沉积学报  2020, Vol. 38 Issue (3): 538−553

扩展功能

文章信息

林承焰, 王文广, 董春梅, 张宪国, 任丽华, 林建力
LIN ChengYan, WANG WenGuang, DONG ChunMei, ZHANG XianGuo, REN LiHua, LIN JianLi.
砂岩压实作用研究现状及进展
Status Quo of Sandstone Compaction Research and Its Advancement
沉积学报, 2020, 38(3): 538-553
ACTA SEDIMENTOLOGICA SINCA, 2020, 38(3): 538-553
10.14027/j.issn.1000-0550.2019.055

文章历史

收稿日期:2019-02-18
收修改稿日期: 2019-06-05
砂岩压实作用研究现状及进展
林承焰1,2,3,4 , 王文广1 , 董春梅1,2,3,4 , 张宪国1,2,3,4 , 任丽华1,2,3,4 , 林建力1     
1. 中国石油大学(华东)地球科学与技术学院, 山东青岛 266580;
2. 山东省油藏地质重点实验室, 山东青岛 266580;
3. 中国石油大学(华东)深层油气重点实验室, 山东青岛 266580;
4. 油气储层重点实验室中国石油大学(华东)研究室, 山东青岛 266580
摘要: 砂岩压实作用研究主要包括压实作用机制、影响因素和响应特征三方面内容,重点阐述了砂岩压实作用模型与数值模拟研究、压实作用物理模拟与数值模拟融合研究两方面的新进展,结果表明:1)压实作用模型包括机械压实作用和化学压实作用模型,机械压实作用模型重点介绍了石英砂岩的粒间体积-深度曲线;而化学压实作用模型是与压溶作用相关的溶解作用和胶结作用,着重介绍了压溶成因的石英胶结作用。2)压实作用物理模拟与数值模拟的融合研究,主要是在压实作用机理认识基础上,通过压实模拟实验,建立基于实验数据的压实作用模型,进而开展数值模拟研究。最后指出压实作用研究趋势将朝着砂岩组分更加复杂的压实作用模型、压实作用与流体流动耦合、垂向-侧向多动力学机制、砂岩-泥岩协同机制、构造-沉积-成岩"三相"耦合的压实作用数值模拟等方面发展。
关键词: 压实作用    压实作用数值模拟    机械压实作用    化学压实作用    压实模拟实验    
Status Quo of Sandstone Compaction Research and Its Advancement
LIN ChengYan1,2,3,4 , WANG WenGuang1 , DONG ChunMei1,2,3,4 , ZHANG XianGuo1,2,3,4 , REN LiHua1,2,3,4 , LIN JianLi1     
1. School of Geosciences, China University of Petroleum(East China), Qingdao, Shandong 266580, China;
2. Geology Key Laboratory of Shandong Province, Qingdao, Shandong 266580, China;
3. Key Laboratory of Deep Oil and Gas, China University of Petroleum(East China), Qingdao, Shandong 266580, China;
4. Research Laboratory of China University of Petroleum(East China), Key Laboratory of Oil and Gas Reservoir, Qingdao, Shandong 266580, China
Foundation: National Natural Science Foundation of China, No. 41772139; National Science and Technology Major Project, No. 2016ZX05027-004-002; The Fundamental Research Funds for the Central Universities, No. 27R1701022A
Abstract: This study of the sandstone compaction mainly included three aspects:the compaction mechanism, the controlling factors and the response characteristics. The focus is on two aspects of recent research progress:compaction modeling and numerical simulation, and the integration of experimental compaction models with numerical simulation. The results show that:(1)compaction models included mechanical and chemical compaction models. Mechanical compaction models focus on the intergranular volume-depth relationship curve for quartzose sandstone; chemical compaction models is the dissolution and precipitation related to pressure solution, and the quartz cementation causedby pressure solution is emphasized. (2)The coupling of experimental compaction modeling and numerical simulation is mainly based on current knowledge of compaction mechanisms. Numerical simulation models are based on experimental data. It is suggested that compaction research might be directed towards the development of a compaction model of sandstone of complex composition, the interaction of compaction and fluid flow, vertical/lateral multi -dynamic mechanisms, and sandstone-mudstone cooperative mechanisms, as well as numerical simulation studies of the compaction effect of tectonism-sedimentation-diagenesis interaction.
Key words: compaction    compaction numerical simulation    mechanical compaction    chemical compaction    compaction experimental modeling    
0 引言

砂岩储层是含油气盆地中主要油气勘探开发对象。砂质碎屑沉积物从沉积到现今经历了由上覆沉积物负荷增加引起有效应力变化的机械压实作用及埋藏过程中受温度和压力条件驱动的化学压实作用[1-5]

砂岩压实作用包括机械压实作用和化学压实作用[6-9],砂岩机械压实作用存在于整个成岩作用过程中。机械压实作用和孔隙度演化是受沉积物组分和结构参数(如颗粒大小、形态、分选性和沉积结构)的影响[10-13];化学压实作用造成碎屑颗粒接触处发生石英压溶作用而在邻近位置形成石英胶结物,从而影响储层物性[8]。砂岩孔隙度减少随着化学压实作用程度增加呈非线性变化[9]。化学压实作用主要是受时间、温度、压力、成岩流体和矿物成分的影响,较为重要的化学压实作用是与压溶作用相关的石英胶结作用[14-17]

泥岩压实作用研究起步很早,而砂岩压实作用研究则相对较晚。在20世纪30年代,Athy[18]和Hedberg [19]研究发现泥岩孔隙度与深度呈现指数关系,自此在碎屑岩压实作用研究时大都运用这个指数关系。在20世纪末期,Lander et al. [20]基于现存的孔隙度与深度函数关系的压实作用模型,采用粒间体积代替孔隙度,引入表征颗粒稳定堆积状态的术语,通过有效应力替代埋藏深度来解释流体超压的影响,修正了孔隙度降低函数。在Athy[18]模型普遍应用的背景下,学者们指出砂岩孔隙度减少不可能只通过深度来准确地模拟;有些学者[21-30]指出砂岩孔隙度减少过程受时间、温度和化学反应的影响;有些学者[23, 31-32]指出流体压力扮演着重要的角色;有些学者[33-35]提出了压实作用过程中埋藏深度和埋藏时间双重因素控制的地层孔隙度演化的数学模型。在Athy[18]模型基础上,将一个指数变量拓展成两个指数变量,修正为埋藏深度和埋藏时间双重因素的压实作用模型[8, 33-36]。Nooraiepour et al.[37]认识到尽管沉积盆地中沉积物机械压实作用和化学压实作用是复杂相互作用的,但是机械压实作用和化学压实作用导致孔隙度降低是不同的作用过程,即使它们在时间上存在重叠,也必须依据各自的成岩作用模型进行模拟[38]

机械和化学过程驱动的压实作用是砂岩储层经历过的重要成岩作用。伴随着能源需求增加、探明石油储量不足、石油勘探区域条件特殊和含油气盆地地质条件复杂,砂岩在压实作用过程中是与孔隙流体流动、超压分布、储层物性演化密切相关的,有必要总结压实作用、压实作用模型和压实作用定量模拟进展等内容。因而,本文通过对国内外压实作用及压实作用模拟文献调研,归纳出压实作用研究内容,指出压实作用模拟研究新进展、发展趋势及展望;寄希望对成岩学有一定贡献,为油气储层质量评价和预测提供科学依据。

1 压实作用研究内容

将压实作用研究内容归纳为压实作用机制、压实作用影响因素、压实作用响应特征三方面。

1.1 压实作用机制

机械压实作用是指在上覆水体或沉积层的重荷作用下,沉积物中发生骨架颗粒重新排列、塑性颗粒变形、孔隙水排出和粒间体积减少的过程[39]。机械压实作用在砂岩埋藏成岩过程中是自始至终存在的;而化学压实作用是当上覆地层重力或构造应力大于静水压力时,在一定温度、压力和流体条件下矿物颗粒接触位置处发生的粒间压溶作用。机械压实作用随着埋藏深度增加不一定必然发展为化学压实作用[40];岩屑含量较高的砂岩在剧烈的机械压实作用下,孔隙体积迅速减小导致砂岩孔隙度和渗透率减小;强烈的机械压实作用阻止了孔隙水的循环,即使温度、压力、流体性质达到了压溶作用的条件,溶解作用也很难进行。

碎屑岩沉积物在沉积后,起初经历机械压实作用阶段(温度 < 70 ℃),转而进入机械压实作用和化学压实作用并存阶段(温度 > 70 ℃和温度 < 100 ℃),最后进入化学压实作用为主—机械压实作用为辅阶段(温度 > 100 ℃)[15, 21, 41-43]图 1)。在较高温度条件下,化学压实作用是时间和温度的函数[44]

图 1 砂岩压实作用概念示意图(据Bjørlykke[41],Coulty et al.[42],Schmoker et al.[43]修改) Fig.1 Schematic chart of sandstone compaction (modified from Bjørlykke[41], Coulty et al.[42], Schmoker et al.[43])

在沉积盆地中,上覆沉积物重力及所处的盆地动力环境制约着砂岩沉积物可压缩性及孔隙流体压力,进而控制着压实作用过程及相应砂岩孔隙空间的变化。碎屑沉积物在压实过程中地层水顺畅排出孔隙空间,为正常压力条件;如果在压实过程中地层水未能及时排出或排出受阻,使其中流体承受了上覆地层负荷时,为高压异常条件;如果在压实过程中地层水排出过量,骨架颗粒异常压实致密,为低压异常条件(图 1)。这样,压实作用在深层、超深层碎屑岩储层中也可能由于欠压实作用而具有建设性作用,在超深层碎屑岩储层可能存在相对孔隙发育带。

砂岩压实作用强度可从颗粒接触关系进行评价,学者们[45-47]根据压实减孔率对压实作用强度进行定量评价。压实减孔率是指砂岩由于压实作用引起孔隙度减少量占其初始孔隙度的百分比值。计算公式如下:

    (1)

式中:P为压实减孔率(%);ϕ0为初始粒间体积定量;ϕ次生孔隙为溶蚀作用增加的次生孔隙空间定量;ϕ胶结为胶结作用减少的孔隙空间定量;ϕ残余粒间为残余的原生粒间体积定量;ϕ次生孔隙ϕ胶结ϕ残余粒间都可在铸体薄片上统计得到。

1.2 压实作用影响因素

压实作用贯穿沉积盆地内砂岩成岩作用的整个过程,其影响因素也是在这个过程中体现出来的。砂岩沉积物从沉积(包括物源区构造背景、风化剥蚀、搬运和沉积过程)到浅埋藏成岩阶段(砂岩形态、沉积结构、颗粒尺寸和矿物组分)、深埋藏成岩阶段(储层温度、地层压力和地质流体),在升高的温度和压力条件下变成热力学和动力学上更稳定的矿物组分,进而形成最终的砂岩储层物性状况。本文阐述了沉积盆地内砂岩埋藏方式、岩性信息、储层温度和地层压力等压实作用影响因素。

埋藏方式是控制砂岩储层物性的重要因素,这包括埋藏深度和埋藏时间双因素。大多数地质年代组的碎屑岩平均孔隙度随着埋藏深度增加而减少[48],埋藏时间对碎屑岩孔隙度具有重要的影响。正如Ehrenberg et al.[48-49]研究所展示的,不同地质年代组的碎屑岩孔隙度—深度趋势线和相同深度区间段内碎屑岩孔隙度—地质年代趋势线均呈现出规律性变化;同一地质年代组碎屑岩P50孔隙度值一般会随着埋藏深度每增加1 km而孔隙度减少1%~3%(图 2a);相同深度区间段内碎屑岩P50孔隙度值一般会随着地质年代每增加1 Ma而孔隙度减少1%~2%[48-49]图 2b)。在压实作用过程中碎屑岩孔隙度减小是受埋藏深度和埋藏时间双因素影响的。从时间—深度函数对比分析了加速型埋藏盆地、减速型埋藏盆地和恒速型埋藏盆地在埋藏过程中孔隙度的保存情况[50]

图 2 地质年代组和深度区间段内碎屑岩孔隙度趋势线(据Ehrenberg et al.[48-49]修改) (a)不同地质年代组的碎屑岩P50孔隙度—深度趋势线;(b)相同深度区间段内碎屑岩P50孔隙度—地质年代趋势线 Fig.2 Porosity trendlines (a) for each geological period; and (b) at depth intervals of 1 km (modified from Ehrenberg et al.[48-49] )

砂岩组分包括矿物颗粒、胶结物和杂基等。砂岩组分不同导致砂岩压实作用程度不同。砂岩中石英和长石等刚性颗粒含量越高,其抗压实能力越强,保留的原生孔隙越多;砂岩中塑性岩屑含量越高,其抗压实能力越弱。正如图 3a图 3b图 3c所展示的,对比分析风化玄武岩岩屑/石英颗粒的不同百分比例砂岩(图 3a)和页岩岩屑/石英颗粒的不同百分比例砂岩的压实作用曲线(图 3b);石英颗粒含量越高的砂岩孔隙度降低速度越慢,利于原生孔隙度的保存;而塑性岩屑含量越高的砂岩孔隙度降低速度越快。相比于富含板岩岩屑的砂岩,富含风化玄武岩岩屑和页岩岩屑的砂岩孔隙度降低速率更快(图 3c);这说明岩屑类型也影响着砂岩孔隙度减少程度[51]。分选性与砂岩孔隙度和渗透率呈现较好的正相关性(图 3de);分选性好的砂岩初始孔隙度是42.4%,而分选性差的砂岩初始孔隙度是27.9%(图 3d);砂岩渗透率取决于分选性和颗粒尺寸,渗透率伴随孔隙度和颗粒尺寸增加而增加(图 3e[52]。在已有的研究准噶尔盆地三叠系砂岩储层物性时发现,粗砂岩、中砂岩孔隙度和渗透率均较高,粗粒沉积物的渗透率明显高于细粒沉积物,一般是细砂岩的2~15倍,是粉砂岩的3~33倍[53]

图 3 砂岩组分与储层物性的交会图(据Pittman et al.[51],Beard et al.[52]修改) (a)风化玄武岩/石英颗粒的不同百分比例砂岩的压实作用曲线;(b)页岩岩屑/石英颗粒的不同百分比例砂岩的压实作用曲线;(c)50%石英颗粒和50%岩屑(分别为风化玄武岩、页岩和板岩)砂岩的压实作用曲线;(d)分选性与孔隙度的交汇图;(e)不同分选性的砂岩孔隙度和渗透率交会图 Fig.3 Cross-plot of sandstone composition and reservoir properties (modified from Pittman et al.[51], Beard et al.[52] )

储层温度是控制成岩作用的关键因素之一[54],古地温对成岩作用的影响主要包括:1)升高的温度导致矿物的溶解度升高;2)地温梯度的不同导致矿物转化深度的不同;3)通过控制动力学上矿物反应速率而决定化学反应变化;4)热力学上温度升高导致矿物向更稳定方向转化。对比分析了国内外沉积盆地内不同地温梯度对砂岩孔隙度的影响[55]。在加拿大西部近海Queen Charlotte盆地内地温梯度2.6 ℃/100m和3.5 ℃/100m的两个地区砂岩孔隙度损失速率是显著不同的(图 4a);在2 440 m深度位置处,地温梯度高的地区比地温梯度低的地区砂岩孔隙度损失量大了10%。同样,在中国沉积盆地内地层梯度高的地区砂岩压实速率更快,东部沉积盆地地温梯度一般为3.5~4.5 ℃/100m,而西部沉积盆地地温梯度一般为2.0~2.5 ℃/100m;地温梯度高的地区砂岩压实速率要高于地温梯度低的地区砂岩压实速率[56]图 4b)。

图 4 不同地温梯度下孔隙度损失速率(据Wilson et al.[55],寿建峰等[56]修改) (a)加拿大西部近海Queen Charlotte盆地内不同地温梯度下砂岩孔隙度—深度剖面图;(b)中国沉积盆地内不同地温梯度下砂岩压实速率—温度剖面图 Fig.4 Porosity loss rate of different geothermal gradients (modified from Wilson et al.[55], Shou et al.[56] )

地层压力是在一定空间维度上通过压力场和流体场对砂岩成岩作用产生影响的,其形成机制包括岩石孔隙体积变化、孔隙流体体积变化、流体压力(水动力压头)和流体流动三种类型[57]。Colombo et al.[58]采用正演压实作用模拟和流体流动耦合效果来表征超压的分布,研究表明:采用孔隙度和孔隙度+压力两种数据形式校正获得的孔隙度趋势差异不大(图 5ad);采用压力+孔隙度数据校正的压力结果,很好地解释了页岩层中观察到的超压趋势(图 5be);采用孔隙度数据校正的超压分布范围为10~35 MPa(图 5c),而采用压力+孔隙度数据校正的超压分布范围为24~35 MPa(图 5f)。静水压力是孔隙流体压力等于上覆水柱的重量时的孔隙流体压力;孔隙流体压力高于静水压力的称为高压异常或异常高压,如渤海湾盆地济阳坳陷车镇凹陷沙三中、下亚段[59];而孔隙流体压力低于静水压力的称为低压异常或异常低压,如二连盆地阿南凹陷和乌里雅斯太凹陷[60]、渤海湾盆地辽河坳陷西部凹陷南段沙河街组[61]

图 5 Navarin盆地的压实作用校正模型和超压发育不确定性分析(据Colombo et al.[58]修改) (a)和(d)分别是孔隙度和孔隙度+压力两种数据校正的孔隙度垂直分布;(b)和(e)分别是孔隙度和孔隙度+压力两种数据校正的地层压力垂直分布;(c)和(f)分别是孔隙度和孔隙度+压力两种数据校正的超压垂直分布(黄色曲线);黑色实线代表 50%概率,蓝色虚线分别代表着5%和95%概率 Fig.5 Uncertainty analysis of overpressure development and calibrated compaction model for the Navarin Basin (modified from Colombo et al.[58] )

此外,地质流体是砂岩压实作用过程中的重要影响因素,主要包括大气淡水、地层水、烃类流体和深部热液等;地质流体很大程度上取决一个成岩系统的开放程度;其中,大气淡水淋滤可以形成淋滤带,一定程度上改善砂岩储层;地层水在整个压实作用过程中通过地层水化学性质和循环热对流运动方式影响砂岩储层的成岩演化、控制砂岩储层溶解位置、传输路径和沉淀位置;烃类流体的充注改变了砂岩储层颗粒表面润湿性,对成岩作用具有重要影响。

1.3 压实作用响应特征

砂岩压实作用的响应特征主要表现为砂岩储层在上覆沉积物重力(或有效应力)作用下早期由于骨架颗粒重新排列而发生粒间体积减少、晚期由于与压溶作用相关的溶解、胶结作用而导致孔隙空间减少的过程。对富含刚性颗粒的石英砂岩的机械压实作用而言,初始孔隙度值为42%;随着埋藏深度增加到1 500 m时,粒间体积下降到约28%~30%;随着埋藏深度增加到2 500 m时,粒间体积减少到26%;随着埋藏深度增大至到达到机械压实作用下限[62]图 6a)。机械—化学压实作用控制的砂岩孔隙度—深度趋势线在机械压实和化学压实作用下最终砂岩孔隙度处于10%~20%之间[63]图 6b)。

图 6 孔隙体积与深度的剖面图 (a)刚性颗粒砂岩的粒间体积压实曲线(据Paxton et al.[62]修改);(b)机械压实和化学压实作用条件下的孔隙度—深度曲线(据Schneider et al.[63]修改) Fig.6 Cross-section profile of pore volume and depth

图 6a中可以看出机械压实作用控制的石英砂岩的粒间体积—深度关系曲线在2 500 m左右达到机械压实作用下限;从图 6b中可以看出机械压实和化学压实作用控制的石英砂岩孔隙度—深度曲线在达到2 500 m深度时砂岩孔隙度仍然在减少,说明这个深度范围内砂岩孔隙度减少主要是受化学压实作用控制的。所以机械—化学压实作用控制的砂岩孔隙度—深度趋势线能较好地反映由物理和化学作用过程驱动的压实作用下孔隙度演化过程[63-65]

综合国外沉积盆地的砂岩(图 7a)和页岩(图 7b)孔隙度与深度曲线[66]、中国沉积盆地的砂岩孔隙度与深度曲线(图 7c[67]、室内物理模拟实验的砂泥岩孔隙度与深度曲线(图 7d),获得沉积盆地内砂岩压实作用的响应特征和孔隙度演化规律。其中,沉积盆地内泥岩孔隙度—深度曲线、砂岩孔隙度—深度曲线均呈现出三段式特征,即0~2 000 m深度范围内孔隙度快速减少、2 000~3 000 m深度范围内孔隙度缓慢减少、> 3 000 m深度范围内孔隙度缓慢减少(图 7abc);室内物理模拟实验的砂泥岩孔隙度—深度曲线表明:砂泥岩孔隙度—深度曲线呈现出三段式,即0 ~3 000 m深度范围内孔隙度快速减少、3 000 ~ 4 000 m深度范围内孔隙度缓慢减少、> 4 000 m深度范围内孔隙度进一步缓慢减少(图 7d)。沉积盆地内大量砂岩、泥岩和砂泥岩的孔隙度—深度关系曲线表明,砂岩孔隙度处于20%~30%之间,泥岩孔隙度处于0~20%之间,砂泥岩孔隙度处于5%~15%。

图 7 砂岩、泥岩和不同砂岩/泥岩比例岩性的孔隙度—深度关系曲线(据Chudi[66],庞雄奇等[67]修改) (a)国外砂岩的孔隙度—深度关系曲线;(b)国外页岩的孔隙度—深度关系曲线;(c)中国沉积盆地内砂岩孔隙度—深度关系曲线;(d)不同砂岩/泥岩比例岩性孔隙度—深度关系曲线;图d的数据引用法国石油研究院开发的Temisflow软件操作指南 Fig.7 Relationship curves of porosity vs. depth of sandstone, mudstone and lithologies of different sandstone/mudstone proportions (modified from Chudi[66], Pang et al.[67] )
2 压实作用定量模拟新进展

本部分阐述了压实作用模型与数值模拟研究、压实作用物理模拟与数值模拟研究两方面新进展。

2.1 压实作用模型与数值模拟研究

已有的研究多利用现今砂岩多点压实交会图拟合出的孔隙度—深度关系曲线,然后假设该曲线就是砂岩随着埋藏深度变化的古压实孔隙度演化曲线。用孔隙度—深度关系曲线预测古压实孔隙度演化时,要注意孔隙度—深度关系曲线的数据来源要与待预测的砂岩是同一个层位,并且待预测砂岩孔隙度要处于平均孔隙度—深度关系曲线的一定范围内[68]。然而现今砂岩孔隙度—深度关系曲线只是砂岩在现今这个时间点上的一个瞬时状态,并不代表从沉积到现今的整个地质过程。该方法的缺点是多点压实交会图拟合出来的砂岩孔隙度—深度关系曲线与单点压实模拟实验的压实轨迹曲线是存在差异的。

压实作用数值模拟是指基于埋藏史和压实作用模型相结合的一项方法技术。压实作用数值模拟研究是在沉积盆地内成岩压实作用过程及其相应的温度和压力条件下,采用压实作用模型和石英胶结作用模型模拟出机械压实和化学压实作用引起的砂岩孔隙度减少量。因而,压实作用数值模拟可以重现早期由于上覆沉积物重力而发生骨架颗粒重新排列及粒间体积减小、晚期由于升高的温度和压力而发生在骨架颗粒接触位置处压溶作用及相应的孔隙度缓慢减少的过程。压实作用数值模拟方法主要基于两个成岩作用模型,一个是与压实作用相关的,一个是与压溶作用相关的石英胶结作用。压实作用模型是通过观察胶结物含量少、干净的、分选性良好的石英砂岩的机械压实作用,通常在2 km埋藏深度上实现颗粒重排稳定堆积(IGV接近26%);石英胶结作用模型是在砂岩储层温度超过60 ℃~80 ℃时,石英胶结物克服动力学抑制,开始沉淀在合适的石英颗粒表面上,主要受控于时间、温度、石英颗粒含量、粒径、石英颗粒表面积[69-70]和黏土矿物包膜[71-73]等。可能的硅质来源包括生物成因硅质、长石和火山岩屑的溶蚀作用、黏土矿物转化、石英颗粒压溶作用、来自邻近泥岩和深部流体迁移[74-75]等;基于铸体薄片和阴极发光薄片等分析测试进行观察统计,计算出长石和岩屑溶蚀成因的、石英颗粒压溶成因的和来自邻近泥岩成因的等石英胶结物的含量及其比例系数;根据压溶成因的石英胶结物比例系数评价出压溶成因的石英胶结物。

国内外学者在压实作用模型方面进行了大量研究[18, 20, 27, 48, 51, 69-70, 76-92],主要研究了孔隙度—深度指数关系的压实作用模型、埋藏时间和埋藏深度双重因素的压实作用模型、石英胶结作用模型、蒙脱石伊利石化模型、压实—胶结三元解析减孔模型、压实作用与流体流动耦合研究等方面内容。Formmaggia et al.[2]呈现了一个在石英胶结作用存在的情况下砂岩正演压实作用模型的较全面的模拟工具。该模型使人们在不确定机械压实作用和化学压实作用参数情况下能够对系统状态进行全局敏感性分析,并且获得一个有效的压实系统替代模型。

对比分析不同地质条件的石英砂岩机械压实作用模型[20, 62, 93-95],Rossi et al.[94]研究了Llanos盆地内分选性值1.0、0.77和0.4的干净石英岩在压实作用下的粒间体积—深度曲线;在0~3 000 m深度范围内,Gluyas et al.[93]的刚性颗粒砂岩压实作用曲线在形状上与Llanos盆地内分选性值0.55的干净石英砂岩的粒间体积—深度曲线非常相似;Paxton et al.[62]的分选性值0.35~0.71的刚性颗粒砂岩的粒间体积—深度曲线,与Llanos盆地内分选性值0.6的干净石英岩的粒间体积—深度曲线是相似的;Lander et al.[20]研究的中等到好分选性的、刚性颗粒砂岩压实作用曲线展现出更高的粒间体积—深度曲线(图 8a),这可能是因为他们使用的砂岩校正数据集包含大量的抑制压实作用的胶结物。Colombo et al.[5]在先前的单层地层格架下的正向/反向压实作用模拟基础上,考虑沉积盆地内多套地层,实现了复杂地层格架下正向/反向压实作用模拟研究,该模型较好地输出孔隙度、储层温度和地层压力等数据[5]。以纽新兰Taranaki盆地古新世Farewell组砂岩为例,通过稳定增加的垂向有效应力,在0~3 500 m范围内机械压实作用是孔隙度减少的主要驱动机制(图 8b);在古新世—早始新世期间Farewell组地层快速埋藏(150 m/Ma),允许垂向脱水,导致地层接近静水压力条件;在中始新世—早渐新世期间沉积了大约200 m厚的Otoraoa组地层沉积物,而在中新世时期沉积了几千米厚的泥岩沉积物;这样,从中新世开始通过不平衡压实作用形成少量超压,在中新世晚期构造反转导致背斜轴线上剥蚀掉大约300 m,出现压力释放现象;在中新世晚期到上新世期间Farewell组地层又发生快速沉降埋藏,进一步形成超压带(图 8b[96]

图 8 压实作用模型和压实作用模拟效果图 (a)石英岩的机械压实作用模型(据Lander et al.[20], Paxton et al.[62], Gluyas et al.[93], Rossi et al.[94], Marcussen et al.[95]修改);(b)Kapuni Deep-1井Farewell组砂岩的埋藏深度、有效应力、孔隙度和超压分布图(据O’Neilla et al. [96]修改) Fig.8 (a) Compaction model, and (b) numerical simulation diagram of compaction effect
2.2 压实作用物理模拟与数值模拟融合研究

压实物理模拟是一项有效的实验室内模拟成岩作用的技术手段[97-98],实验目的主要是开展目标砂岩压实物理模拟实验、建立压实物理模拟实验数据的压实作用模型、评价压实作用条件下砂岩储层物性的演化特点。成岩物理模拟是根据时间—温度补偿原理,在设置符合地质情况的温度、压力和流体性质条件下研究压实作用造成的储层孔隙演化规律和物性变化特征。根据文献报道[98],成岩物理模拟装置逐渐从单一压实作用或溶蚀作用向综合压实作用、溶蚀作用和胶结作用的方向发展。成岩物理模拟装置包括反应釜、压力泵、控制系统和测试系统四部分;反应釜是整个成岩物理模拟系统的核心部件,整个模拟实验过程都是在这个釜体内温度、压力和流体条件下进行;压力泵是向反应釜提供近似上覆地层压力的设备,可以以不同压力梯度增加压力或直接增压;控制系统是用来控制反应釜内成岩模拟实验时的温度、压力、流体进出情况;测量系统是记录反应釜内实验过程中涉及的温度、压力、模拟时间和流体进出的情况。

在压实模拟实验方面,学者们[14, 41, 56, 99-109]分别模拟了黏土、石英砂及其混合物的压实特征,研究了压实作用条件下不同粒度、不同矿物组分砂岩孔隙度变化特征,探索了地层温度、压力和埋藏时间等在单一岩石组分砂岩压实演化效应,调查了砂岩孔隙度和渗透率的变化与承载压力、温度和时间之间关系等方面内容。砂岩压实作用的内部影响因素包括矿物成分、填隙物、粒度和分选性等,外部影响因素包括压力、温度、流体与时间等。压实作用物理模拟实验样品成分应按照研究区砂岩的实际碎屑组分配比制备,选取的碎屑组分和填隙物可以根据研究人员的需求进行整体混合和层状混合;将配置好的松散砂岩样品放入反应釜内。成岩流体的选取是结合实际岩芯样品压实作用特征和多次模拟实验结果对比确定的。压实物理模拟实验的关键是实验条件要尽可能接近沉积盆地内砂岩压实过程的地质条件。充分考虑沉积盆地内砂岩压实作用过程和压实物理模拟实验仪器设备的可实施性,在压实物理模拟实验时,设定温度、上覆压力、孔隙压力和流体匹配供给等参数,模拟逼近实际地质情况的压实作用过程。在此过程,固定间隔从反应釜中释放出少量液体样品,测试流体离子浓度。经过完整的压实物理模拟实验后,松散的砂质实验样品固结成砂岩。对模拟实验后砂岩样品进行铸体薄片、阴极发光薄片和扫描电镜图像分析及成岩流体离子浓度测试,重点分析实验后砂岩样品的碎屑组分、孔隙空间、自生矿物和流体离子浓度等信息。

粒间体积是在铸体薄片上定量统计的粒间孔隙、基质和胶结物的总和。粒间体积—深度曲线揭示了砂岩的机械压实作用[110]。粒间压溶作用对石英胶结作用起到一部分作用[20];压溶成因的石英胶结物含量和石英胶结作用模型评价结果对比确保化学压实作用结果的准确性。同样,可以对孔隙度、埋藏深度和地层年代进行多元回归,获得埋藏深度和埋藏时间双重因素的压实作用模型。此外,可以从压实剖面特征、理论模型推导和地质统计分析的角度以多元函数模型来评价砂岩压实作用减孔效应。基于压实物理模拟实验数据的压实作用模型是通过铸体薄片和阴极发光薄片统计数据结果、粒间体积—深度曲线和压溶成因石英胶结物含量来验证压实作用模型的准确性。

目前压实作用模型是基于观察干净的、分选性好的、胶结物含量少的石英砂岩建立的[14, 20, 62, 110]。未来将考虑更复杂的岩石类型,如长石、燧石和碳酸盐颗粒丰富的砂岩、富含韧性颗粒砂岩和火山岩屑砂岩[62],获取复杂岩石类型的矿物组分、孔隙空间、孔喉、自生矿物组分和流体离子浓度等信息,建立砂岩组分更复杂的压实作用模型,为压实作用数值模拟研究提供接近沉积盆地内地质情况的压实作用模型。Lu et al.[111]开展了砂岩压实模拟实验,砂岩孔隙度伴随着上覆地层载荷增加而逐渐下降,具有两个不同初始孔隙度的相似样品孔隙度减少趋势、逐渐合并(图 9ab);分别利用多元回归和迭代运算来确定砂岩弹性模量和等效黏性系数随埋藏深度和时间的变化趋势,发现杨氏模量、相对黏度系数分别与孔隙度呈现为指数函数(图 9c)和幂函数(图 9d);在此基础上,建立了埋藏深度和埋藏时间双因素的三元解析减孔模型,将减孔量分为弹性减孔、黏弹性减孔和胶结减孔3部分;地质统计学模型可以外推到沉积盆地压实作用过程中(图 9e),可用于预测砂岩压实剖面上正演孔隙度演化趋势(低孔隙率压实作用趋势LPCT和高孔隙率压实作用趋势HPCT)[111]

图 9 基于模拟实验的压实作用模型(据Lu et al.[111]修改) (a)(b)压实模拟实验的孔隙度—压力剖面图;(c)低孔隙度压实作用趋势的静态杨氏模量—砂岩孔隙度剖面图;(d)低孔隙度压实作用趋势的相对黏度系数(EVC)—砂岩孔隙度剖面图;(e)砂岩压实作用趋势与从地表到最大埋藏深度的对应关系。注意:右侧孔隙度—深度剖面展示,在半对数坐标系统中三个片段或平行或亚平行,形成两个压实作用趋势:(1)在白垩系和二叠系低孔隙率压实趋势(LPCT)(橙色和绿色虚线);(2)侏罗系和三叠系(蓝色虚线)高孔隙率压实作用趋势(HPCT) Fig.9 Compaction simulation experiment and compaction model (modified from Lu et al.[111])
3 压实作用研究趋势及展望

综合国内外砂岩压实作用研究新进展,结合压实作用实际研究工作,展望以下几方面发展趋势:

(1)砂岩组分更复杂的压实作用模型。目前压实作用模型主要是来自石英砂岩的;未来将考虑砂岩组分更复杂的岩石类型,如长石砂岩和岩屑砂岩等;基于压实物理模拟实验获得的颗粒、孔隙、自生矿物和成岩流体离子浓度等信息,建立砂岩组分更复杂的压实作用模型。化学压实作用模型不仅仅考虑与压溶作用相关的石英胶结作用,将考虑更多与压溶作用相关的溶解作用、胶结作用的成岩作用模型。

(2)压实作用与流体流动耦合研究,是基于砂岩骨架和孔隙流体等信息,研究砂岩压实作用过程中孔隙流体流动、孔隙流体压力和储层物性变化。构建机械压实和地球化学反应的压实作用过程的数值模型,形成一套基于流体流动、机械压实和地球化学反应的压实作用过程的方法。在应力场、温度场和流体场背景下,提出求解流体流动、机械压实和化学反应耦合的迭代求解方案,有效地按顺序求解控制方程组,进而揭示压实作用过程中砂岩储层的孔隙流体压力和孔隙度演化的成因机制。

(3)垂向—侧向多动力学机制研究。盆地模拟软件中压实作用模拟主要是垂直方向的,而沉积盆地内砂岩储层是受复杂的埋藏史和构造阶段控制的;这样,有必要加强埋藏史、构造运动和构造变形研究以及对沉积盆地内砂岩储层的侧向压实作用效应研究。

(4)砂岩—泥岩协同机制研究,突出1)与沉积物相关的机械属性和2)局部沉积物的矿物组分差异分布引起的岩石孔隙空间变化和孔隙流体体积变化的化学压实过程;重点分析砂岩—泥岩中碳酸盐、黄铁矿和自生黏土矿物等成岩矿物及地球化学分析资料,精细地研究砂岩—泥岩内成岩矿物组合特征及其空间分布;通过研究砂岩—泥岩的组分、机械属性、孔隙空间变化和孔隙流体性质及其之间动力联系,有效地揭示砂岩—泥岩系统内成岩矿物空间分布及其成因机制,进而分析砂泥岩压力分布和物性分布特征。

(5)构造—沉积—成岩“三相”耦合的压实作用数值模拟研究。压实作用数值模拟将朝着地质、测井、地震和分析测试多资料融合的构造—沉积—成岩“三相”耦合的方向发展,这主要包括建立3D沉积微相约束下3D岩相模型、3D岩相模型基础上的机械压实作用和化学压实作用及其砂岩孔隙度的响应特征。构造—沉积—成岩“三相”融合研究可以提供沉积背景、岩石特征、埋藏历史、成岩作用类型和成岩演化序列等信息,有助于加强对机械压实作用和化学压实作用的理解,提高砂岩压实作用模拟研究精度。

4 结论

(1)压实作用包括机械压实作用和化学压实作用。砂岩在压实作用过程中一般经历机械压实作用阶段、机械压实作用和化学压实作用并存阶段和化学压实作用为主—机械压实作用为辅阶段。

(2)重点阐述了埋藏方式、砂岩组分、储层温度和地层压力等压实作用影响因素。埋藏方式包括埋藏深度和埋藏时间双因素;同一地质年代组的碎屑岩孔隙度随着埋藏深度增加而减少,相同深度区间段内碎屑岩孔隙度随着埋藏时间增加而减少。砂岩中石英和长石等刚性颗粒含量越高,其抗压实能力越强;反之亦然。地温梯度高的地区砂岩压实速率高于地温梯度低的地区。压实作用在深层、超深层碎屑岩储层中可能由于欠压实作用而具有建设性作用,在超深层碎屑岩储层也可能存在相对孔隙发育带。

(3)压实作用数值模拟是指基于埋藏史和压实作用模型相结合的一项方法技术。机械压实作用和化学压实作用具有各自的成岩作用模型。机械压实作用模型是粒间体积—深度关系曲线;而化学压实作用模型是与压溶作用相关的溶解作用和胶结作用,主要是压溶成因石英胶结物的模拟评价。

(4)压实作用数值模拟研究有助于评价压实作用对砂岩储层物性的影响和预测未知区砂岩储层物性空间分布。砂岩压实作用研究应重视压实作用模型与数值模拟研究以及压实作用物理模拟与数值模拟耦合研究。压实作用研究将朝着砂岩组分更加复杂的压实作用模型、压实作用与流体流动耦合、垂向—侧向多动力学机制、砂岩—泥岩协同机制和构造—沉积—成岩“三相”耦合的压实作用数值模拟研究方向发展。

参考文献
[1]
Formaggia L, Guadagnini A, Imperiali I, et al. Uncertainty analysis of basin scale compaction processes[C]//EGU General Assembly 2012. Vienna: EGU, 2012: 7828.
[2]
Formaggia L, Guadagnini A, Imperiali I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geoscience, 2013, 17(1): 25-42. doi: 10.1007/s10596-012-9311-5
[3]
Porta G, Tamellini L, Lever V, et al. Inverse modeling of geochemical and mechanical compaction in sedimentary basins through polynomial chaos expansion[J]. Water Resource Research, 2014, 50(12): 9414-9431. doi: 10.1002/2014WR015838
[4]
Giovanardi B, Scotti A, Formaggia L, et al. A general framework for the simulation of geochemical compaction[J]. Computational Geosciences, 2015, 19(5): 1027-1046. doi: 10.1007/s10596-015-9518-3
[5]
Colombo I, Nobile F, Porta G, et al. Uncertainty quantification of geochemical and mechanical compaction in layered sedimentary basins[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 122-146. doi: 10.1016/j.cma.2017.08.049
[6]
寿建峰, 张惠良, 斯春松, 等. 砂岩动力成岩作用[M]. 北京: 石油工业出版社, 2005: 1-2. [Shou Jianfeng, Zhang Huiliang, Si Chunsong, et al. Dynamic diagenesis of sandstone[M]. Beijing: Petroleum Industry Press, 2005: 1-2.]
[7]
李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 2012, 23(4): 607-615. [Li Jianzhong, Guo Bincheng, Zheng Min, et al. Main types, geological features and resource potential of tight sandstone gas in China[J]. Natural Gas Geoscience, 2012, 23(4): 607-615.]
[8]
纪友亮. 油气储层地质学[M]. 2版. 东营: 中国石油大学出版社, 2009: 55-61. [Ji Youliang. Petroleum reservoir geology[M]. 2nd ed. Dongying: China University of Petroleum Press, 2009: 55-61.]
[9]
施辉, 刘震, 潘高峰, 等. 沉积盆地碎屑岩地层孔隙度演化模型分析:以鄂尔多斯盆地延长组为例[J]. 地质科学, 2013, 48(3): 732-746. [Shi Hui, Liu Zhen, Pan Gaofeng, et al. Clastic strata porosity evolution model analysis in sedimentary basins[J]. Chinese Journal of Geology, 2013, 48(3): 732-746. doi: 10.3969/j.issn.0563-5020.2013.03.012]
[10]
Fawad M, Mondol N H, Jahren J, et al. Mechanical compaction and ultrasonic velocity of sands with different texture and mineralogical composition[J]. Geophysical Prospecting, 2011, 59(4): 697-720. doi: 10.1111/j.1365-2478.2011.00951.x
[11]
Marcussen Ø, Thyberg B I, Peltonen C, et al. Physical properties of Cenozoic mudstones from the northern North Sea:Impact of clay mineralogy on compaction trends[J]. AAPG Bulletin, 2009, 93(1): 127-150. doi: 10.1306/08220808044
[12]
Mondol N H, Bjørlykke K, Jahren J, et al. Experimental mechanical compaction of clay mineral aggregates-changes in physical properties of mudstones during burial[J]. Marine and Petroleum Geology, 2007, 24(5): 289-311. doi: 10.1016/j.marpetgeo.2007.03.006
[13]
Peltonen C, Marcussen Ø, Bjørlykke K, et al. Mineralogical control on mudstone compaction:A study of Late Cretaceous to Early Tertiary mudstones of the Vøring and Møre basins, Norwegian Sea[J]. Petroleum Geoscience, 2008, 14: 127-138. doi: 10.1144/1354-079308-758
[14]
Ajdukiewicz J M, Lander R H. Sandstone reservoir quality prediction:The state of the art[J]. AAPG Bulletin, 2010, 94(8): 1083-1091. doi: 10.1306/intro060110
[15]
Bjørlykke K. Clay mineral diagenesis in sedimentary basins-a key to the prediction of rock properties. Examples from the North Sea Basin[J]. Clay Minerals, 1988, 33(1): 15-34.
[16]
Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of southwest Texas; implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 494(1): 55-70.
[17]
Zadeh M K, Mondol N H, Jahren J. Compaction and rock properties of Mesozoic and Cenozoic mudstones and shales, northern North Sea[J]. Marine and Petroleum Geology, 2016, 76: 344-361. doi: 10.1016/j.marpetgeo.2016.05.024
[18]
Athy L F. Density, porosity, and compaction of sedimentary rock[J]. AAPG Bulletin, 1930, 14(1): 1-24.
[19]
Hedberg H D. Gravitational compaction of clays and shales[J]. American Journal of Science, 1936, 31(184): 241-287.
[20]
Lander R H, Walderhaug O. Predicting porosity through simulating sandstone compaction and quartz cementation[J]. AAPG Bulletin, 1999, 83(3): 433-449.
[21]
Bjørlykke K, Høeg K. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins[J]. Marine and Petroleum Geology, 1997, 14(3): 267-276. doi: 10.1016/S0264-8172(96)00051-7
[22]
Bjørkum P A, Oelkers E H, Nadeau P H, et al. Porosity prediction in quartzose sandstones as a function of time, temperature, depth, stylolite frequency, and hydrocarbon saturation[J]. AAPG Bulletin, 1988, 82(4): 637-648.
[23]
Giles M R, Indrelid S L, James D M D. Compaction-the great unknown in basin modelling[C]//Düppenbecker S J, Iliffe J E. Basin modelling: Practice and progress. Geological Society, London, Special Publication, 1988, 141(1): 15-43.
[24]
Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6): 633-642.
[25]
Lundegard P D, Trevena A S. Sandstone diagenesis in the Pattani Basin(Gulf of Thailand):History of water-rock interaction and comparison with the gulf of Mexico[J]. Applied Geochemistry, 1990, 5(5/6): 669-685.
[26]
Oelkers E H, Bjørkum P A, Murphy W M. A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones[J]. American Journal of Science, 1996, 296(4): 420-452. doi: 10.2475/ajs.296.4.420
[27]
Scherer M. Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J]. AAPG Bulletin, 1987, 71(5): 485-491.
[28]
Schmoker J W, Gautier D L. Compaction of basin sediments:Modeling based on time-temperature history[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B6): 7379-7386. doi: 10.1029/JB094iB06p07379
[29]
Wangen M. The blanketing effect in sedimentary basins[J]. Basin Research, 1995, 7(4): 283-298. doi: 10.1111/j.1365-2117.1995.tb00118.x
[30]
Waples D W, Kamata H. Modeling porosity reduction as a series of chemical and physical processes[C]//Doré A G. Basin modelling: Advances and application. Amsterdam: Elsevier, 1993: 303-320.
[31]
Aplin A C, Vasseur G. Some new developments for modelling the geological compaction of fine-grained sediments:Introduction[J]. Marine and Petroleum Geology, 1998, 15(2): 105-108. doi: 10.1016/S0264-8172(98)00007-5
[32]
Tokunaga T, Hosoya S I, Kojima K, et al. Change of hydraulic properties of muddy deposits during compaction: Assessment of mechanical and chemical effect[C]//7th International Congress of the International Association of Engineering Geology, 1994; 635-643.
[33]
刘震, 邵新军, 金博, 等. 压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J]. 现代地质, 2007, 21(1): 125-132. [Liu Zhen, Shao Xinjun, Jin Bo, et al. Co-effect of depth and burial time on the evolution of porosity for classic rocks during the stage of compaction[J]. Geoscience, 2007, 21(1): 125-132. doi: 10.3969/j.issn.1000-8527.2007.01.016]
[34]
刘明洁, 刘震, 刘静静, 等. 鄂尔多斯盆地上三叠统延长组机械压实作用与砂岩致密过程及对致密化影响程度[J]. 地质论评, 2014, 60(3): 655-665. [Liu Mingjie, Liu Zhen, Liu Jingjing, et al. The relationship between the mechanical compaction and the densification process of sandstones and the affect degree of compaction to the densifying of Yanchang Formation, Ordos Basin[J]. Geological Review, 2014, 60(3): 655-665.]
[35]
刘震, 孙迪, 李潍莲, 等. 沉积盆地地层孔隙动力学研究进展[J]. 石油学报, 2016, 37(10): 1193-1215. [Liu Zhen, Sun Di, Li Weilian, et al. Advances in research on stratigraphic porodynamics of sedimentary basins[J]. Acta Petrolei Sinica, 2016, 37(10): 1193-1215. doi: 10.7623/syxb201610001]
[36]
刘明洁, 刘震, 刘静静, 等. 砂岩储集层致密与成藏耦合关系:以鄂尔多斯盆地西峰-安塞地区延长组为例[J]. 石油勘探与开发, 2014, 41(2): 168-175. [Liu Mingjie, Liu Zhen, Liu Jingjing, et al. Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation:A case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin[J]. Petroleum Exploration and Development, 2014, 41(2): 168-175.]
[37]
Nooraiepour M, Mondol N H, Hellevang H, et al. Experimental mechanical compaction of reconstituted shale and mudstone aggregates:Investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences[J]. Marine and Petroleum Geology, 2017, 80: 265-292. doi: 10.1016/j.marpetgeo.2016.12.003
[38]
Bjørlykke K, Chuhan F, Kjeldstad A, et al. Modelling of sediment compaction during burial in sedimentary basins[J]. Elsevier Geo-Engineering Book Series, 2004, 2: 699-708. doi: 10.1016/S1571-9960(04)80121-6
[39]
Makowitz A, Lander R H, Milliken K L. Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction[J]. AAPG Bulletin, 2006, 90(6): 873-885. doi: 10.1306/12190505044
[40]
王旭, 刘树晖, 叶德胜, 等. 塔里木盆地东北地区三叠系、侏罗系砂岩的压实作用及其石油地质意义[J]. 石油实验地质, 1993, 15(1): 49-59. [Wang Xu, Liu Shuhui, Ye Desheng, et al. On the sandstone compaction of Jura-Trias systems and the petroleum geological significance in the Northeast Tarim Basin[J]. Experimental Petroleum Geology, 1993, 15(1): 49-59.]
[41]
Bjørlykke K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14. doi: 10.1016/j.sedgeo.2013.12.002
[42]
Coulty N R, Sargent C, Andras P, et al. Compaction of diagenetically altered mudstones-Part 1:Mechanical and chemical contributions[J]. Marine and Petroleum Geology, 2016, 77: 703-713. doi: 10.1016/j.marpetgeo.2016.07.015
[43]
Schmoker J W, Gautier D L. Sandstone porosity as a function of thermal maturity[J]. Geology, 1988, 16(11): 1007-1010. doi: 10.1130/0091-7613(1988)016<1007:SPAAFO>2.3.CO;2
[44]
Aagaard P, Jahren J. Special issue introduction:Compaction processes-porosity, permeability and rock properties evolution in sedimentary basins[J]. Marine and Petroleum Geology, 2010, 27(8): 1681-1683. doi: 10.1016/j.marpetgeo.2010.07.001
[45]
程启贵, 张磊, 郑海妮, 等. 基于成岩作用定量表征的成岩-储集相分类及意义:以鄂尔多斯盆地王窑-杏河-侯市地区延长组长6油层组特低渗储层为例[J]. 石油天然气学报(江汉石油学院学报), 2010, 32(5): 60-65. [Cheng Qigui, Zhang Lei, Zheng Haini, et al. Classification and significance of diagenesis-reservoir facies based on the quantitative characterization of diagenesis-by taking Chang-6 extra-low permeability reservoirs of Yanchang Formation of Triassic System in Wangyao-Xinghe-Houshi area of Ordos Basin for example[J]. Journal of Oil and Gas Technology, 2010, 32(5): 60-65.]
[46]
宋子齐, 王静, 路向伟, 等. 特低渗透油气藏成岩储集相的定量评价方法[J]. 油气地质与采收率, 2006, 13(2): 21-23. [Song Ziqi, Wang Jing, Lu Xiangwei, et al. An quantitative assessment method of the diagenetic reservoir facies in extra-low permeability oil-gas reservoir[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(2): 21-23. doi: 10.3969/j.issn.1009-9603.2006.02.007]
[47]
石良, 金振奎, 闫伟, 等. 储层压实作用和胶结作用的压力响应特征[J]. 地球科学进展, 2015, 30(2): 259-267. [Shi Liang, Jin Zhenkui, Yan Wei, et al. Characteristics of pressure response in detrital resveroir compaction and cementation[J]. Advances in Earth Science, 2015, 30(2): 259-267.]
[48]
Ehrenberg S N, Nadeau P H, Steen Ø. Petroleum reservoir porosity versus depth:Influence of geological age[J]. AAPG Bulletin, 2009, 93(10): 1281-1296. doi: 10.1306/06120908163
[49]
Ehrenberg S N, Nadeau P H. Sandstone vs. carbonate petroleum reservoirs:A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89(4): 435-445. doi: 10.1306/11230404071
[50]
何小胡, 刘震, 梁全胜, 等. 沉积地层埋藏过程对泥岩压实作用的影响[J]. 地学前缘, 2010, 17(4): 167-173. [He Xiaohu, Liu Zhen, Liang Quansheng, et al. The influence of burial history on mudstone compaction[J]. Earth Science Frontiers, 2010, 17(4): 167-173.]
[51]
Pittman E D, Larese R E. Compaction of lithic sands:Experimental results and applications[J]. AAPG Bulletin, 1991, 75(8): 1279-1299.
[52]
Beard D C, Weyl P K. Influence of texture on porosity and permeability of unconsolidated sand[J]. AAPG Bulletin, 1973, 57(2): 349-369.
[53]
牛海青, 陈世悦, 韩小锋. 准噶尔盆地乌夏地区三叠系成岩作用及其影响因素[J]. 西安石油大学学报(自然科学版), 2010, 25(2): 6-12. [Niu Haiqing, Chen Shiyue, Han Xiaofeng. Diagenesis of Triassic reservoir in Wuxia area of Junggar Basin and its influencing factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2010, 25(2): 6-12. doi: 10.3969/j.issn.1673-064X.2010.02.002]
[54]
卢红霞, 陈振林, 高振峰, 等. 碎屑岩储层成岩作用的影响因素[J]. 油气地质与采收率, 2009, 16(4): 53-55. [Lu Hongxia, Chen Zhenlin, Gao Zhenfeng, et al. Analysis on influencing factors of diagenesis in clastic reservoir[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(4): 53-55. doi: 10.3969/j.issn.1009-9603.2009.04.016]
[55]
Wilson J C, McBride E F. Compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California[J]. AAPG Bulletin, 1988, 72(6): 664-681.
[56]
寿建峰, 张惠良, 沈杨, 等. 中国油气盆地砂岩储层的成岩压实机制分析[J]. 岩石学报, 2006, 22(8): 2165-2170. [Shou Jian-feng, Zhang Huiliang, Shen Yang, et al. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J]. Acta Petrologica Sinica, 2006, 22(8): 2165-2170.]
[57]
奇林格V A..异常地层压力成因与预测[M].赵文智, 译.北京: 石油工业出版社, 2004: 15-51. [Serebryakov V A. Origin and prediction of abnormal formation pressures[M]. Zhao Wenzhi, trans. Beijing: Petroleum Industry Press, 2004: 15-51.]
[58]
Colombo I, Porta G M, Ruffo P, et al. Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins[J]. Hydrogeology Journal, 2017, 25(2): 385-403. doi: 10.1007/s10040-016-1493-9
[59]
曾治平, 郝芳, 宋国奇, 等. 车镇凹陷套尔河洼陷古地层压力演化与油气幕式成藏[J]. 石油与天然气地质, 2010, 31(2): 194-197. [Zeng Zhiping, Hao Fang, Song Guoqi, et al. Palaeo-formation pressure evolution and episodic hydrocarbon accumulation in Tao' Erhe Depression, Chezhen Sag[J]. Oil & Gas Geology, 2010, 31(2): 194-197.]
[60]
徐晓明, 刘震, 肖伟, 等. 二连盆地异常低压成因机理探讨[J]. 中国石油大学学报(自然科学版), 2007, 31(2): 13-18. [Xu Xiaoming, Liu Zhen, Xiao Wei, et al. Investigation on genetic mechanism of subnormal pressure in Erlian Basin[J]. Journal of China University of Petroleum, 2007, 31(2): 13-18. doi: 10.3321/j.issn:1000-5870.2007.02.003]
[61]
孟元林, 张磊, 曲国辉, 等. 异常低压背景下储集层成岩特征:以渤海湾盆地辽河坳陷西部凹陷南段古近系为例[J]. 石油勘探与开发, 2016, 43(4): 669-674. [Meng Yuanlin, Zhang Lei, Qu Guohui, et al. Diagenetic characteristics under abnormally low pressure:A case from the Paleocene of southern Western Sag of Liaohe Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(4): 669-674.]
[62]
Paxton S T, Szabo J O, Ajdukiewicz J M, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J]. AAPG Bulletin, 2002, 86(12): 2047-2067.
[63]
Schneider F, Hay S. Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, Mid-Norwegian Continental Shelf[J]. Marine and Petroleum Geology, 18(7): 833-848. doi: 10.1016/S0264-8172(01)00032-0
[64]
Schneider F, Potdevin S, Wolf S, et al. Mechanical and chemical compaction model for sedimentary basin simulators[J]. Tectonophysics, 1996, 263(1/2/3/4): 307-317.
[65]
Schneider F, Nadeau P, Hay S. Model of shale permeability as a function of the temperature[J]. Application to Mesozoic mudstones, Egersund Basin, Norwegian Continental Shelf[C]//EAGE 65th Conference & Exhibition, Stavanger, Norway, 2003, 1-2.
[66]
Chudi O K. Predicting Oligocene reservoir potential in the deep-water western Niger Delta: An integrated basic modelling and diagenetic study[D]. Heriot-Watt University, 2015, 28-55.
[67]
庞雄奇, 汪文洋, 汪英勋, 等. 含油气盆地深层与中浅层油气成藏条件和特征差异性比较[J]. 石油学报, 2015, 36(10): 1167-1187. [Pang Xiongqi, Wang Wenyang, Wang Yingxun, et al. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 2015, 36(10): 1167-1187.]
[68]
Bloch B. Empirical prediction of porosity and permeability in sandstones[J]. AAPG Bulletin, 1991, 75(7): 1145-1160.
[69]
Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin, 1996, 80(5): 732-745.
[70]
Walderhaug O. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn Field, northern North Sea[J]. AAPG Bulletin, 2000, 84(9): 1325-1339.
[71]
Heald M T, Renton J J. Experimental study of sandstone cementation[J]. Journal of Sedimentary Research, 1966, 36(4): 977-991.
[72]
Makowitz A, Sibley D F. Crystal growth mechanisms of quartz overgrowths in a Cambrian quartz arenite[J]. Journal of Sedimentary Research, 2001, 71(5): 809-816. doi: 10.1306/2DC4096A-0E47-11D7-8643000102C1865D
[73]
Lander R H, Larese R E, Bonnell L M. Toward more accurate quartz cement models:The importance of euhedral versus noneuhedral growth rates[J]. AAPG Bulletin, 2008, 92(11): 1537-1563. doi: 10.1306/07160808037
[74]
Bjørlykke K, Egeberg P K. Quartz cementation in sedimentary basins[J]. AAPG Bulletin, 1993, 77(9): 1538-1548.
[75]
Hyodo A, Kozdon K, Pollington D A, et al. Evolution of quartz cementation and burial history of the Eau Claire Formation based on in situ oxygen isotope analysis of quartz overgrowths[J]. Chemical Geology, 2014, 384: 168-180. doi: 10.1016/j.chemgeo.2014.06.021
[76]
Ehrenberg S N. Measuring sandstone compaction from modal analyses of thin sections; How to do it and what the results mean[J]. Journal of Sedimentary Research, 1995, 65(2a): 369-379. doi: 10.1306/D42680C7-2B26-11D7-8648000102C1865D
[77]
Maxwell J C. Influence of depth, temperature, and geologic age on porosity of quartzose sandstone[J]. AAPG Bulletin, 1964, 48(5): 697-709.
[78]
Hayes J B. Porosity evolution of sandstone related to vitrinite reflectance[J]. Organic Geochemistry, 1991, 17(2): 117-129. doi: 10.1016/0146-6380(91)90070-Z
[79]
Stephenson L P, Plumley W J, Palciauskas V V. A model for sandstone compaction by grain interpenetration[J]. Journal of Sedimentary Petrology, 1992, 62(1): 11-22.
[80]
Taylor J M. Pore-space reduction in sandstones[J]. AAPG Bulletin, 1950, 34(4): 701-716.
[81]
Ajdukiewicz J M, Paxton S T, Szabo J O. Deep porosity preservation in the Norphlet Formation, Mobile Bay, Alabama(abs)[J]. AAPG Bulletin, 1991, 75(3): 533.
[82]
Wilson M D, Stanton P T. Diagenetic mechanisms of porosity and permeability reduction and enhancement[M]//Wilson M D. Reservoir quality assessment and prediction in clastic rocks. Arizona: SEPM Society for Sedimentary Geology, 1994, 30: 59-118.
[83]
Velde B, Vasseur G. Estimation of the diagenetic smectite-to-illite transformation in time-temperature space[J]. American Mineralogists, 1992, 77: 967-976.
[84]
Elliott W C, Matisoff G. Evaluation of kinetic models for the smectite to illite transformation[J]. Clays and Clay Minerals, 1996, 44(1): 77-87. doi: 10.1346/CCMN.1996.0440107
[85]
Huang W L. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer[J]. Clays and Clay Minerals, 1993, 41(2): 162-177. doi: 10.1346/CCMN.1993.0410205
[86]
Perez R J, Boles J R. An empirically derived kinetic model for albitization of detrital plagioclase[J]. American Journal of Science, 2005, 305(4): 312-343. doi: 10.2475/ajs.305.4.312
[87]
Lander R H, Bonnell L M. A model for fibrous illite nucleation and growth in sandstones[J]. AAPG Bulletin, 2010, 94(8): 1161-1187. doi: 10.1306/04211009121
[88]
Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction:Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132. doi: 10.1306/04211009123
[89]
Obinna C, Anaevune A, Lewis H. An integrated approach to reservoir quality prediction of untapped Oligocene reservoir offshore western Niger Delta[C]//SPE Nigeria Annual International Conference and Exhibition. Lagos: Society of Petroleum Engineer, 2016, doi: 10.2118/184273-MS.
[90]
English K L, English J M, Bonnell L M, et al. Controls on reservoir quality in exhumed basins-An example from the Ordovician sandstone, Illizi Basin, Algeria[J]. Marine and Petroleum Geology, 2017, 80: 203-227. doi: 10.1016/j.marpetgeo.2016.11.011
[91]
Chudi O K, Lewis H, Stow D A V, et al. Reservoir quality prediction of deep-water Oligocene sandstones from the west Niger Delta by integrated petrological, petrophysical and basin modelling[J]. Geological Society, London, Special Publication, 2016, 435(1): 245-264.
[92]
夏鲁, 刘震, 李潍莲, 等. 砂岩压实三元解析减孔模型及其石油地质意义:以鄂尔多斯盆地十里加汗地区二叠系下石盒子组致密砂岩为例[J]. 石油勘探与开发, 2018, 45(2): 275-286. [Xia Lu, Liu Zhen, Li Weilian, et al. Ternary analytic porosity-reduction model of sandstone compaction trend and its significance in petroleum geology:A case study of tight sandstones in Permian Lower Shihezi Formation of Shilijiahan area, Ordos Basin, China[J]. Petroleum Exploration and Development, 2018, 45(2): 275-286.]
[93]
Gluyas J, Cade C A. Prediction of porosity in compacted sands[M]//Kupecz J A, Gluyas J, Bloch S. Reservoir quality prediction in sandstones and carbonates. Tulsa, Oklahoma, U. S. A: AAPG, 1997, 69: 19-28.
[94]
Rossi C, Alaminos A. Evaluating the mechanical compaction of quartzarenites:The importance of sorting(Llanos foreland basin, Colombia)[J]. Marine and Petroleum Geology, 2014, 56: 222-238. doi: 10.1016/j.marpetgeo.2014.04.012
[95]
Marcussen Ø, Maast T E, Mondol N H, et al. Changes in physical properties of a reservoir sandstone as a function of burial depth-The Etive Formation, northern North Sea[J]. Marine and Petroleum Geology, 2010, 27(8): 1725-1735. doi: 10.1016/j.marpetgeo.2009.11.007
[96]
O'Neilla S R, Jonesa S J, Kampb P J J, et al. Pore pressure and reservoir quality evolution in the deep Taranaki Basin, New Zealand[J]. Marine and Petroleum Geology, 2018, 98: 815-835. doi: 10.1016/j.marpetgeo.2018.08.038
[97]
林承焰, 王文广, 董春梅, 等. 储层成岩数值模拟研究现状及进展[J]. 中国矿业大学学报, 2017, 46(5): 1084-1101. [Lin Chengyan, Wang Wenguang, Dong Chunmei, et al. State quo of reservoir diagenetic numerical simulation and its advancement[J]. Journal of China University of Mining & Technology, 2017, 46(5): 1084-1101.]
[98]
冯佳睿, 高志勇, 崔京钢, 等. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价:埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320. [Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression:Insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3): 305-320.]
[99]
冯佳睿, 高志勇, 崔京钢, 等. 准南斜坡带砂岩储层孔隙演化特征与有利储层评价:基于成岩物理模拟实验研究[J]. 地质科技情报, 2014, 33(5): 135-140, 148. [Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the slope belt in the southern margin of the Junggar Basin:Insight from diagenesis modeling experiments[J]. Geological Science and Technology Information, 2014, 33(5): 135-140, 148.]
[100]
操应长, 葸克来, 王健, 等. 砂岩机械压实与物性演化成岩模拟实验初探[J]. 现代地质, 2011, 25(6): 1152-1158. [Cao Yingchang, Xi Kelai, Wang Jian, et al. Preliminary discussion of simulation experiments on the mechanical compaction and physical property evolution of sandstones[J]. Geoscience, 2011, 25(6): 1152-1158. doi: 10.3969/j.issn.1000-8527.2011.06.014]
[101]
吴松涛, 孙亮, 崔京钢, 等. 正演模式下成岩作用的温压效应机理探讨与启示[J]. 地质评论, 2014, 60(4): 791-798. [Wu Songtao, Sun Liang, Cui Jinggang, et al. Effect of temperature and pressure on diagenesis using forward modeling[J]. Geological Review, 2014, 60(4): 791-798.]
[102]
侯高峰, 纪友亮, 吴浩, 等. 物理模拟法定量表征碎屑岩储层物性影响因素[J]. 地质科技情报, 2017, 36(4): 153-159. [Hou Gaofeng, Ji Youliang, Wu Hao, et al. Quantitative characterization on the influence factors of porosity and permeability characteristics of clastic reservoirs by physical experiment simulation[J]. Geological Science and Technology Information, 2017, 36(4): 153-159.]
[103]
Chuhan F A, Kjeldstad A, Bjørlykke K, et al. Experimental compression of loose sands:Relevance to porosity reduction during burial in sedimentary basins[J]. Canadian Geotechnical Journal, 2003, 40(5): 995-1011. doi: 10.1139/t03-050
[104]
Chester J S, Lenz S C, Chester F M, et al. Mechanisms of compaction of quartz sand at diagenetic conditions[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 435-451.
[105]
Baud P, Klein E, Wong T F. Compaction localization in porous sandstones:Spatial evolution of damage and acoustic emission activity[J]. Journal of Structural Geology, 2004, 26(4): 603-624. doi: 10.1016/j.jsg.2003.09.002
[106]
Zanella A, Cobbold P R, de Veslud C L C. Physical modelling of chemical compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-rich source rock[J]. Marine and Petroleum Geology, 2014, 55: 262-274. doi: 10.1016/j.marpetgeo.2013.12.017
[107]
孟元林, 王志国, 杨俊生, 等. 成岩作用过程综合模拟及其应用[J]. 石油实验地质, 2003, 25(2): 211-215, 220. [Meng Yuan-lin, Wang Zhiguo, Yang Junsheng, et al. Comprehensive process-oriented simulation of diagenesis and its application[J]. Petroleum Geology & Experiment, 2003, 25(2): 211-215, 220. doi: 10.3969/j.issn.1001-6112.2003.02.020]
[108]
刘国勇, 金之钧, 张刘平. 碎屑岩成岩压实作用模拟实验研究[J]. 沉积学报, 2006, 24(3): 407-413. [Liu Guoyong, Jin Zhijun, Zhang Liuping. Simulation study on clastic rock diagenetic compaction[J]. Acta Sedimentologica Sinica, 2006, 24(3): 407-413. doi: 10.3969/j.issn.1000-0550.2006.03.013]
[109]
刘国勇, 刘阳, 张刘平. 压实作用对砂岩储层物性的影响[J]. 西安石油大学学报(自然科学版), 2006, 21(4): 24-28, 41. [Liu Guoyong, Liu Yang, Zhang Liuping. Experimental study on the effects of compaction on the properties of sandstone reservoir[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2006, 21(4): 24-28, 41. doi: 10.3969/j.issn.1673-064X.2006.04.006]
[110]
Szabo J O, Paxton S T. Intergranular volume(IGV)decline curves for evaluating and predicting compaction and porosity loss in sandstones[C]//AAPG Annual Convention, 1991, (5): 678.
[111]
Lu X, Liu Z, Li W L, et al. Initial porosity and compaction of consolidated sandstone in Hangjin Qi, North Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2018, 166: 324-336. doi: 10.1016/j.petrol.2018.02.060