沉积学报  2020, Vol. 38 Issue (3): 610−619

扩展功能

文章信息

钟安宁, 周翔
ZHONG AnNing, ZHOU Xiang.
松辽盆地徐家围子断陷沙河子组物源与沉积体系分析
Provenance and Sedimentary System Analysis of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin
沉积学报, 2020, 38(3): 610-619
ACTA SEDIMENTOLOGICA SINCA, 2020, 38(3): 610-619
10.14027/j.issn.1000-0550.2019.060

文章历史

收稿日期:2019-04-15
收修改稿日期: 2019-06-19
松辽盆地徐家围子断陷沙河子组物源与沉积体系分析
钟安宁 , 周翔     
中国石油大庆油田勘探开发研究院, 黑龙江大庆 163712
摘要: 沙河子组是松辽盆地北部深层重要的天然气勘探目的层,复杂多变的物源体系制约了研究区沉积体系刻画和致密气储层预测。综合碎屑岩骨架矿物、砾石成分、重矿物组合和地震反射特征分析,对沙河子组母岩性质和物源方向进行系统研究。结果表明:1)徐家围子断陷沙河子组可分为安达凸起、中央古隆起、徐东斜坡三大物源区和安达、徐西、宋站、徐东四个物源体系;2)不同物源体系的物源方向存在差异,其中安达地区受西北安达凸起物源影响,物源方向以南西向、东西向为主;徐西凹陷受西部中央古隆起物源影响,物源方向以东西向为主;宋站地区和徐东凹陷受东部徐东斜坡物源影响,物源方向以东西向、北东向为主;3)断裂活动影响沉积物充填方式、物源供给决定沉积相发育规模、地貌特征控制沉积体延伸方向,断裂、物源和地貌特征的联合作用,造成断陷西侧陡坡带安达和徐西物源体系以扇三角洲沉积为主,而东部斜坡区宋站和徐东物源体系则主要发育辫状河三角洲。
关键词: 物源分析    重矿物    沉积体系    沙河子组    徐家围子断陷    
Provenance and Sedimentary System Analysis of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin
ZHONG AnNing , ZHOU Xiang     
Exploration and Production Research Institute, Daqing Oilfield CNPC, Daqing, Heilongjiang 163712, China
Foundation: National Science and Technology Major Project, No. 2016ZX05047-001; Science and Technology Major Program of CNPC, No. 2016E-02
Abstract: The Shahezi formation is one of the most important exploration targets in the northern Songliao Basin, where complicated and shifting provenance severely restricts the study of sedimentary systems and the forecast of tight gas reservoirs. We check the properties of the parent rock and provenance direction system, based on the data for the mineral composition of clasolite, conglomerate component, combination of heavy minerals, and seismic reflection features. The result is that there are three provenances, such as the Anda uplift in southwest, paleo-central uplift in the west, and Xudong slope in the east, and the parent rock properties are different from each other. The sedimentary facies in the Anda area are influenced by the Anda uplift in the southwest, while the source direction is mainly southwest to northeast and west to east. The provenance of the Xuxi Sag is mainly from the paleo-central uplift in the west, and the source direction is west to east. The Songzhan area and Xudong sag are influenced by the Xudong slope in the east, and the source directions are mainly northeast to southwest and east to west. The sediments on the western side, which is the steep slope belt of the fault depression, are mainly fan-delta deposits, while sediments on the east gentle slope are mainly braided river delta deposits. The sedimentary system of the Shahezi Formation is a result of the union of fault activity, provenance, and geomorphic features, while the sediment filling system is influenced by fault activity, sediment scale depends on the provenance supply, and sediment direction is determined by geomorphic features.
Key words: provenance analysis    heavy mineral    sedimentary system    Shahezi Formation    Xujiaweizi fault depression    
0 引言

早白垩世沙河子组是松辽盆地北部深层主要含气层段,储层以致密砂砾岩为主,储层的形成受沉积、成岩作用控制明显[1]。因此深入分析沙河子组物源方向及不同物源体系对沉积体的控制,对于砂砾岩储层预测就显得尤为重要。沉积物源研究是盆地分析的重要内容,包括物源区位置、母岩性质、沉积物搬运途径及演化过程等,对原型盆地恢复、岩相古地理再造、沉积体系编图、储层预测及评价等具有重要意义[2]。近年来随着测试分析手段的提高,物源分析方法也日趋多样化,形成了以碎屑岩骨架颗粒组成为主的轻矿物分析法、包括单矿物分析和重矿物组合分析的重矿物分析法、以磷灰石裂变径迹法和同位素测年法为手段的地质年代学研究方法、由古地貌分析和古流向分析组成的沉积体系研究法和常量、微量元素测试的地球化学分析法等多种方法体系[3-5],物源分析也由单一方法向多种方法综合运用发展。长期以来沙河子组被作为盆地深层主要的烃源岩层[6],而忽略了其蕴含的丰富的致密气资源,近年来在徐探1、徐深401井中发现高产工业气流,揭开了沙河子组致密气勘探序幕。但对徐家围子断陷不同构造单元物源性质及方向缺乏系统认识,严重制约了研究区致密气勘探的推进。本研究通过39口井碎屑岩骨架颗粒成分、砾岩成分和重矿物组合特征分析,在不同构造单元母岩性质对比的基础上划分物源体系;通过地震特殊反射特征分析、下切谷刻画和轻重矿物分布特征分析,明确各物源体系内物源特征及其对沉积体的控制,为沙河子组沉积体刻画、储层预测提供地质依据。

1 区域地质概况

徐家围子断陷是位于松辽盆地北部深层的一个近南北向展布的次级断陷,西以徐西、宋西断裂为界与中央古隆起相隔,向东以徐东断裂为界呈斜坡状超覆于过渡基底上(图 1)。区内发育多条控陷断裂和边界断层,其中徐西、宋西断裂是断陷西侧的两条低角度正断层,也是研究区主要的控陷断裂,控制了徐家围子断陷的发生、发展和消亡;徐东断裂带是断陷东部边界,由沿徐东斜坡带走向的一系列花状断层组成,是箕状断陷斜坡因挠曲强度过大而发生的同沉积断层;徐中断裂为徐西、宋西转换断层晚期成熟破碎的派生断层,在升平低凸起处将徐西、宋西断裂错开,形成研究区东西分带、南北凹隆相间的构造格局。沙河子组是盆地初始断陷期沉积的一套以杂色砾岩、含砾砂岩、粗砂岩为主,含炭质泥岩、暗色泥岩的湖相沉积,自下而上可分为SQ1、SQ2、SQ3和SQ4四个三级层序。岩芯和录井资料分析表明,断陷西侧陡坡带以扇三角洲沉积为主,局部见湖底扇;沉积物粒度较粗,以砾岩、粗砂岩为主,岩芯中常见砾岩、砂岩和泥岩混杂堆积;碎屑颗粒分选和磨圆差,部分呈棱角、次棱角状,甚至保留母岩结构特征;粒度较粗的砾岩、粗砂岩常呈块状层理,沉积物底部常见冲刷面和砾石、泥砾等滞留沉积,其中砾石呈叠瓦排列(图 1b)。断陷东侧缓坡带则以辫状河三角洲沉积为主,沉积物粒度较细、分选较好,以中、细砂岩为主,偶见细砾岩;以辫状河三角洲前缘最发育,其中前缘分流河道沉积物为厚层碎屑支撑中、粗砂岩,具正递变层理,底部常见冲刷面,分流河道间以粉砂岩、泥岩沉积为主,局部为沼泽环境,岩芯中常见碳化植物根茎,生物扰动构造发育;前缘河口坝以粉砂—中细砂岩沉积为主,小型交错层理、平行层理和变形层理发育(图 1c)。断陷中心则以滨浅湖、半深湖—深湖相泥质沉积为主。

图 1 徐家围子断陷构造单元划分(a)和达深4井(b)、宋深4井(c)沉积相图 Fig.1 Tectonic area distribution for the Xujiaweizi fault depression and sedimentary facies of Dashen 4 and Songshen 4
2 物源区母岩性质 2.1 碎屑岩骨架颗粒组成

碎屑组分及其组合特征与物源区关系密切,相同母岩区碎屑颗粒组成存在内在联系,因此利用碎屑矿物组成特征可进行物源分区[7]。279个样品薄片观察表明,沙河子组砂岩以长石岩屑砂岩(67.44%)和岩屑砂岩(16.28%)为主,含少量岩屑长石砂岩(8.53%)和长石砂岩(7.75%)。不同构造单元沙河子组砂岩骨架矿物组成具有一定差异,其中安达地区和徐西凹陷骨架颗粒组成表现为岩屑 > 长石 > 石英;而宋站地区和徐东凹陷则表现为岩屑 > 石英≥长石的特征。岩屑组成上,安达地区和徐西凹陷全部为火山岩岩屑,宋站地区和徐东凹陷岩屑以火山岩和变质岩为主,含少量沉积岩岩屑,表明沙河子组物源具多元性特征(图 2)。

图 2 徐家围子断陷沙河子组碎屑岩骨架矿物成分分布图 Fig.2 Distribution of mineral compositions from the Shahezi Formation in the Xujiaweizi fault depression
2.2 砾石成分

砾石成分变化是确定物源的直接证据,通过砾石成分可直接反应物源区母岩性质[8]。21口井84个岩芯样品砾石成分统计表明,安达地区砾石成分以流纹岩+英安岩组合为主,徐西凹陷砾石成分组合为英安岩+流纹岩+安山岩,宋站地区和徐东凹陷物源砾石成分则以高含量的中性火山岩和变质岩为特征,表现为安山岩+变质岩+流纹岩组合(图 3)。虽然安达地区和徐西凹陷物源砾石成分均以酸性流纹岩为主,但徐西凹陷砾石中英安岩、安山岩等中基性火山岩含量高于安达地区。

图 3 徐家围子断陷沙河子组砾石成分分布图 Fig.3 Conglomerate component from the Shahezi Formation in the Xujiaweizi fault depression
2.3 重矿物组合特征

重矿物由于自身稳定性高,相对其他碎屑沉积物受风化、搬运和成岩作用影响较小,因此,同一来源的沉积物往往具有相同的重矿物组合特征,可作为物源分区的重要标志[9-10]。286个样品重矿物代表值法进行重矿物组合分析结果表明[11],研究区重矿物总体以超稳定重矿物(43.92%)和稳定重矿物(42.86%)为主,不稳定重矿物含量仅13.22%。安达地区以磁黄铁矿、绿泥石和锆石等稳定、超稳定重矿物为主,重矿物组合为磁黄铁矿+锆石+绿泥石+白钛石(图 4),同时含少量黑云母、电气石和绿帘石,表明其物源母岩主要为酸性火山岩;徐西凹陷以磁铁矿、锆石等稳定重矿物为主,重矿物组合为磁铁矿+锆石+绿泥石+磁黄铁矿+白钛石,含少量黑云母、绿帘石、磷灰石等不稳定重矿物,表明其物源母岩为酸性火山岩和中基性火山岩;宋站地区和徐东凹陷均以锆石、磁黄铁矿、白钛石等超稳定矿物为主,重矿物组分分别为锆石+磁黄铁矿+白钛石和锆石+白钛石+磁铁矿+磁黄铁矿+黑云母,含不稳定重矿物磷灰石、绿泥石、绿帘石和电气石含量较高,表明其母岩为中基性火山岩和变质岩。安达地区和徐西凹陷物源母岩存在差异,分别来自不同的物源区,宋站地区和徐东凹陷物源母岩类似,应属同一物源区,这与碎屑岩骨架颗粒组成和砾石成分分析结果一致。结合古地貌特征将研究区划分为西北部安达凸起、西部中央古隆起、东部徐东斜坡等三个物源区和安达地区、宋站地区、徐西凹陷和徐东凹陷等四个物源体系。

图 4 徐家围子断陷沙河子组重矿物组合分布 Fig.4 Combination of heavy mineral assemblages from the Shahezi Formation in the Xujiaweizi fault depression
3 物源方向及搬运途径 3.1 地震反射特征分析

地震反射特征对沉积物源体系识别具有重要意义[12],地震前积反射特征和外部反射结构可以判断物源的进积方向和距离物源的远近,而沟谷体系可指示物源补给通道[13]。研究区各构造单元沉积体反射特征具有明显的规律性,断陷西侧陡坡带安达地区、徐西凹陷发育具丘状外形的前积结构(图 5a),常见丘状空白、丘状乱岗状反射,反射特征表明安达地区和徐西凹陷地层在徐西断裂附近厚度最大,呈自南西向北东和自东向西减薄;而断陷东侧缓坡带宋站地区和徐东凹陷以楔状发散前积反射为主(图 5b),剖面可见完整的楔形,部分为席状披覆杂乱反射,平面呈片状向西延伸并逐渐减薄,其中宋站地区地层自北东向南西减薄,徐东凹陷地层整体自东向西减薄,南部徐深44井区地层自南东向北西减薄,表明该区存在北东、近东西向和南东向多个物源方向。

图 5 徐家围子断陷典型物源响应地震反射结剖面构和下切谷特征(剖面位置见图 2 Fig.5 Seismic reflection feature of temperature provenance in the Xujiaweizi fault depression

沟谷体系中下切谷是由河流体系相应于海平面相对下降而向盆地方向延伸所形成的深切水道,是低位域时期沉积物搬运的重要通道[14]。研究区地震剖面上可识别出明显的沟谷、河道充填,表现为与下伏地层不协调的接触,在垂直走向的地震剖面上表现为顶平底凹的对称或不对称“U”字型或“V”字型特征(图 5cd),谷内主要表现为充填型沉积结构,向上表现出明显的上超或发散充填地震相特征。断陷西侧安达地区达深303和徐西凹陷芳深901井下切谷分别由北西向南东、由西向东延伸,而东侧宋站地区宋3、徐东凹陷尚深3井下切谷则由北东向南西、由东向西延伸。下切谷作为沙河子碎屑沉积物搬运的主要通道,平面上与河道走向特征一致,表明下切谷对沉积体系发育具有重要控制作用。

3.2 重矿物分布特征

ZTR指数是重矿物成熟度的度量,由锆石、电气石和金红石组成的透明矿物的百分含量,可反映物源区的位置和沉积物搬运方向[15]。通常ZTR指数越大,则沉积物离物源越远。沙河子组重矿物ZTR指数总体上由断陷边部向断陷中心呈增加趋势(图 6),其中安达地区呈由南西向北东逐渐增大趋势,发育达深3、达深2和汪深1井区等3个相对高值区,结合反射特征表明安达地区以南西向物源为主;徐西凹陷ZTR指数呈由西向东增加趋势,在芳深101、徐深601、徐深401井区存在3个相对高值区,且与下切谷具有较好对应,判断徐西凹陷物源以近东西向为主;宋站地区ZTR呈由北东向南西增加趋势,在达深6、达深15、宋深2、宋深3井区出现ZTR高值区,表明宋站地区以北东向物源为主;徐东凹陷在肇深5和徐深11等多个井区出现ZTR高值区,呈由东向西和由南东向北西逐渐增加趋势,表明徐东凹陷物源方向总体以近东西向为主,局部存在南东向物源。

图 6 徐家围子断陷沙河子组ZTR等值线图 Fig.6 Contour of ZTR index from the Shahezi Formation in the Xujiaweizi fault depression
4 物源对沉积体系控制作用 4.1 西北和西部物源控制下的沉积特征

同沉积断层的差异性活动,通过控制了沙河子组物源方向、下切谷和坡折带等地貌的形成,进而影响沙河子组沉积物充填;而物源供给决定沉积相发育规模,下切谷和坡折带作为沉积物输送通道和沉积区边界控制沉积体的延伸方向和形态[16]。徐家围子断陷沙河子组沉积总体可分为西侧陡坡带沉积区和东侧缓坡带沉积区,不同物源体系断裂活动方式、物源规模和古地貌特征存在差异,进而控制各物源体系内沉积体类型和规模。

沙河子沉积期,断陷盆地发育进入强烈伸展断陷活动期。控陷的宋西和徐西断裂活动强裂,并控制了安达地区和徐西凹陷两个箕状断陷的形成,强烈的断裂活动在其下降盘形成由断崖控制的负向沉积地貌单元,是沉积物堆积的主要场所。钻井揭示安达地区和徐西凹陷沙河子组沉积物主要分布在宋西、徐西断裂下降盘,靠近断裂附近地层厚度和沉积物粒度最大;地震剖面上沉积体常呈丘状外形,集中在断裂下降盘,指示沉积体为厚层块状扇体(图 7a);内部反射结构以前积型为主,表明沉积物推进的距离较短。但由于西北和西部物源规模较小,安达地区和徐西凹陷三角洲扇体规模小、相带窄(图 8)。安达地区和徐西凹陷下切谷以V字型谷为主,规模小,主要呈北西、北东向分布在安达地区达深3、达深401井和徐西凹陷芳深10、芳深701和芳深901井附近,平面上扇体与下切谷具有良好的对应关系,同时随断裂活动而不断迁移,造成不同层序内安达地区和徐西凹陷三角洲的迁移,地震相也表明,安达地区和徐西凹陷沙河子组以丘状前积、低连续、高频率地震相最为常见,表明扇体横向变化迅速。

图 7 徐家围子断陷达深3—达6井(a)和达深401—宋3井(b)沙河子组沉积剖面图(剖面位置见图 2 Fig.7 Sedimentary facies of the Shahezi Formation from Ds401 to S3 in the Xujiaweizi fault depression
图 8 徐家围子断陷沙河子组SQ3层序沉积相图 Fig.8 Sedimentary facies of the SQ3 Shahezi Formation in the Xujiaweizi fault depression
4.2 东部物源控制下的沉积特征

徐家围子断陷东侧缓坡带物源主要来自东部徐东斜坡,被宋站低凸起分隔为宋站地区和徐东凹陷两个物源体系。沙河子组沉积期徐东断裂活动性弱,沉积体发育受断裂活动影响较小,而主要受控于地貌特征和物源供给的联合作用。徐东斜坡区起伏较小,发育挠曲坡折带和沉积坡折带,作为沉积物分布的边界,在坡折带下部有明显的地层增厚,地震剖面上宋站地区和徐东凹陷沙河子组表现为楔状发散,指示沉积体位于断陷斜坡边缘。宋站地区和徐东凹陷下切谷发育稳定、继承性强,剖面上呈U字型,输砂能力强,主要呈北东、近东西向分布在宋站地区达深16、宋深5井和徐东凹陷尚深3、尚深2、徐深11和朝深1井附近,是东侧斜坡区沉积物输送的重要通道,沿下切谷延伸方向形成多个条带状储集体。由于徐东斜坡物源规模大,在充足的物源供给条件下沉积物沿下切谷向前延伸直至断陷中心,相应的沉积体规模也更大。钻井资料表明,宋站地区和徐东凹陷沙河子组沉积物沿缓坡顺层沉积,成层性较好,平面呈片状展布且延伸距离远,表现出同相轴清晰连续的特征,常见楔状发散、高连续、低频率地震相,进一步表明砂体横向连续性好。

5 结论

(1)研究区发育西北部安达凸起、西部古中央隆起和东部徐东斜坡等三大物源区,西北部安达凸起物源母岩以酸性火山岩为主,西部古中央隆起带物源以中酸性、中基性火山岩为主,东部徐东斜坡以中基性火山岩和变质岩为主。

(2)安达地区受西北安达凸起物源影响,以南西向物源为主;徐西凹陷受西部中央古隆起物源影响,物源方向以东西向为主;宋站地区受徐东斜坡影响,以北东向物源为主;徐东凹陷主要发育近东西向和南东向物源。

(3)断裂活动影响沉积物充填方式、物源供给决定沉积相发育规模、地貌特征控制沉积体延伸方向,断裂、构造和地貌特征的联合作用,造成断陷西侧陡坡带安达和徐西物源体系以扇三角洲沉积为主,而东部斜坡区宋站和徐东物源体系则主要发育辫状河三角洲的沉积特征。

致谢 衷心感谢评审专家提出的宝贵修改意见,对本文的改进起到极大的帮助。

参考文献
[1]
白雪峰, 梁江平, 张文婧, 等. 松辽盆地北部深层天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1443-1454. [Bai Xuefeng, Liang Jiangping, Zhang Wenjing, et al. Geologic conditions, resource potential and exploratory direction of deep gas in the northern Songliao Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1443-1454. doi: 10.11764/j.issn.1672-1926.2018.08.006]
[2]
苏朝光, 仲维苹. 准噶尔盆地车排子凸起新近系沙湾组物源分析[J]. 石油与天然气地质, 2010, 31(5): 648-655. [Su Chaoguang, Zhong Weiping. An analysis on the provenance of the Neogene Shawan Formation in the Chepaizi Uplift of the Junggar Basin[J]. Oil & Gas Geology, 2010, 31(5): 648-655.]
[3]
赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3): 409-415. [Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415. doi: 10.3969/j.issn.1000-0550.2003.03.007]
[4]
Roser B P, Korsch R J. Provenance signatures of sandstonemudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[5]
Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments:Review and outlook[J]. Sedimentary Geology, 2004, 171(1/2/3/4): 1-11.
[6]
王民, 孙业峰, 王文广, 等. 松辽盆地北部徐家围子断陷深层烃源岩生气特征及天然气资源潜力[J]. 天然气地球科学, 2014, 25(7): 1011-1018. [Wang Min, Sun Yefeng, Wang Wenguang, et al. Gas generation characteristics and resource potential of the deep source rock in Xujiaweizi fault depression, northern Songliao Basin[J]. Natural Gas Geoscience, 2014, 25(7): 1011-1018.]
[7]
杨华, 刘自亮, 朱筱敏, 等. 鄂尔多斯盆地西南缘上三叠统延长组物源与沉积体系特征[J]. 地学前缘, 2013, 20(2): 10-18. [Yang Hua, Liu Ziliang, Zhu Xiaomin, et al. Provenance and depositional systems of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. Earth Science Frontiers, 2013, 20(2): 10-18.]
[8]
单祥, 邹志文, 孟祥超, 等. 准噶尔盆地环玛湖地区三叠系百口泉组物源分析[J]. 沉积学报, 2016, 34(5): 930-939. [Shan Xiang, Zou Zhiwen, Meng Xiangchao, et al. Provenance analysis of Triassic Baikouquan Formation in the area around Mahu Depression, Junggar Basin[J]. Acta Sedimentologica Sinica, 2016, 34(5): 930-939.]
[9]
Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea:Integration of heavy mineral, mineral chemical and zircon age data[J]. Sedimentary Geology, 2005, 182(1/2/3/4): 3-28.
[10]
袁晓蔷, 姚光庆, 姜平, 等. 北部湾盆地乌石凹陷东部流沙港组物源分析[J]. 地球科学, 2017, 42(11): 2040-2054. [Yuan Xiaoqiang, Yao Guangqing, Jiang Ping, et al. Provenance analysis for Liushagang Formation of Wushi Depression, Beibuwan Basin, the South China Sea[J]. Earth Science, 2017, 42(11): 2040-2054.]
[11]
操应长, 周磊, 张玉明, 等. 松辽盆地十屋断陷十屋地区营城组物源体系探讨[J]. 沉积学报, 2011, 29(6): 1096-1104. [Cao Yingchang, Zhou Lei, Zhang Yuming, et al. Discussion on provenance systems in Yingcheng Formation in Shiwu area of Shiwu fault depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2011, 29(6): 1096-1104.]
[12]
李思田, 潘元林, 陆永潮, 等. 断陷湖盆隐蔽油藏预测及勘探的关键技术:高精度地震探测基础上的层序地层学研究[J]. 地球科学——中国地质大学学报, 2002, 27(5): 592-598. [Li Sitian, Pan Yuanlin, Lu Yongchao, et al. Key technology of prospecting and exploration of subtle traps in lacustrine fault basins:Sequence stratigraphic researches on the basis of high resolution seismic survey[J]. Earth Science-Journal of China University of Geosciences, 2002, 27(5): 592-598.]
[13]
李跃, 蒙启安, 李军辉, 等. 贝尔凹陷南屯组物源特征及其对沉积体系的控制[J]. 沉积学报, 2018, 36(4): 756-767. [Li Yue, Meng Qi'an, Li Junhui, et al. The characteristics of provenance system and their control on sedimentary system of Nantun Formation in the Beier Depression, northern China[J]. Acta Sedimentologica Sinica, 2018, 36(4): 756-767.]
[14]
黄传炎, 王华, 周立宏, 等. 北塘凹陷古近系沙河街组三段物源体系分析[J]. 地球科学-中国地质大学学报, 2009, 34(6): 975-984. [Huang Chuanyan, Wang Hua, Zhou Lihong, et al. Provenance system characters of the third member of Shahejie Formation in the Paleogene in Beitang Sag[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(6): 975-984. doi: 10.3321/j.issn:1000-2383.2009.06.012]
[15]
Morton A C, Hallsworth C R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.
[16]
蔡全升, 胡明毅, 胡忠贵, 等. 强烈断陷期小型湖盆沉积充填演化特征:以松辽盆地徐家围子断陷宋站地区沙河子组为例[J]. 石油与天然气地质, 2017, 38(2): 259-269. [Cai Quansheng, Hu Mingyi, Hu Zhonggui, et al. Sedimentary filling evolution of small-scale lake basins during intensive faulting:An example from the Shahezi Formation of Songzhan region in Xujiaweizi fault depression, Songliao Basin[J]. Oil & Gas Geology, 2017, 38(2): 259-269.]