10 mm时,生存率可提高至75%[3]。尽管在CT、MRI以及EUS等引导下的穿刺活检提高了胰腺癌的临床诊断水平,但是它们在胰腺癌的早期筛查诊断,尤其是对<10 mm的胰腺良恶性病变仍无能为力[4]。所以,建立一种微创检查方法极为迫切,而将血清和粪便中的肿瘤标记物检测用于胰腺癌早期筛查诊断将会是一个理想途径。本文就目前胰腺癌肿瘤标记物的诊断应用研究做一综述。
1 肿瘤组织中的标记物 1.1大鼠肉瘤病毒癌基因同系物(kirsten rat sarcoma viral oncogene homolog,KRAS)KRAS突变是胰腺癌发生过程中的早期事件,在约90%的胰腺癌组织中存在此基因突变。研究发现KRAS突变在慢性胰腺炎中能促进胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)的发生[5]。由于KRAS的一个下游治疗靶基因——转录因子snail的自身降解可能成为一种潜在的策略,KRAS被研究用于胰腺癌诊断[6]。另有文献报道,在1×106拷贝数的野生型KRAS基因中可检出的突变型KRAS基因的最低拷贝数为10,突变型与野生型的比例达1105,检测灵敏度为0.001%,但其特异性近100%,显著高于常用的高分辨率熔解曲线分析的灵敏度(1%~0.1%)[7]。
1.2 肿瘤抑制基因在PDAC中,由于突变、缺失或启动子甲基化导致肿瘤抑制基因 (p16INK4)的功能丧失占胰腺癌病例的80%~95%[8]。此外,在其他恶性肿瘤如家族性恶性黑素瘤和乳腺癌中也发现了p16INK4突变[8]。但p16INK4的甲基化却有助于发现具有潜在恶性倾向的胰腺上皮细胞,可以此为诊断标记物在内镜下区分胰腺占位的良恶性[9]。然而,p16INK4联合其他分子标记物的诊断还未进入临床应用研究,仍需要更多的研究来确定其本身的灵敏度和特异度。
1.3 膜结合型粘蛋白4(membrane-bound mucin 4,MUC-4)MUC-4是一种跨膜的高分子糖蛋白,广泛表达于消化、呼吸及泌尿等系统的各种上皮细胞中,参与上皮细胞的分化及基质间的黏附。MUC-4在胰腺癌组织中常过度表达,从而破坏细胞黏附能力而引起肿瘤的转移。Jhala等[10]通过对超声内镜细针穿刺抽吸标本进行免疫组化检测,发现MUC-4在胰腺导管上皮内瘤变(pancreatic intraepithelial neoplasia,PanIN)和胰腺癌中呈现高表达,其表达水平与肿瘤的发展程度密切相关,而在慢性胰腺炎和正常胰腺组织中则无表达,其诊断胰腺癌的敏感性为91%,特异性为100%,对于早期筛查和鉴别诊断良恶性病变有重要意义。另外对胰头癌行胰十二指肠切除患者,MUC-4阴 性患者的术后生存期较MUC-4阳性患者长,提示MUC-4与预后有一定关联性[11]。
1.4 紧密连接蛋白(claudin)Claudin蛋白属于跨膜紧密连接蛋白,两个相邻的claudin相互作用构成了细胞间的连接骨架,其完整性的破坏可引起细胞问黏附的丢失和肿瘤的扩散转移。Nichols等[12]通过免疫组化检测发现claudin中的主要成员claudin-4在PanIN、原发性PDAC和侵袭性PDAC中高表达,而在正常胰腺导管上皮中低表达; Karanjawala等[13]发现claudin 18多在高分化胰腺癌中高表达,而在正常组织、慢性胰腺炎组织和低分化胰腺癌中不表达或低表达,这为胰腺癌的早期诊断和良恶性胰腺病变的鉴别提供了可能。
2 体液中的肿瘤标记物 2.1 糖链抗原(carbohydrate Antigen,CA19-9)CA19-9是由体外培养的人结肠癌细胞系SW116为免疫原,经杂交瘤技术制备出的抗消化道肿瘤的单克隆抗体,最早是用于结肠癌的诊断。目前CA19-9是监测胰腺癌的最常见标记物。然而,由于CA19-9的平均灵敏度和平均特异度均欠佳,所以其未成为最佳的胰腺癌筛查标记物[14]。Goonetilleke等[15]于2007年发现CA19-9的灵敏度为79%,特异度为82%。而CA19-9在肝硬化、胆管炎以及其他消化系统肿瘤如胃癌、食管癌和胆管癌中也会呈现阳性[16,17]。 血清中CA19-9的诊断价值在有家族性PDAC遗传倾向的患者中得到了证明,但对于其他PDAC患者无显著意义[18]。 目前发现在黄疸患者和非黄疸患者中CA19-9无显著差异[19]。 这些结论提示不宜将CA19-9作为胰腺癌首选的筛查手段。尽管CA19-9在PDAC的早期诊断中价值有限,但是可作为CT和EUS结果的补充[19]。
2.2 癌胚抗原(carcino embryonie antigen,CEA)CEA发现于1965年作为结肠癌标记物的糖蛋白,灵敏度为54%,特异度为79%[20]。它由胚胎细胞的有关基因调控,当肿瘤细胞的基因调控受损后,可重新启动有关胎儿蛋白的合成而导致肿瘤细胞过多合成和分泌CEA,使患者体内CEA含量升高。它是第一种用于胰腺癌检测的肿瘤标记物[21] 。CEA灵敏度、特异度不高并且其在乳腺癌、胃癌和结肠癌中表达也会升高,因而CEA不适于单独用作胰腺癌的诊断。但CEA联合EUS可有效地诊断胰腺粘蛋白样囊性损害[22]。
2.3 其他相关标记物在近20年间,许多标记物被用作胰腺癌的检测,但其表现都未能超过CA19-9。Koopmann等[23,24]用微阵列和ELISA测定的骨桥蛋白(osteopontin,OPN)用于胰腺癌诊断,发现巨噬细胞抑制的细胞因子-1(macrophage inhibitory cytokine-1,MIC-1)在分辨胰腺良恶性疾病方面与CA19-9相比有更高的特异性,但是在区分胰腺炎和胰腺癌患者时两者特异性并无差别。钙结合蛋白(calcium-binding protein,CBP)中的成员S100A6能很好地区别胰腺癌、导管内乳头状粘蛋白样肿瘤和慢性胰腺炎,但是无法区分胰腺癌和导管内乳头状粘蛋白样肿瘤[25]。Kolb等[26]指出胰高血糖素的升高和胰岛素的降低可以作为胰腺癌的诊断标记物。胰岛素与胰高血糖素的比值大于7.4时,区分胰腺癌和2型糖尿病的灵敏度和特异度分别为77%和69%。Hanas等[27]在胰腺癌患者血清中发现高表达的补体C3,并与炎症调节物质核转录因子κB(nuclear factor κB,NF-κB)共同参与炎症反应的发生,提示炎症反应在胰腺癌的发展中虽然有重要作用,但是特异性不高,在胰腺炎患者血清中也有表达,这在一定程度上限制了其的应用。
2.4 新出现的标记物肿瘤坏死因子(tumor necrosis factor,TNF)超家族的一位新成员——诱导增殖配体(a proliferation-inducing ligand,APRIL),被认为是一种潜在的标记物。血清中APRIL水平升高的胰腺癌患者其灵敏度和特异度分别为70.1%和85.5%[28]。APRIL联合CEA、CA19-9可提高其诊断灵敏度和特异度[19]。网格蛋白基因-1(plectin-1)被认为是用以区别PDAC、胰腺上皮内瘤变3期和慢性胰腺炎、胰腺上皮内瘤变1期和2期的标记物[29]。MUC-1被认为与PDAC侵袭进展中的早期事件有关,灵敏度和特异度分别为82%和95%[30]。Dutta等[31]报道热休克蛋白-70(heat shock protein-70,HSP70)是一种新出现的血清学标记物,可用来区分早期PDAC和慢性胰腺炎或正常人群,其灵敏度和特异度分别为74%和90%。Chang等[32]视糖蛋白结合蛋白-2(glycoprotein-binding protein-2,ULBP2)为一个潜在标记物,与正常人群相比,在胰腺癌患者的血清中ULBP-2水平升高,灵敏度和特异度分别为83.8%和73.9%。
2.5 端粒和端粒酶端粒是染色体末端的DNA重复序列,端粒酶可以通过阻止端粒的进行性缩短从而增强细胞的增殖能力形成永生化细胞,其表达与胰腺癌诊断密切相关。 Hashimoto等[33]采用胰液标本检测人端粒酶反转录酶(human telomerase reverse transcriptase,hTERT)的表达水平,发现其鉴别良恶性肿瘤的总准确率优于传统的胰液细胞学检测方法,采用术前检测胰液中hTERT的表达可以准确诊断胰腺癌或恶性导管内乳头状黏液瘤。
2.6 DNA的甲基化在胰腺癌发生发展过程中,出现多种基因的异常甲基化,位于启动子CpG岛的过度甲基化可以诱发抑癌基因如p16、上皮钙黏附蛋白等的沉默,这种甲基化异常在正常胰腺组织中并不存在,因此在胰液中采用甲基化特异性PCR方法检测异常甲基化的DNA有助于胰腺癌与良性病变的鉴别诊断。Matsubayashi 等[34]在胰液中通过甲基特异性PCR联合检测13种胰腺癌中易甲基化的基因,发现在胰腺癌中平均发生甲基化的基因数高于慢性胰腺炎组和正常对照组。提示联合检测DNA的甲基化水平有助于胰腺癌与健康人群和慢性胰腺炎的鉴别。
2.7 miRNAmiRNA是由22个核苷酸构成的非编码RNA,下调基因表达。其与靶mRNA的3′非翻译区结合进而通过mRNA降解和翻译抑制来下调靶基因的表达。近来许多报道指出异常miRNA的产生是 PanIN损害进程中的早期事件。有研究者表示miRNA足以区分良性胰腺组织、慢性胰腺炎和PDAC[35]。 miR216、miR217和miR155[36]、let-7 miRNA[37]、miR10a[38]、miR146a[39]、miR34、miR21[40]都仅在胰腺癌组织中表达。miR196a、miR190、miR186、miR221、miR222、miR200b、miR15b、miR95也被发现在胰腺癌中异常表达[41]。Wang等[42]发现miR21,miR210,miR155和miR196a在胰腺癌患者血浆中异常表达。 Park等[43]发现miRNA在PDAC中表达下调。 这些结果提示血浆miRNA可以作为一种灵敏而又特异的胰腺癌标记物。
3 粪便标记物Kisiel等[44]的研究显示异常甲基化的DNA可能作为PDAC的粪便检测标记物,类似于其在结肠癌中的应用。他们还发现,相对于无结肠上皮瘤变的对照组而言, 甲基化的骨形态发生蛋白-3(methylated bone morphogenetic protein-3,mBMP-3)在PDAC患者粪便中明显升高,其灵敏度和特异度分别为51%和90%。他们对许多患者进行研究,显示CA19-9与mBMP3的联合可以检出94%的患者和CA19-9阴性的患者,mBMP3可以鉴别大多数胰腺癌患者。这提示粪便检查以基因甲基化为手段可发现胰腺癌的早期损害。
4 小 结综上所述,能筛查出胰腺癌无症状个体和可以手术治疗的患者是新的肿瘤标记物应具备的能力。这些新标记物将提高胰腺癌的诊断灵敏度和特异度。基因研究方面的新进展让我们对胰腺癌的分子致病机制有了更深入的了解,这些进展也不断促使我们去发现新的诊断标记物。然而,由于基因组的复杂性和胰腺癌的众多致病机制尚未阐明,进一步的研究需要在对胰腺肿瘤基因的早期修饰有更深了解的基础上开展。只有获得无症状患者体内分子发生改变的准确信息,才能找到可靠的胰腺癌诊断标记物。Lowery等[45]提出的基于血清蛋白质组学的进展,使我们期待能够发现和证实可有效应用于临床的胰腺癌诊断标记物。最后,胰腺癌患者的不良预后也提出了对于临床早期诊断的有效标记物的迫切需求。
5 利益冲突所有作者声明本文不涉及任何利益冲突。
[1] | Siegel R, Naishadham D, Jemal A.Cancer statistics, 2012[J].CA Cancer J Clin, 2012, 62:10-29. |
[2] | 高 双, 徐雷鸣.晚期胰腺癌治疗的研究进展[J].胃肠病学杂志, 2012, 17:699-702. |
[3] | Chu D, Kohlmann W, Adler D G.Identification and screening of individuals at increased risk for pancreatic cancer with emphasis on known environmental and genetic factors and hereditary syndromes[J].JOP, 2010, 11:203-212. |
[4] | Kaur S, Baine M J, Jain M, Sasson A R, Batra S K.Early diagnosis of pancreatic cancer:challenges and new developments[J].Biomark Med, 2012, 6:597-612. |
[5] | Boadas J, Mora J, Urgell E, Puig P, Roca M, Cuss X, et al.Clinical usefulness of K-ras gene mutation detection and cytology in pancreatic juice in the diagnosis and screening of pancreatic cancer[J].Eur J Gastroenterol Hepatol, 2001, 13:1153-1159. |
[6] | Lee S H, Lee S J, Chung J Y, Jung Y S, Choi S Y, Hwang S H, et al.p53, secreted by K-Ras-Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker[J].Oncogene, 2009, 28:2005-2014. |
[7] | 顾俊骏, 高 军, 路 华, 李兆申.K-ras基因突变的定量检测在胰腺疾病诊断中的应用[J].世界华人消化杂志, 2011, 19:94-97. |
[8] | Rozenblum E, Schutte M, Goggins M, Hahn S A, Panzer S, Zahurak M, et al.Tumor-suppressive pathways in pancreatic carcinoma[J].Cancer Res, 1997, 57:1731-1734. |
[9] | Salek C, Benesova L, Zavoral M, Nosek V, Kasperova L, Ryska M, et al.Evaluation of clinical relevance of examining K-ras, p16 and p53 mutations along with allelic losses at 9p and 18q in EUS-guided fine needle aspiration samples of patients with chronic pancreatitis and pancreatic cancer[J].World J Gastroenterol, 2007, 13:3714-3720. |
[10] | Jhala N, Jhala D, Vickers S M, Eltoum I, Batra S K, Manne U, et al.Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates:a translational research application[J].Am J Clin Pathol, 2006, 126:572-579. |
[11] | Westgaard A, Schjolberg A R, Cvancarova M, Eide T J, Clausen O P, Cladhaug I P, et al.Differentiation markers in pancreatic head adenocarcinomas:MUC1 and MUC4 expression indicates poor prognosis in pancreatobiliary differentiated tumors[J].Histopathology, 2009, 54:337-347. |
[12] | Nichols L S, Ashfaq R, Iacobuzio-Donahue C A.Claudin 4 protein expression in primary and metastatic pancreatic cancer:support for use as a therapeutic target[J].Am J Clin Pathol, 2004, 121:226-230. |
[13] | Karanjawala Z E, Illei P B, Ashfaq R.New markers of pancreatic cancer identified through differential gene expression analyses:claudin 18 and annexin A8[J].Am J Surg Pathol, 2008, 32:188-196. |
[14] | Brand R E, Nolen B M, Zeh H J, Allen P J, Eloubeidi M A, Goldberg M, et al.Serum biomarker panels for the detection of pancreatic cancer[J].Clin Cancer Res, 2011, 17:805-816. |
[15] | Goonetilleke K S, Siriwardena A K.Systematic review of carbohydrate antigen (CA19-9) as a biochemical marker in the diagnosis of pancreatic cancer[J].Eur J Surg Oncol, 2007, 33:266-270. |
[16] | Locker G Y, Hamilton S, Harris J, Jessup J M, Kemeny N, Macdonald J S, et al.ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer[J].J Clin Oncol, 2006, 24:5313-5327. |
[17] | Duffy M J, Sturgeon C, Lamerz R, Haglund C, Holubec V L, Klapdor R, et al.Tumor markers in pancreatic cancer:a European Group on Tumor Markers (EGTM) status report[J].Ann Oncol, 2011, 21:441-447. |
[18] | Canto M I, Hruban R H, Fishman E K, Kamel I R, Schulick R, Zhang Z, et al.Frequent detection of pancreatic lesions in a symptomatic high-risk individuals[J].Gastroenterology, 2012, 142:796-804. |
[19] | Herreros-villanueva M, Gironella M, Castells A, Bujanda L.Molecular markers in pancreatic cancer diagnosis[J].Clin Chim Acta, 2013, 418:22-29. |
[20] | Gold P, Freedman S O.Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques[J].J Exp Med, 1965, 121:439-462. |
[21] | Carpelan-Holmstrom M, Louhimo J, Stenman U H, Alfthan H, Haglund C.CEA, CA19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers[J].Anticancer Res, 2002, 22:2311-2316. |
[22] | Brugge W R, Lewandrowski K, Lee-Lewandrowski E, Centeno B A, Szydlo T, Regan S, et al.Diagnosis of pancreatic cystic neoplasms:a report of the cooperative pancreatic cyst study[J].Gastroenterology, 2004, 126:1330-1336. |
[23] | Koopmann J, Fedarko N S, Jain A, Maitra A, Lacobuzio-Donahue C, Rahman A, et al.Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma[J].Cancer Epidemiol Biomarkers Prev, 2004, 13:487-491. |
[24] | Koopmann J, Rosenzweig C N, Zhang Z, Canto M I, Brown D A, Hunter M, et al.Serum markers in patients with resectable pancreatic adenocarcinoma:macrophage inhibitory cytokine 1 versus CA19-9[J].Clin Cancer Res, 2006, 12:442-446. |
[25] | Ohuchida K, Mizumoto K, Yu J, Yamaguchi H, Konomi H, Nagai E, et al.S100A6 is increased in a stepwise manner during pancreatic carcinogenesis:clinical value of expression analysis in 98 pancreatic juice samples[J].Cancer Epidemiol Biomarkers Prev, 2007, 16:649-654. |
[26] | Kolb A, Rieder S, Born D, Giese N A, Giese T, Rudofsky G, et al.Glucagon/insulin ratio as a potential biomarker for pancreatic cancer in patients with new-onset diabetes mellitus[J].Cancer Biol Ther, 2009, 8:1527-1533. |
[27] | Hanas J S, Hocker J R, Cheung J Y, Larabee J L, Lerner M R, Lightfoot S A, et al.Biomarker identification in human pancreatic cancer sera[J].Pancreas, 2008, 36:61-69. |
[28] | Wang F, Chen L, Ding W, Wang G, Wu Y, Wang J, et al.Serum APRIL, a potential tumor marker in pancreatic cancer[J].Clin Chem Lab Med, 2011, 49:1715-1719. |
[29] | Bausch D, Thomas S, Mino-Kenudson M, Fernández-del C C, Bauer T W, Williams M, et al.Plectin-1 as a novel biomarker for pancreatic cancer[J].Clin Cancer Res, 2011, 17:302-309. |
[30] | Gold D V, Karanjawala Z, Modrak D E, Goldenberg D M, Hruban R H.PAM4-reactive MUC1 is a biomarker for early pancreatic adenocarcinoma[J].Clin Cancer Res, 2007, 13:7380-7387. |
[31] | Dutta S K, Girotra M, Singla M, Dutta A, Otis S F, Nair P P, et al.Serum HSP70:a novel biomarker for early detection of pancreatic cancer[J].Pancreas 2012, 41:530-534. |
[32] | Chang Y T, Wu C C, Shyr Y M, Chen T C, Hwang T L, Yeh T S, et al.Secretome-based identification of ULBP2 as a novel serum marker for pancreatic cancer detection[J].PLoS One, 2011, 6:e20029. |
[33] | Hashimoto Y, Murakami Y, Uemura K, Hayashidani Y, Sudo T, Ohge H, et a1.Detection of human telomerase reverse transcriptase(hTERT) expression in tissue and pancreatic juice from pancreatic cancer[J].Surgery, 2008, 143:113-125. |
[34] | Matsubayashi H, Canto M, Sato N, Klein A, Abe T, Yamashita K, et al.DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease[J].Cancer Res, 2006, 66:1208-1217. |
[35] | Szafranska A E, Doleshal M, Edmunds H S, Gordon S, Luttges J, Munding J B, et al.Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues[J].Clin Chem, 2008, 54:1716-1724. |
[36] | Gironella M, Seux M, Xie M J, Cano C, Tomasini R, Gommeaux J, et al.Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development[J].Proc Natl Acad Sci U S A, 2007, 104:16170-16175. |
[37] | Torrisani J, Bournet B, du Rieu M C, Bouisson M, Sougue A, Escourrou J, et al.let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression[J].Hum Gene Ther, 2009, 20:831-844. |
[38] | Weiss F U, Marques I J, Woltering J M, Vlecken D H, Aghdassi A, Partecke L I, et al.Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer[J].Gastroenterology, 2009, 137:2136-2145. |
[39] | Li Y, Vandenboom T G, Wang Z, Kong D, Ali S, Philip P A, et al.miR-146a suppresses invasion of pancreatic cancer cells[J].Cancer Res, 2010, 70:1486-1495. |
[40] | Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M.Bloomston M.MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival[J].J Gastrointest Surg, 2008, 12:2171-2176. |
[41] | Zhang Y, Li M, Wang H, Fisher W E, Lin P H, Yao Q, et al.Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis[J].World J Surg, 2009, 33:698-709. |
[42] | Wang J, Chen J, Chang P, LeBlanc A, Li D, abbruzzesse J L, et al.MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease[J].Cancer Prev Res(Phila), 2009, 2:807-813. |
[43] | Park J Y, Helm J, Coppola D, Kim D, Malafa M, Kim S J.MicroRNAs in pancreatic ductal adenocarcinoma[J].World J Gastroenterol, 2011, 17:817-827. |
[44] | Kisiel J B, Yab T C, Taylor W R, Chari S T, Petersen G M, Mahoney D W, et al.Stool DNA testing for the detection of pancreatic cancer:assessment of methylation marker candidates[J].Cancer, 2012, 118:2623-2631. |
[45] | Lowery M A, O'Reilly E M.Pancreatic cancer:the role of molecular markers in diagnosis and management[J].Clin Adv Hematol Oncol, 2011, 9:900-908. |