沉积学报  2020, Vol. 38 Issue (3): 571−579

扩展功能

文章信息

冉逸轩, 周翔
RAN YiXuan, ZHOU Xiang.
鄂尔多斯盆地西南部延长组6段重力流沉积特征及其油气地质意义
Sedimentary Characteristics and Petroleum Geological Significance of the Chang6 Gravity Flow in the Southwest Ordos Basin
沉积学报, 2020, 38(3): 571-579
ACTA SEDIMENTOLOGICA SINCA, 2020, 38(3): 571-579
10.14027/j.issn.1000-0550.2019.056

文章历史

收稿日期:2019-03-14
收修改稿日期: 2019-05-17
鄂尔多斯盆地西南部延长组6段重力流沉积特征及其油气地质意义
冉逸轩1 , 周翔2     
1. 东北石油大学地球科学学院, 黑龙江大庆 163316;
2. 大庆油田勘探开发研究院, 黑龙江大庆 163712
摘要: 鄂尔多斯盆地南部延长组长6油层组中发现大量块状无层理砂岩,属陡坡带处堆积的三角洲前缘沉积物沿斜坡滑塌形成的重力流沉积。综合岩芯、露头、测井及分析化验资料,认为延长组发育滑塌岩、液化沉积物流、砂质碎屑流和经典浊流等多种类型的重力流,不同类型重力流沉积特征差异明显;其中地形坡度、物源供给和一定的触发机制是形成长6重力流沉积的基本条件;在流动过程中由于水的混入和沉积物卸载,重力流沉积物发生浓度变化和流态转换,形成滑塌岩-砂质碎屑流、砂质碎屑流-浊流、浊流等不同组合类型;重力流砂岩延伸至半深湖-深湖相泥岩中,与长7烃源岩侧向连通,形成有利的成藏组合,是研究区延长组重要的勘探目标区。
关键词: 鄂尔多斯盆地    长6油层组    重力流沉积    沉积特征    砂质碎屑流    
Sedimentary Characteristics and Petroleum Geological Significance of the Chang6 Gravity Flow in the Southwest Ordos Basin
RAN YiXuan1 , ZHOU Xiang2     
1. Collage of Earth Sciences, Northeast Petroleum University, Daqing, Heilongjiang 163316, China;
2. Exploration and Production Research Institute, Daqing Oilfield, Daqing, Heilongjiang 163712, China
Foundation: National Science and Technology Major Project, No. 2011ZX05005-001
Abstract: There are a large number of massive sandstones in the Chang6 oil reservoir, Southwest Ordos Basin, which are gravity flows from sediments slumping along the slope in a delta front. We determined that there are different kinds of gravity flows, such as slumps, liquefied sediment flows, sandy debris flows, and turbidites, in the Yanchang Formation based on cores, outcrops, logging, and testing data. The slope, sediment supply, and trigger mechanism are the basic formation in the Chang6 gravity flow. Concentration and flow state change due to water maxing and sediment unloading during the flow process and form different kinds of combinations, such as slumps-sandy debris flow, sandy debris flow-turbidite, and turbidite. The gravity flow sandstone extends in the semi-deep lake and deep lake mudstone lateral connection with source rock in the Chang7 oil reservoir and develops favorable reservoir forming assemblages, which are the most important target zone of the Yanchang Formation in the study area.
Key words: Ordos Basin    Chang6 oil reservoir    gravity flow sedimentary    sedimentary characteristics    sandy debris flows    
0 引言

重力流理论和实验研究是当今沉积学研究的热点[1],深海和湖盆深水区重力流成因储层更是现今油气勘探的重点和难点[2-3]。随着深水沉积研究的深入,人们逐渐认识到深水沉积远比我们想象的要复杂,深水沉积模式的多解性也显得越来越突出,尤其是湖盆面积相对局限、物源供给多变、湖平面升降频繁的陆相湖盆,深水重力流发育规律的复杂性显得尤为突出,严重制约了陆相湖盆油气勘探的进展。鄂尔多斯盆地是国内较早开展重力流成因储层油气勘探的盆地之一,早在20世纪70年代,西峰、姬嫄地区发现以深水浊积岩为主要储层的大规模岩性油藏即揭开了盆地浊流沉积研究的序幕[4-5]。近年来白豹、华庆地区长6油层组中又发现大面积深水含油砂体,进一步证实了盆地重力流成因油气藏广阔的勘探前景[6-7]。目前延长组沉积物重力流研究主要集中于湖盆中心区域[8],对于盆边缘陡坡带是否存在重力流沉积及重力流沉积物类型、沉积特征研究较少。本文以盆地西南部代家坪地区为例,通过18口井163 m岩芯观察、56口井测录井数据和碎屑岩粒度等分析化验资料,对盆地西南缘陡坡带长6油层组重力流沉积物类型、沉积特征深入研究,认为长6油层组内具有较高物性条件的重力流砂体延伸入湖与长7段烃源岩侧向连通,构成优质的岩性圈闭,具有良好的勘探开发潜力。

1 地质背景

鄂尔多斯盆地是在古生代华北稳定克拉通基础上发育起来的稳定沉降、坳陷迁移的大型叠合盆地,晚三叠世长6沉积期湖盆回返抬升,在盆地边缘发育大规模进积型三角洲,巨厚的三角洲前缘沉积物在构造、火山和自身重力作用下沿斜坡滑塌形成重力流沉积,是延长组重力流发育的主要阶段[9]。研究区位于盆地西南部,构造上位于天环坳陷南部(图 1)。延长组岩芯中发育大量厚层块状砂岩,见大量漂浮状泥砾、泥岩撕裂屑及包卷层理、滑塌变形、槽模、铸模等典型滑塌成因沉积构造和不完整的鲍马序列,表明本区重力流沉积发育。

图 1 鄂尔多斯盆地构造分区及研究区构造位置 Fig.1 Tectonic division of Ordos Basin and tectonic location of the study area
2 重力流成因分类及沉积特征

重力流是由含大量悬浮物质的高密度流体在重力驱动下,沿斜坡向下呈整体块状移动的阵发性、短暂性的快速沉积。岩芯观察和薄片、粒度等测试资料分析表明研究区发育滑塌岩、液化沉积物流、砂质碎屑流、浊流等多种成因的重力流,不同成因重力流沉积特征差异明显。

2.1 滑塌成因砂岩沉积特征

滑塌岩是盆地边缘斜坡处堆积的前缘沉积物,在一定触发机制下,由自身重力驱动沿斜坡向下滑动形成的滑塌变形体,是水下滑坡事件的产物[10]。研究区长6段滑塌岩沉积物粒度较细,沉积特征主要为:1)发育变形层理粉砂岩相(Ff)、脉状层理粉砂岩相(Fc)、透镜状层理粉砂岩相(Fl)等多种岩相类型(图 2a~c);2)砂泥高度混杂,整体呈块状(图 2d),岩芯中发育滑动成因的包卷层理(图 2e)、小型搅浑、褶皱、滑塌构造(图 2f)及扭曲层理等多种变形构造和小型阶梯状同沉积微断层(图 2g);3)滑塌体中见大小不一的灰黑色、深灰色泥岩撕裂屑(图 2h),与下伏半深湖—深湖相泥岩特征类似,呈板状分布,定向排列;4)沉积物厚度变化较大,一般从十几厘米到几十厘米,最厚可达1 m,横向连续性差;5)滑塌体与上下岩层均呈突变接触,在底部发育滑动面,向上突变为半深湖—深湖相泥岩。

图 2 长6油层组滑塌岩、液化沉积物流沉积特征 (a)HH106井,2 138.2 m,变形层理粉砂岩相;(b)HH9井,1 937.2 m,脉状层理粉砂岩相;(c)HH106井,2 230.4 m,透镜层理细砂岩相,顶部见小型交错层理;(d)ZT3井,2 051.5 m,变形层理粉砂岩相,见砂岩透镜体;(e)HH3井,2 248.9 m,浅灰色泥岩,包卷层理;(f)HH106井,2 238.4 m,浅灰色泥岩,搅浑构造;(g)HH9井,1 936.5 m,浅灰色泥岩,微断层;(h)HH66井,1 907.4 m,变形层理粉砂岩相,角砾状泥岩撕裂屑;(i)HH3井,2 250.14 m,浅灰色泥岩,底部具粉砂质团块;(j)HH3井,2 251.02 m,浅灰色泥岩,含粉砂质条带;(k)HH5井,2 212.36 m,浅灰色粉砂岩,泄水构造;(l)HH9井,1 950.6 m,浅灰色泥岩,含粉砂质斑块 Fig.2 Sedimentary characteristics of fluidized sediment and turbidite flows
2.2 液化沉积物流沉积特征

液化沉积物流是重力流在滑动过程中沉积物与水不断发生混合,沉积物浓度降低形成的塑性流体[11],长6段液化沉积物中泥质组分含量高,黏结性强,整体呈块状构造,沉积特征主要为:1)发育浅色泥岩相(M2)、透镜层理粉砂岩相(Fl)、波状层理粉砂岩相(Fr)等多种岩相类型;2)沉积物含少量不规则砂质团块(图 2i),以细砂岩为主,由于砂质团块中泥质含量较高,在流体流动过程中具有一定塑性,呈长轴平行于流动方向的定向排列(图 2j);3)块状粉砂质泥岩中见泄水构造、包卷层理、搅混构造等变形构造(图 2k);4)泥岩中发育椭球状、不规则状粉砂质斑块,整体塑性较强(图 2l)。

2.3 砂质碎屑流沉积特征

砂质碎屑流是混杂了砾石和泥质的以砂质为主的非黏结性碎屑流[12],通常处于重力流流体底部,平面上呈舌状、连续状分布。研究区砂质碎屑流沉积以中—细粒长石岩屑砂岩、岩屑砂岩为主,杂基含量较高,最高可达20%,反映砂质碎屑流的高浓度和重力流特征。主要沉积特征有:1)以块状层理砂岩相(Sm)、平行层理砂岩相(Sh)、平行层理粉砂岩相(Fh)为主,砂体整体呈均质块状,内部不具粒序层理和其他沉积构造,部分块状砂岩顶部发育薄层的平行层理(图 3a),可能是由于砂质碎屑流向牵引流转化而形成[9, 13]。2)块状层理砂岩内部发育漂浮状泥砾、泥岩撕裂屑,泥砾直径为2~6 cm,最大可达10 cm,呈漂浮状位于块状砂岩底部,具有压扁拉伸现象(图 3bc),表明搬运流体是具有较高的基质浓度和屈服强度的碎屑流,深灰色、灰色泥岩撕裂屑呈板条状定向排列,与下伏半深湖—深湖相泥岩特征类似(图 3d),显示出典型的层状流动特征,是流体搬运过程中对下伏深水泥岩侵蚀形成的。3)块状砂岩底面平坦,发育剪切带,与下伏地层呈突变接触;由于沉积物的整体冻结式沉积,深水泥岩直接覆盖其上,造成砂岩顶面与半深湖—深湖相泥岩突变接触,接触面极不规则(图 3e)。4)单层砂体厚度分布在0.2~1.2 m,多数超过0.5 m,横向变化快。5)同时具重力流和牵引流特征,沉积物粒度的M值随C值增加规律性增加,在C-M图中表现为平行于C=M基线的直线段(图 4a),反映出典型的重力流沉积特征;粒度概率曲线呈两段式和三段式分布,跳跃总体含量一般大于70%,分选好,斜率一般大于70°,悬移总体含量为15%~30%,缺乏滚动次总体,表明其具有牵引流特征(图 4b)。

图 3 长6油层组碎屑流、浊流沉积特征 (a)HH3井,2 250.2 m,块状层理砂岩相,顶部具水平层理;(b)HH66井,1 912.4 m,块状层理砂岩相,底部具扁平状泥砾,定向排列;(c)HH9井,1 935.79 m,块状层理砂岩相,底部具扁平状泥砾;(d)HH7井,2 404.22 m,平行层理粉砂岩相,板条状泥岩撕裂屑定向排列;(e)HH81井,1 981.0 m,平行层理粉砂岩相,底部具剪切面,与下伏泥岩突变接触;(f)HH65井,2 129.5 m,粒序层理砂岩相,底部见次棱角状砾石;(g)HH106井,2 080.5 m,波状层理粉砂岩相;(h)HH78井,2 247 m,平行层理粉砂岩,见微波状构造;(i)HH65井,2 054 m,深灰色泥岩相,底面见槽模构造;(j)HH81井,1 992.5 m,深灰色泥岩相,底面见沟模构造;(k)HH66井,2 054 m,浅灰色泥岩相,槽模构造;(l)HH106井,2 226.3 m,变形层理粉砂岩相,球枕状构造 Fig.3 Sedimentary characteristics of sandy and muddy debris flows in the Chang6 oil reservoir
图 4 长6油层组重力流沉积物粒度特征 Fig.4 Characteristics of gravity flow grain size in the Chang6 oil reservoir
2.4 经典浊流沉积特征

长6油层组浊流沉积物多夹于半深湖—深湖相泥岩中,具悬浮递变特征。沉积特征主要有:1)发育粒序层理砂岩相(Sg)、波状层理粉砂岩相(Fr)、水平层理粉砂岩相(Fh)、脉状层理粉砂岩相(Fc)、浅灰色泥岩相(M2)等不同岩相类型。2)沉积物粒度普遍较细,由下部细砂岩,向上渐变为粉砂岩、泥质粉砂岩、泥岩沉积,具典型正粒序层理(图 3f)。3)浊积岩以砂泥薄互层形式出现,构成多个韵律层(图 3g),侧向延伸稳定,厚度变化小,单期砂体厚度较小,一般为5~20 cm,但多期沉积的浊积岩可叠加形成厚层块状均质砂岩。4)在C-M图上表现为平行于C=M基线的直线段,随着水流强度的减弱,C、M值规律性减少,反映了递变悬浮的特点(图 4a);碎屑颗粒以跳跃、悬浮总体为主,缺乏滚动总体,累积概率曲线以“一段式”和“宽缓上拱形”为主(图 4c)。5)具粒序层理砂岩上部常发育具平行层理、小型交错层理、沙纹层理等典型牵引流构造的细砂岩、粉砂岩(图 3h),可能是浊流的体部和尾部中细小的颗粒被加入的水稀释,导致流体发生转变而变为牵引流[14],两者一起构成不完整的鲍马序列,常见的组合类型有ABE、AB、AC、AE、BCE、DE等(图 5)。6)由于浊流头部能量较大,在流动过程中对下伏地层产生强烈的侵蚀,在下伏泥质沉积物表明形成凹凸不平的冲刷面,以上覆砂岩层底面铸模的形式保存下来,常见重荷模、沟模、槽模等多种底层面构造(图 3i~k),砂岩底部发育火焰构造、砂球构造、重荷模等同生变形构造(图 3l),与下伏半深湖—深湖相泥岩突变接触。

图 5 研究区长6油层组常见浊流鲍马序列及组合关系 Fig.5 Turbidity Bouma sequence and association of the Chang6 oil reservoir in the study area
3 重力流分布特征

重力流在流动过程中,随沉积物与水的混合作用及沉积物的卸载,沉积物浓度减小并发生流态转变,不同重力流之间发生相互转化。平面上不同类型重力流沉积分布范围存在差异,通常滑塌岩分布于前缘坡折带和坡脚处(图 6);液化沉积物流含量较少,分布于三角洲前缘坡折带上;砂质碎屑流主要分布于坡折带下方和深湖平原地区;随搬运距离增加,水流强度减弱,沉积物中浊积岩含量增加,大量沉积于半深湖—深湖平原区。

图 6 研究区延长组长62小层重力流沉积物分布 Fig.6 Distribution of gravity flow in the Chang62 reservoir in the study area

延长组重力流形成时,松散堆积于盆地边缘陡坡带的三角洲前缘砂体,在一定触发机制作用下,沿斜坡发生滑动、滑塌,沉积体中软沉积物发生变形并对下伏沉积物产生强烈的截切和冲刷,形成下切水道,造成沉积体物质成分的变化和流速降低;随沉积体向下滑动,沉积物不断卸载并与水混合,沉积体塑性增加,形成液化沉积物流;随沉积物浓度的进一步降低,沉积物塑性流变性增强,以块体流形式流动,早期颗粒碰撞的滑塌岩、液化沉积物流转变为由颗粒支撑的砂质碎屑流;随碎屑流继续流动,沉积体内流体组分增加,塑性碎屑流就有可能演变为流动性紊流流体,形成由湍流支撑的浊流,最终在较深水环境中形成一系列垂直于断层走向的条带状重力流水道沉积,在水道末端的湖盆中心部位发育多期叠置的朵叶体。岩芯和录井资料表明,垂向上不同类型重力流发生了相互转换,形成Ff+Fr+M1、Sh+Sm+Fh+M1、Sb+Fr+Ff+M1和Sm+Ff+M1等4种垂向组合类型,以滑塌岩+砂质碎屑流(Sb+Fr+Ff+M1)和砂质碎屑流+浊流(Sm+Ff+M1)两种组合最为常见(图 7)。

图 7 研究区HH76~HH5井长6沉积相连井剖面图(剖面位置见图 6 Fig.7 Sedimentary facies cross-section of wells HH76-HH5 from the Chang6 reservoir in the study area
4 重力流成因及沉积模式

根据延长组长6段重力流沉积物特征及其空间发育的相对位置,建立研究区的重力流模式(图 8)。研究区长6段重力流沉积的成因为:1)受印支运动影响,鄂尔多斯盆地南部强烈隆升,形成陡坡地形为重力流的发育提供了地形条件[15];2)盆地南部湖区宽、水体浅、湖浪作用较弱,发育大规模进积型三角洲,在盆地边缘坡折带处堆积巨厚层状三角洲前缘砂体为重力流形成提供充足的物质基础;3)当三角洲前缘砂体沉积厚度和坡度增大到稳定休止角的极限值时,在沉积物内部形成超孔隙压力,同时在沉积物自身的重力的作用下沉积界面发生倾斜并超出稳定休止角,造成三角洲前缘沉积物失稳[16],并沿坡折带泥质沉积物表面顺坡发生滑移而发生重力滑塌和流动;4)重力流沉积物在流动过程中不断发生滑塌、破碎成多个块体,随沉积物卸载和水注入,岩层块体破碎搅混、软沉积物发生变形,发生流态转化。

图 8 鄂尔多斯盆地南部长6油层组重力流沉积模式(据文献[6],有修改) Fig.8 Gravity flow sedimentary model of the Chang6 oil reservoir in the southern Ordos Basin (modified from reference [6])
5 油气勘探意义

鄂尔多斯盆地南部上三叠统延长组长6油层组是典型的岩性油藏,发育下生上储、自生自储等多种成藏组合类型,具有良好的成藏条件[17]。前人研究表明,长6段中呈连续分布的砂质碎屑流沉积是主要的油气储集砂体,不仅直接控制油气藏的规模与分布,更决定了油井的产能差异,是决定致密油形成和富集的关键因素。长6油层组砂质碎屑流沉积体深入湖盆腹地,与湖盆中部长7烃源岩直接接触,形成连续分布的指状砂体(图 9),一方面充分吸收烃源岩层形成的油气,同时,烃源岩层又充当良好的盖层,形成具备良好成藏条件的地层—岩性油藏。

图 9 鄂尔多斯盆地南部延长组长6油藏剖面图(剖面位置见图 6 Fig.9 Reservoir profile of the Chang6 reservoir in the southern Ordos Basin
6 结论

(1)鄂尔多斯盆地南部发育滑塌岩、液化沉积物流、砂质碎屑流和浊积岩等不同类型重力流,不同类型重力流沉积特征存在差异,其中砂质碎屑流沉积物发育块状层理砂岩相,是主要的重力流砂体;浊积岩主要发育粒序层理砂岩相、平行层理砂岩相等岩相类型,岩芯上可见不完整的鲍马序列;滑塌岩内部以包卷层理、小型褶皱构造等变形层理为特征,沉积物底部发育滑动面;液化沉积物流以泥质沉积为主,内部含刚性或不规则的砂质团块。

(2)长6段重力流在流动过程中,随沉积物与水的混合作用及沉积物的卸载,不同重力流之间发生相互转化,造成重力流垂向组合和平面分布的差异,垂向上以滑塌岩+砂质碎屑流(Sb+Fr+Ff+M1)和砂质碎屑流+浊流(Sm+Ff+M1)两种组合最为常见,平面上又以砂质碎屑流和浊流分布范围最广。

(3)长6油层组重力流沉积延伸入湖盆中心,与长7油层组烃源岩直接接触,形成上倾尖灭岩性圈闭,具有优越的成藏条件。

参考文献
[1]
孙枢. 中国沉积学的今后发展:若干思考与建议[J]. 地学前缘, 2005, 12(2): 3-10. [Sun Shu. Sedimentology in China:Perspectives and suggestions[J]. Earth Science Frontiers, 2005, 12(2): 3-10. doi: 10.3321/j.issn:1005-2321.2005.02.002]
[2]
杜锦霞. 松辽盆地北部青山口组重力流特征研究及其地质意义[J]. 沉积学报, 2015, 33(2): 385-393. [Du Jinxia. Characteristics of gravity flow sediment and its geologic significance in northern Songliao Basin[J]. Acta Sedimentologica Sinica, 2015, 33(2): 385-393.]
[3]
乔博, 张昌民, 李少华, 等. 珠江口盆地惠州地区新生界珠海组和珠江组重力流沉积特征[J]. 古地理学报, 2013, 15(1): 69-75. [Qiao Bo, Zhang Changmin, Li Shaohua, et al. Feature of gravity flow deposit of the Zhuhai and Zhujiang Formations of Cenozoic in Huizhou area, Pearl River Mouth Basin[J]. Journal of Palaeogeography, 2013, 15(1): 69-75.]
[4]
陈飞, 胡光义, 孙立春, 等. 鄂尔多斯盆地富县地区上三叠统延长组砂质碎屑流沉积特征及其油气勘探意义[J]. 沉积学报, 2012, 30(6): 1042-1052. [Chen Fei, Hu Guangyi, Sun Lichun, et al. Sedimentary characteristics and the significance of petroleum exploration of sandy debris flows of Yanchang Formation of the Upper Triassin, Fuxian area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1042-1052.]
[5]
傅强, 吕苗苗, 刘永斗. 鄂尔多斯盆地晚三叠世湖盆浊积岩发育特征及地质意义[J]. 沉积学报, 2008, 26(2): 186-192. [Fu Qiang, Lü Miaomiao, Liu Yongdou. Developmental characteristics of turbidite and its implication on petroleum geology in LateTriassic Ordos Basin[J]. Acta Sedimentologica Sinica, 2008, 26(2): 186-192.]
[6]
邹才能, 赵政璋, 杨华, 等. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报, 2009, 27(6): 1065-1075. [Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075.]
[7]
李凤杰, 杨承锦, 代廷勇, 等. 鄂尔多斯盆地华池地区长6油层组重力流特征及控制因素[J]. 岩性油气藏, 2014, 26(1): 18-24. [Li Fengjie, Yang Chengjin, Dai Tingyong, et al. Characteristics of gravity flow and controlling factors of Chang 6 oil reservoir set in Huachi area, Ordos Basin[J]. Lithologic Reservoirs, 2014, 26(1): 18-24. doi: 10.3969/j.issn.1673-8926.2014.01.004]
[8]
李相博, 刘化清, 完颜容, 等. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J]. 岩性油气藏, 2009, 21(4): 19-21. [Li Xiangbo, Liu Huaqing, Wanyan Rong, et al. First discovery of the sandy debris flow from the Triassic Yanchang Formation, Ordos Basin[J]. Lithologic Reservoirs, 2009, 21(4): 19-21. doi: 10.3969/j.issn.1673-8926.2009.04.003]
[9]
李相博, 陈启林, 刘化清, 等. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16-21. [Li Xiangbo, Chen Qilin, Liu Huaqing, et al. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16-21. doi: 10.3969/j.issn.1673-8926.2010.03.004]
[10]
潘树新, 郑荣才, 卫平生, 等. 陆相湖盆块体搬运体的沉积特征、识别标志与形成机制[J]. 岩性油气藏, 2013, 25(2): 9-18, 25. [Pan Shuxin, Zheng Rongcai, Wei Pingsheng, et al. Deposition characteristics, recognition mark and form mechanism of mass transport deposits in terrestrial lake basin[J]. Lithologic Reservoirs, 2013, 25(2): 9-18, 25. doi: 10.3969/j.issn.1673-8926.2013.02.002]
[11]
张晶, 刘化清, 李双文, 等. 断陷湖盆深水重力流水道的识别标志及沉积模式:以歧口凹陷歧南斜坡沙一段为例[J]. 吉林大学学报(地球科学版), 2015, 45(3): 701-711. [Zhang Jing, Liu Huaqing, Li Shuangwen, et al. Identification marks and depositional model of gravity flow channel in continental rifted lake basin:A case of the first member of Shahejie Formation in Qinan slope, Qikou Sag[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 701-711.]
[12]
Shanmugam G. 50 years of the turbidite paradigm(1950s-1990s):deep-water processes and facies models-a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342. doi: 10.1016/S0264-8172(99)00011-2
[13]
廖纪佳, 朱筱敏, 邓秀芹, 等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘, 2013, 20(2): 29-39. [Liao Jijia, Zhu Xiaomin, Deng Xiuqin, et al. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong area in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 29-39.]
[14]
李相博, 付金华, 陈启林, 等. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294. [Li Xiangbo, Fu Jinhua, Chen Qilin, et al. The concept of sandy debris flow and its application in the Yanchang Formation deep water sedimentation of the Ordos Basin[J]. Advances in Earth Science, 2011, 26(3): 286-294.]
[15]
张雪峰, 赵彦德, 张铭记. 鄂尔多斯盆地西南缘延长组存在差异构造运动的地质意义[J]. 岩性油气藏, 2010, 22(3): 78-82, 105. [Zhang Xuefeng, Zhao Yande, Zhang Mingji. Differential tectonic movement of Yanchang Formation in southwestern margin of Ordos Basin and its geologic significance[J]. Lithologic Reservoirs, 2010, 22(3): 78-82, 105. doi: 10.3969/j.issn.1673-8926.2010.03.015]
[16]
鲜本忠, 万锦峰, 姜在兴, 等. 断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J]. 地学前缘, 2012, 19(1): 121-135. [Xian Benzhong, Wan Jinfeng, Jiang Zaixing, et al. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin:A case study from Dongying Formation in Nanpu Depression[J]. Earth Science Frontiers, 2012, 19(1): 121-135.]
[17]
陈全红, 李文厚, 郭艳琴, 等. 鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J]. 地质学报, 2006, 80(5): 656-663. [Chen Quanhong, Li Wenhou, Guo Yanqin, et al. Turbidite systems and the significance of petroleum exploration of Yanchang Formation in the southern Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 656-663.]