沉积学报  2019, Vol. 37 Issue (6): 1309−1324

扩展功能

文章信息

宋董军, 妥进才, 王晔桐, 吴陈君, 张明峰
SONG DongJun, TUO JinCai, WANG YeTong, WU ChenJun, ZHANG MingFeng
富有机质泥页岩纳米级孔隙结构特征研究进展
Research Advances on Characteristics of Nanopore Structure of Organic-rich Shales
沉积学报, 2019, 37(6): 1309-1324
ACTA SEDIMENTOLOGICA SINCA, 2019, 37(6): 1309-1324
10.14027/j.issn.1000-0550.2019.030

文章历史

收稿日期:2018-07-09
收修改稿日期: 2019-03-13
富有机质泥页岩纳米级孔隙结构特征研究进展
宋董军1,2,3 , 妥进才1,2 , 王晔桐1,2,3 , 吴陈君1,2 , 张明峰1,2     
1. 中国科学院西北生态环境资源研究院,兰州 730000;
2. 甘肃省油气资源研究重点实验室,兰州 730000;
3. 中国科学院大学,北京 100049
摘要: 阐明富有机质泥页岩孔隙结构特征对阐明页岩油气的赋存机理和勘探开发具有重要的意义。研究泥页岩孔隙结构特征的方法主要包括定量和定性两类,实际研究中常将二者结合使用。有机质含量(TOC)、热演化程度、有机质母质来源、矿物组成及构造变形作用等因素对富有机质泥页岩孔隙结构特征有重要影响。有机质母质来源决定了纳米有机质孔的发育潜能,TOC和矿物组成控制了孔隙的发育类型,而热演化程度决定了孔隙的演化行为,构造变形作用对于纳米孔有后期改造作用。生排烃热模拟实验由于可以人为地控制实验条件,在泥页岩孔隙结构演化研究中扮演了重要的角色,但要注意与实际地质条件相匹配。目前,富有机质泥页岩孔隙结构的演化模式还存在较大的争议。受控于有机质母质来源,不同沉积环境下发育的富有机质泥页岩孔隙结构演化模式存在差异,因此需要分别研究。在未来工作中,TOC对泥页岩孔隙结构特征的影响、有机质孔开始形成的成熟度以及高演化阶段(镜质体反射率Ro > 3%)孔隙的演化行为及机理等问题都需要进一步探究。另外,扫描电镜下识别有机质显微组成的方法亟需建立,同时还要规范行业术语的应用,以减少学科研究的混乱现象。
关键词: 有机质    页岩油气    孔隙结构    高演化阶段    沉积环境    
Research Advances on Characteristics of Nanopore Structure of Organic-rich Shales
SONG DongJun1,2,3 , TUO JinCai1,2 , WANG YeTong1,2,3 , WU ChenJun1,2 , ZHANG MingFeng1,2     
1. Northwest Institute of Eco - Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2. Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou 730000, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Foundation: National Natural Science Foundation of China, No.41672127, 41602151; CAS "Light of West China" Program
Abstract: A full understanding of the properties of the pore structure in organic-rich shales is beneficial for determining the shale oil and gas accumulation mechanism, and thus is significant in guiding exploration and exploitation. Methods of characterizing the pore structure of organic-rich shales embody quantitative analysis and qualitative description, both of which should be combined during investigations. Factors such as total organic carbon (TOC), thermal maturity, origin of organic matter, mineral constituents and tectonism have considerable impacts on the nature of the pore structure in organic-rich shales. Of these, the origin of organic matter determines the potential for organic pores formation; TOC and mineralogy control the types of nanopores; and thermal maturity influences nanopore evolution. Tectonism has a secondary effect, in that it may modify the nanopore structure. Pyrolysis experiments play a crucial role in investigating the evolution of pore structure in shales, since the factors are controlled artificially; however, experimental conditions should match the actual geological conditions. At present, pore structure evolution in shales is still inconclusive and controversial. Due to the diverse origins of organic matter, the evolution of the pore structure in organic-rich shales may differ from one sedimentary environment to another, and thus require further separate study. Dilemmas such as the impacts of TOC on the characteristics of pores in shales, the mature stage of the development of secondary organic pores and the evolutionary scenarios and mechanisms of pores at the envolution stage (Ro > 3%) need to be further explored. In addition, the methods identifying the microscopic compositions of organic matter using scanning electron microscopy need to be established, and the usage of some terminologies should be standardized to reduce the confusion that is currently caused by researchers who engage in different fields.
Key words: organic matter    shale gas and oil    pore structure    highly envolution stage    sedimentary environment    
0 引言

通常条件下,将TOC > 2%以上的泥页岩称为富有机质泥页岩[1],由石英、长石、方解石等为主的脆性矿物和以黏土矿物等为主的塑性矿物所组成,有机质也占了一定的比例。油气在烃源岩(泥页岩)中生成后,部分排出经过运移形成常规油气藏;还有部分尚未排出或只经历了短距离的运移过程,滞留在源岩内部形成页岩油气。即页岩油气是以游离态或者吸附态存在于黑色页岩或炭质页岩中的非常规油气资源,具有连续性聚集和局部富集特征[2-5]。页岩油气具有自生自储的特点,故泥页岩储层孔隙结构特征会直接影响页岩油气的赋存,因此研究泥页岩孔隙结构特征对于页岩油气赋存机理研究以及勘探具有重要的意义。本文在系统总结前人研究结果的基础上,对富有机质泥页岩孔隙结构特征的研究现状进行梳理,结合近年来最新的研究成果,探讨其影响因素及演化模式,提出了未来研究应关注的问题。

1 评价富有机质泥页岩孔隙结构特征的方法

按照国际理论和应用化学联合会(IUPAC)的分类标准[6],泥页岩孔隙按孔径大小划分为以下三类:1) < 2 nm,属于微孔;2)2~50 nm,属于中孔或者介孔;3) > 50 nm,属于大孔。邹才能等[1]提出页岩气的储层孔隙直径变化主要在5~1 000 nm之间,平均孔径为100 nm。此外,Jarvie et al. [7]和Loucks et al. [8]研究发现,页岩储层主要发育小于0.75 μm和大于0.75 μm的两种不同尺度的孔隙。图 1显示了IUAC标准下的页岩孔隙大小的分类及测试手段。有学者认为泥页岩中20 nm以下的孔隙占主导,且趋于相互连通[10]。按照成因类型,泥页岩孔隙则可被划分为矿物粒间孔、粒内孔(晶间孔)、有机质孔以及微裂缝等[11-12]

图 1 测定非常规储集层的主要方法(修改自Bustin et al.[9] Fig.1 Methods of determining unconventional reservoirs(modified from Bustin et al.[9])

富有机质泥页岩不同于常规的砂质储集层,是一种细粒沉积岩,其粒径小于0.003 9 mm,储集空间孔隙在纳米尺度,所以常规的压汞实验方法并不能完全满足对富有机质泥页岩孔隙结构特征的评价。评价富有机质泥页岩孔隙结构的方法主要分为两类[9, 13]:一种是定性表征,例如利用透射电镜(TEM)、扫描电镜(SEM)等手段对富有机质泥页岩岩石(薄片)进行局部拍照定性描述孔隙的发育情况,受控于电镜的分辨率以及样品的代表性,不同的电镜所观察的孔隙孔径大小存在一定的差异。另外一种是较为定量的表征方法,例如利用压汞实验法、低压氮气等温吸附(BET理论)、低压CO2吸附(D-R方法)、SANS/USANS等方法定量的表征富有机质泥页岩孔隙结构特征。其中除常规的压汞实验方法外,氮气吸附方法主要用于测定中孔以及部分大孔(1.7~280 nm),而低压CO2吸附主要用于测定小于2 nm的微孔[14-16]。在实际应用过程中,通常将定性和定量表征方法相结合,以达到精细刻画富有机质泥页岩孔隙结构特征的目的。除此之外,也有学者通过将背散射电镜(BSE)的图像进行拼接处理,经过一定的公式推导来表征富有机质泥页岩的孔隙结构特征[17]。近年来核磁共振技术也被应用于测量泥页岩的孔隙分布情况,但由于其难以区分孔隙中的水和有机质,使数据精确解读变得较为困难,因此还需进一步寻求理论突破以获得广泛应用[18]。由于泥页岩强的非均质性和成分复杂性,原子力显微镜(AFM)在表征泥页岩孔隙结构时具有一定的局限性。计算机断层成像(CT)虽然能进行泥页岩孔隙的三维表征,但由于目前重建技术发展的限制,提高分辨率仍是该方法亟需解决的问题[18]

2 影响富有机质泥页岩孔隙结构特征的因素

富有机质页岩发育的沉积环境主要有三大类:海相、陆相以及海陆过渡相,三种沉积环境条件下发育的富有机质页岩其物性、含气性以及地球化学属性均存在较大的差异[19-21]。中国典型的海相页岩有南方扬子板块四川盆地上震旦统陡山沱组、下寒武统筇竹寺组、上奥陶统五峰组以及下志留统龙马溪组、华北中元古界洪水庄组及下马岭组、塔里木盆地下寒武统玉尔吐斯组及上寒武统萨尔干组等[2, 22-23]。目前,对海相富有机质泥页岩的大量关注主要集中于四川盆地古生界富有机质页岩的研究[19, 24-39]。郑民等[40]统计了我国各个盆地海相页岩的有机地球化学特征及地质特征,四川盆地海相富有机质泥页岩的有机质丰度普遍较高(陡山沱组页岩TOC含量在0.67%~3.02%,筇竹寺组页岩TOC含量在0.43%~22.15%,五峰组—龙马溪组页岩TOC含量在0.51%~25.73%),有机质类型以Ⅰ~Ⅱ型为主[25],热演化程度相对较高,有机质成熟度(Ro)普遍大于2%。典型的陆相富有机质泥页岩主要发育在鄂尔多斯盆地三叠系延长组7段和长9段,长7段作为我国主要的湖相烃源岩层位[41-51],已探明油气储量在30.75 × 108 t左右[52]。大量的研究证实,鄂尔多斯盆地长7段页岩是中国湖相页岩气发育的最理想层位[49, 52-54]。长7段页岩的有机质类型以Ⅰ~Ⅱ为主[55-56],热演化程度较低,处于低熟到生油阶段早期[57-59],有机质丰度相对较高,普遍在1%以上,最高可达21%[60]。海陆过渡相页岩主要以石炭系—二叠系山西组和太原组含煤系地层为代表[2, 61-71],山西组TOC含量为0.24%~21.89%,太原组泥岩TOC含量为0.31%~14.54%[72],热演化程度在低熟到成熟阶段[72-74]。我国主要的泥页岩分布如图 2所示。富有机质泥页岩是一种细粒沉积物,又具有烃源岩的属性,成分组成以石英为代表的脆性矿物和以黏土矿物及有机质为代表的塑性组分为主,影响其生排烃过程的因素势必会对其储层孔隙结构特征的变化产生影响,主要集中在以下几个方面:

图 2 中国泥页岩分布(修改自林腊梅等[75] Fig.2 Schematic diagram of the distribution of shales in China (modified from Lin et al. [75])
2.1 有机质含量(TOC)

作为富有机质泥页岩的一个重要组成部分,有机质不仅可以生成油气,而且也为页岩油气提供储存空间[8, 76-80]。关于有机质含量对富有机质泥页岩孔隙结构特征的影响,前人做了大量的研究工作。陈尚斌等[78]采用低压氮气吸附法对川南龙马溪组页岩样品(TOC含量为1.11%~4.67%)进行研究时,发现TOC含量与小于10 nm的中微孔孔体积呈良好的正相关关系,也就是说,小于10 nm的中微孔可能主要发育在有机质中。Tian et al. [80]对川东逆冲褶皱带下志留统页岩样品(TOC含量为1.01%~3.98%)进行了氮气吸附和扫描电镜分析,结果表明TOC含量与微孔比表面积以及微孔孔体积均呈良好的正相关关系。

前人的研究结果表明,富有机质泥页岩中小于2 nm的微孔与有机质的关系密切。然而,也有学者发现富有机质泥页岩孔隙结构参数随有机质含量的变化并不是单纯的增加。在一定的有机质含量范围内,有机质含量越高,微孔越发育。而当有机质含量超出一定的范围后,有机质含量对富有机质泥页岩孔隙结构的影响则可能表现出相反的效果。例如,魏祥峰等[81]对川南—黔北某地区龙马溪组富有机质页岩进行纳米孔隙结构评价时,发现当TOC小于2.20时,微孔孔体积与TOC含量呈良好的正相关关系。而当TOC含量大于5.21%时,随着TOC的增加,微孔孔体积与TOC含量的变化却呈负相关关系。Cao et al. [34]在研究四川盆地志留系和二叠系的页岩孔隙结构特征时,发现二叠系页岩的纳米孔孔比表面、孔体积以及孔隙度与TOC无关或者呈现微弱的负相关关系,而志留系页岩的孔比表面积、孔体积以及孔隙度与TOC呈良好的正相关关系。陈术源等[73]对石炭系—二叠系山西组—太原组页岩和中元古界洪水庄组及下马岭组页岩研究发现,在TOC含量小于2%的样品中,TOC含量对孔隙结构的影响不明显;而当TOC含量在2%~4.58%范围内,TOC含量与孔体积和孔比表面积呈微弱的负相关关系;当TOC > 4.58%时,TOC含量与孔体积和孔比表面积呈较强的负相关关系。

到目前为止,油气地质界关于有机质含量对富有机质泥页岩孔隙结构的影响尚无定论。虽然有机质对富有机质泥页岩孔隙的贡献较大,但这种贡献主要是基于相同地质背景下的岩石样品。换句话说,在考虑有机质含量对富有机质泥页岩孔隙结构的影响时,还要考虑其他因素是否有变化,例如有机质热演化程度、有机质类型、矿物组成等因素。

2.2 热演化程度

有机质随着热演化程度的增加,逐渐热裂解生烃,而富有机质泥页岩纳米孔隙的形成则与生排烃过程有直接关系。有机质孔在哪个成熟度阶段开始出现目前还存在较大的争论。有学者认为未熟—低熟泥页岩中不发育有机质孔[82],也有学者在低熟页岩中观察到了有机质孔的发育[83]。但是,未熟—低熟页岩中这种有机质孔可能是继承于有机质母源物质,即非自生的有机质孔[84]。有的学者认为自生有机质孔在Ro达0.5%~0.6%开始发育[85],也有研究认为是在Ro=0.8%[86]Ro=0.9%[87]。查明自生有机质孔开始发育的成熟度对于阐明富有机质泥页岩孔隙结构演化模式具有重要意义。同时,由于有机质孔贡献了泥页岩总孔隙的大部分,这也为清楚认识页岩油气的富集赋存条件及勘探开发提供重要的理论依据。

此外,纳米孔隙随热演化程度如何变化也存在较大的争议。有研究认为有机质热成熟度越高,富有机质泥页岩纳米孔隙越发育[88, 89-90]。Hu et al. [91]通过对Woodford页岩加水热模拟实验后的固体残渣研究,发现随着热演化程度的增高,相应的孔隙结构参数呈增加趋势;Sun et al. [55]对鄂尔多斯盆地长7段优质烃源岩进行高温高压加水生排烃实验,并对实验后的固体残渣进行氮气吸附实验分析,发现孔隙度随有机质成熟度升高呈规律性的增加。但也有研究发现不同的变化趋势。Bernard et al. [92]通过德国北部多尔斯阶下部Posidonia页岩Wickensen、Harderode以及Haddessen三个钻井(成熟度分别为低熟、成熟、高熟阶段)烃源岩样品进行TEM和STXM分析,发现低熟页岩(Wickensen钻井岩样)有机质主要是以富硫、富氧的脂肪族组分的干酪根存在,其无机矿物相关孔被有机质(沥青)充填;成熟页岩(Harderode钻井岩样)有机质干酪根芳香化程度增加,S、O等元素含量降低,在有机质表面并没有观察到纳米孔,同时无机矿物相关孔也被充填(固体沥青和液态烃充填);而高熟页岩(Haddessen钻井岩样)的干酪根芳香化程度更大,已检测不到S、O等元素,同时在有机质(焦沥青)表面发育孔径为1~50 nm的海绵状纳米孔隙。有机质高演化阶段形成的这种海绵状孔与生成气体产物的成核过程有关[93]。赵佩等[94]在表征川南地区龙马溪组页岩气储层微孔隙结构特征时发现,页岩孔隙度随成熟度的增加而降低,当热演化程度达到过熟阶段时孔隙度降低的幅度有明显的减小。很多学者对富有机质页岩进行氮气吸附及电镜分析后,发现在有机质演化至生油窗时,孔隙度会有明显的降低,而随着液态烃逐渐裂解孔隙度出现大幅度增加,焦沥青中形成海绵状有机质孔[12, 24, 79, 92, 95-96]。但是,也有学者在相应的热演化阶段没有发现有机质孔的形成[97-101]

在考虑热演化程度对富有机质泥页岩孔隙结构演化的影响时,需要着重考虑该区域内盆地的热演化史。在一个稳定的地温条件下逐渐成熟的烃源岩,与热演化过程中有火山岩侵入、热液过程以及其他突变热事件的参与背景下成熟的烃源岩相比,由于升温速率的差异,其在生排烃行为上也会存在一定的差别,进而造成富有机质泥页岩孔隙结构演化特征的差异。

2.3 有机质类型(显微组分)

有机质类型是影响有机质孔隙发育的另一个重要因素,根据不同干酪根显微组分(腐泥组、壳质组、镜质组以及惰质组)的比例,油气地球化学界将干酪根类型划分为Ⅰ型、Ⅱ1型、Ⅱ2型、Ⅲ型。有学者认为腐殖型(Ⅲ型)干酪根在有机质热演化过程中几乎不发育孔隙[102],Ⅰ型干酪根发育有机质孔的潜力远远高于Ⅲ型干酪根的[103]。这是由于Ⅰ型和Ⅱ型具有良好的生油气潜能,而Ⅲ型干酪根生烃潜能则较低[104]

然而,在其他因素近的条件下,有机质类型相同的富有机质泥页岩其有机质孔的发育情况也不尽相同,这说明有机质显微组分对于有机孔的形成和发育具有重要的意义。模拟实验表明,有机质孔的形成与有机质的生烃过程紧密相关[105],具有强生烃能力的有机质显微组分具有更强形成有机质孔的潜能;而一些生烃潜能相对较差的有机质显微组分,其有机质孔的发育潜能要低的多。曹涛涛等[106]发现下扬子地区中上二叠统页岩中镜质体内孔隙发育较差,而腐泥组内则具有丰富的孔隙。龙鹏宇等[107]对渝页1井下志留统龙马溪组页岩进行储层空间表征时发现随着镜质组的增多页岩的总孔隙体积变大,认为是生烃过程中由于异常压力使镜质组内部破裂所致。尽管也有学者发现惰质体可能会存在有机质孔[85],但是这种有机质孔可能是继承于母源物质的孔,即并非自生有机质孔隙[84]。由于惰质组在有机质演化过程中基本不会发生生排烃过程,因此普遍认为其形成有机孔的能力有限。

2.4 矿物组成

富有机质泥页岩中发育大量的矿物相关孔,例如石英等脆性矿物之间的粒间孔、草莓状黄铁矿粒间孔、长石及碳酸盐岩溶蚀孔、黏土矿物层间孔等,这些矿物相关的纳米—微米孔与有机质孔组成富有机质泥页岩中有效的孔隙网络[87]。在这些矿物相关的孔中,黏土矿物层间孔对富有机质泥页岩的孔隙结构影响最为特殊。吉利明等[108]发现不同的黏土矿物其孔隙发育情况存在明显的差异。蒙脱石矿物微孔隙最为发育,其次是伊蒙混层,高岭石则以发育20~100 nm的中大孔为主,绿泥石和伊利石矿物中的纳米孔隙不太发育。在成岩演化过程中,蒙脱石逐渐向伊利石转化,对应的黏土矿物相关孔数量逐渐减少,相应的气体吸附能力也趋于降低[109]。因此在高过成熟阶段,富有机质泥页岩储层孔隙主要以有机质孔为主,黏土矿物相关孔的贡献较低。

大量的研究表明黏土矿物对有机质生烃有催化作用[110-111],也有研究表明黏土矿物对有机质的热解过程有一定的抑制作用[112]。Wu et al. [26]对比了不同黏土矿物含量的富有机质泥页岩孔隙结构特征,发现在同一TOC范围内富含黏土矿物的富有机质泥页岩具有较高的氮气吸附量以及孔体积和孔比表面积,而贫黏土矿物的泥页岩则刚好相反。值得注意的是,富含黏土矿物富有机质泥页岩中有机质孔的发育区域内均发育黏土矿物。由于黏土矿物层间孔可以为短距离运移的有机质所充填,也可以与有机质形成有机—黏土矿物纳米组分(OM-Clay composites)以及有机—黏土矿物复合体(OM-Clay complexity)[113-119]。黏土矿物与有机质的特殊作用以及黏土矿物层间孔对富有机质泥页岩孔隙结构网络的影响机理需要更多的研究去证实。

矿物相关孔隙(粒间孔、粒内孔)的孔径往往大于有机质孔的孔径,这对于页岩油气的储存有重要意义。Chen et al. [120]通过对扬子板块震旦系—寒武系的页岩进行研究,认为有机质孔的大小在130 nm以下,而碳酸盐岩粒内孔(溶蚀孔)孔径大于400 nm,脆性矿物粒内孔、粒间孔的孔径则分布在50~250 nm之间。也就是说,按照孔径大小顺序排列,脆性矿物粒内孔 > 脆性矿物粒间孔 > 有机质孔。

2.5 其他因素

除了以上因素对富有机质泥页岩孔隙结构有明显的影响外,成岩作用、岩石组构、构造变形等因素对富有机质泥页岩孔隙结构的影响也不容小觑。例如,赖锦等[121]通过对蓬莱地区须家河组须二段和四段储层岩芯的观察及孔隙结构测定,认为构造和沉积作用是影响储层孔隙结构的先决条件,而成岩作用类型、强度及演化是决定储层孔隙结构特征的关键因素。Liang et al. [122]发现未发生构造变形的页岩具有高的孔比表面积与氮气吸附能力,而具有构造变形的页岩则反之。并且,他们认为构造变形会影响页岩孔径分布,会相对增加大孔的数量。也有研究认为构造变形作用会使泥页岩中的微孔数量增加[123]。压力对泥页岩微孔隙发育的影响主要有以下几个方面:持续的压实会减少有机质等塑性物质的微孔隙尺寸和数量。Wu et al. [124]发现高的压力会抑制油的裂解。随着有机质生烃的增加,由于油气的滞留会产生异常高压区,进而形成微裂缝,当油气排出后微裂缝又趋向关闭。在构造抬升区,泥页岩中微裂缝广泛发育,造成页岩油气的大量逸散[125-126]

通过光学显微镜鉴定识别有机质类型已有数十年的历史[127-128],但是在扫描电镜下分辨有机质显微组成仍是当前泥页岩孔隙结构特征研究的一个难点。虽然有学者提出了一些标准[129-131],但并没有被广泛应用。富硫有机质的生烃门限要早于贫硫的有机质[132-134],这势必会影响其孔隙结构演化行为。另外,有机质孔是否发育还与相应的沥青的类型有关,原生沥青与运移沥青中有机质孔的发育情况不一样。原生沥青和运移沥青在扫描电镜下的最大区别是运移沥青常常在生成后短距离运移至已形成的原生孔隙中,所以运移沥青往往没有规则的形状展布,并有可能包裹在矿物表面[134-135]

一些术语,例如有机质、沥青、焦沥青等,不同研究领域的学者应用时可能会造成学科研究的混乱现象[132]。鉴于此,Mastalerz et al. [136]提出将VRo=1.5%以下,由干酪根初次裂解形成的沥青称为固体沥青,其表面海绵状孔隙不太发育,且形成的孔隙多以中—大孔为主;将VRo=1.5%以上,富有机质泥页岩中液态烃类发生二次裂解后的固体产物称为焦沥青,其表面发育大量的海绵状孔隙,且形成的孔隙以微孔为主;而富硫有机质固体沥青和焦沥青的界限则在VRo=1.3%左右。

需要特别注意的是,由于不同沉积环境下发育的泥页岩有机质母质来源存在较大的差异,这就意味着影响其孔隙结构特征的主控因素不同。以四川盆地筇竹寺组及龙马溪组海相页岩为例,筇竹寺组页岩中存在丰富的藻类等有机残留体,龙马溪组页岩中存在丰富的笔石残留体,这些有机残留体在SEM镜下具有高的面孔隙率以及低的分形维数,其表面形成的原始孔隙通常是相互连通的;然而,以鄂尔多斯盆地延长组页岩为例的陆相页岩,母源有机残留体中形成的原始孔隙往往在生烃过程中被改变[137]。Yang et al. [138]利用扫描电镜和气体吸附手段对我国不同沉积环境的富有机质泥页岩纳米孔隙结构进行分析,发现以四川盆地下志留统龙马溪组页岩为代表的海相页岩在孔隙结构特征上明显不同于以下二叠统山西组为代表的海陆过渡相富有机质泥页岩和以鄂尔多斯盆地三叠系延长组7段的陆相页岩。主要有如下诸点不同:海相页岩的孔体积和孔比表面均大于过渡相及陆相页岩,而在孔径分布和孔形状方面,海相页岩的纳米孔以小于10 nm的墨水瓶状有机质微中孔为主,过渡相和陆相富有机质泥页岩则发育30~70 nm的黏土矿物狭缝孔。此外,在对孔体积和孔比表面积的贡献方面,海相页岩中有机质孔的贡献率要大一些,而过渡相及陆相富有机质泥页岩中与黏土矿物相关的孔隙贡献率要更大一些。同时,Wang et al. [38]通过对比典型的海陆相沉积富有机质泥页岩地质特征,发现虽然海陆相页岩的矿物组成上有一定的相似性,但在含量上存在较大的差异。这种差异导致了成岩过程中岩石的抗压实作用能力不同,进而影响页岩中矿物相关孔的形成。并且,海相富有机质泥页岩有机质孔主要呈蜂窝状,而陆相页岩中则主要以分散的有机质孔和黏土矿物微裂缝为主。因此不同沉积环境下形成的富有机质泥页岩,其孔隙结构特征主要受有机质母质来源的控制。

对于低成熟的页岩油储层,由于自生有机质孔隙在未熟—低熟阶段可能尚未发育[82],因此其储层孔隙类型主要由大量无机孔[139]以及少量继承性的有机质孔组成。在未熟—低熟阶段,黏土矿物层间孔(晶间孔)贡献了低熟泥页岩孔隙的大多数,页岩油储层空间的形成与黏土矿物的成岩演化有密切关系[140]。随着热演化程度的增加,泥页岩中干酪根产生的有机酸对长石、白云石等碳酸盐类矿物逐渐溶蚀,产生一些矿物溶蚀孔。另外,姜在兴等[141]认为页岩油也可以以游离态的形式赋存于(微)裂缝中。

总结来看,富有机质泥页岩孔隙结构特征的变化,受到多重因素的共同控制。沉积环境决定了富有机质泥页岩的有机质丰度、类型以及显微组成和矿物组成,而盆地埋藏史和热史决定了富有机质泥页岩的生排烃过程。不同沉积环境下形成的富有机质泥页岩有机地球化学特征以及矿物学特征存在明显的差异,有机质母质来源的差异控制了泥页岩有机质孔隙的发育潜能,而有机质含量以及矿物组成等因素控制了泥页岩孔隙的发育类型,热演化程度则影响泥页岩微孔隙的演化和发育,构造等作用则对早期形成的微孔隙有一定的改造作用。但是,在分析过程中需要注意泥页岩的强非均质性的影响。

3 热模拟实验在评价富有机质泥页岩孔隙结构演化特征中的应用

岩石的形成是一个长时间的地质过程,而某一地质历史时期岩石的状态是既定的。换句话说,要想完整获取富有机质泥页岩孔隙结构演化规律,仅仅根据实际的地质样品存在较大的难度。难度在于难以发现一套热演化程度序列完整的富有机质泥页岩,该套富有机质泥页岩的沉积环境、有机组成、矿物组成等因素都较为一致。以德国北部多尔斯阶下部Posidonia页岩为例,这套页岩是欧洲主要的烃源岩之一[142-143],Wickensen、Harderode以及Haddessen三个钻井分别代表低熟、成熟、高熟的烃源岩样品[92, 144]。显然,这样的一套样品序列是很少见的。因此,对低熟样品进行不同温度序列的生排烃热模拟实验成为完整获取富有机质泥页岩孔隙结构特征演化规律的理想手段。

生排烃热模拟实验可以分为开放体系、半开放(半封闭)体系、封闭体系。作为研究干酪根生烃热解实验的重要热解体系,实验体系与地质过程的匹配问题一直是学者关注的热点。实验体系与地质条件越相似,这种体系所获得的实验结果也就越与地质历史过程的产物更相近。典型的开放体系人工模拟实验以岩石热解仪(Rock-Eval)最为常用,封闭体系人工模拟实验则以黄金管热模拟实验为代表。根据实验体系的不同,其所获取的结果存在差异。封闭体系实验中生成的产物未脱离实验体系,往往还要继续进行热裂解;开放体系实验中生成的产物完全脱离了整个实验体系,未能参加进一步的热演化过程。很明显,两种体系所生成的油和气的量存在一定的差异,这势必会影响富有机质泥页岩在热模拟实验过程中的孔隙结构演化特征。同时,自然界真正的烃源岩热演化生排烃过程并不是绝对的封闭或者开放体系,烃源岩生成油气后会有部分排出从而不会被进一步裂解,而另一部分产物则会滞留在烃源岩中继续进行裂解。也就是说,真正接近地质过程的热模拟实验体系是一种半开放半封闭的实验体系[145]。关于半开放半封闭实验体系,前人已经有了一定的关注,并进行了富有机质泥页岩生排烃过程和孔隙结构演化的研究[55, 105, 124, 146]。Guo et al. [146]对延长组Ⅱ型干酪根进行了封闭和半封闭两种不同的热模拟实验体系研究,发现半封闭实验体系中沥青的二次裂解显然要慢于封闭体系,而在半封闭体系热模拟实验中有机质的碳损失程度(6%)要高于封闭体系中的碳损失程度(< 3%)。此外,在固体残渣的孔隙结构变化上,半封闭实验中自生油窗之后孔体积有明显的升高,而在封闭体系中孔体积的增加量很小。显然,这种差别主要是与液态烃的排出以及滞留沥青的裂解过程有关。因此,在选择相应的实验体系时,要注意不同体系对实验过程中产物的地球化学行为的影响以及与地质过程的可对比性。同时,还要考虑到是否加水的实验条件,因为水的存在会为烃源岩生排烃过程提供大量的H源,改变产物的相对含量[147-148],可能会对泥页岩孔隙结构的演化过程产生影响。

4 富有机质泥页岩孔隙结构演化模型

目前关于富有机质泥页岩孔隙结构演化模型争议较多,分歧性较大。由于有机质孔占了富有机质泥页岩孔隙的很大部分,因此以下讨论主要基于有机质孔的演化。代表性的演化模型有三种观点:

(1)认为富有机质泥页岩有机质孔隙度随成熟度的增加而呈单调增加的趋势。Jarvie et al. [7]认为富有机质泥页岩有机质孔隙度随着生烃量的增加而增高,同时富有机质泥页岩有机质孔隙度随有机质生气量增加而表现出上升的趋势。此外,Cander [149]也发现在埋深超过3000 m后,有机质孔隙度呈不断上升的趋势。也就是说,随着有机质逐渐成熟,伴随着干酪根热解、裂解以及液态烃裂解生气的进行,有机质孔隙度不断增加。这个观点也在国内比较盛行。这种规律不仅在实际的地质样品中被观察到,也可在富有机质泥页岩热模拟实验中获得。如Sun et al. [55]通过对鄂尔多斯盆地富有机质泥页岩进行热模拟实验发现,随着有机质成熟度不断升高,孔隙的累计孔体积和累计孔比表面积出现上升的趋势,间接表明有机质孔隙度随成熟度的升高而增加。

(2)富有机质泥页岩有机质孔隙度随成熟度的增加而呈阶段变化的趋势。王飞宇等[150]认为当Ro为1.3%~2.0%时富有机质泥页岩孔隙度总体随成熟度升高而增加,而当Ro > 2.0%时有机质孔隙度随埋深增加而降低。Mastalerz et al. [79]通过研究泥盆系和密西西比系New Albany页岩孔隙结构特征,提出了一个富有机质泥页岩孔隙结构的演化概略图(图 3)。他们认为有机质从早成熟阶段向晚成熟阶段演化过程中,总孔隙度出现大幅度的下降。而当Ro为1.15%~1.41%时,出现了新的孔隙致使孔体积大幅增加并伴随着相应孔径的重排,即从低熟到成熟页岩的转变使微孔相对富集而孔径较大的孔如中孔等有下降的趋势,而从成熟到过熟页岩的演化过程中则又形成中孔。新孔隙的产生与有机质在早期成熟阶段转化为烃类有关,在高成熟阶段则与烃类二次裂解有关,而孔隙度的间歇性下降则被解释为石油和沥青填充孔隙,从而减少了孔隙空间。此外,Chen et al.[24]将有机质孔的发育与变化划分为三个阶段:当Ro为0.6%~2.0%时,由于生油窗内油气对有机质孔的充填以及沥青裂解导致孔隙度呈现先下降后上升的趋势;当Ro为2.0%~3.5%时,焦沥青中形成大量的海绵状孔隙,有机质孔进一步发育;当Ro > 3.5%时,有机质孔出现破坏和转化,相对小尺度的孔隙向相对大尺度的孔隙转化。

图 3 New Albany页岩生排烃过程中孔隙度变化(修改自Mastalerz et al. [79] Fig.3 Changes in porosity during hydrocarbon generation and expulsion in New Albany shale (modified from Mastalerz et al. [79])

(3)富有机质泥页岩孔隙结构演化无固定模式。正如前面所述,富有机质泥页岩的孔隙结构的演化受多重因素的影响,这就使得许多学者的研究结果存在一定的差异或者获得互相矛盾的结果。虽然富有机质泥页岩有机质孔隙度随成熟度的增加而呈单调增加的模型被大多数学者所接受,但是越来越多的研究揭示出不同的孔隙结构演化规律,丰富和复杂了对富有机质泥页岩孔隙结构演化过程的认识。然而,有机质孔发育的下限以及上限仍然需要大量研究。

事实上,对于富有机质泥页岩孔隙演化特征的研究,以上所述的各个模式似乎都是建立在研究者以有限样品研究的基础上所得出的结论,这些独立的结论是否具有普遍性、所选择的样品是否具有强的代表性?这些问题都值得深思。虽然泥页岩中普遍存在有机质孔,但到目前为止,这种有机质孔的形成似乎并不与任何一个单一的影响因素有明显的、清楚的关系,而是多个因素的相互作用的结果。可以肯定的是,在富有机质泥页岩孔隙结构演化过程中,生油窗范围内形成的液态烃充填原生孔隙的这种现象是普遍存在的,因此孔隙结构的演化规律应该呈阶段性变化。但高演化阶段(Ro > 3%)富有机质泥页岩孔隙结构如何演化,如热模拟实验结果所显示的孔隙继续增加还是由于有机质碳化物充填导致孔隙的再度下降,还需进一步研究确认。这对于查明我国南方下古生界海相页岩孔隙孔径随时代越老越小特征[25]的形成机理具有重要的意义。

5 存在问题及研究展望

目前,关于富有机质泥页岩孔隙结构的演化研究仍处于不断探索阶段。富有机质泥页岩孔隙结构的演化过程不是一个单一因素作用的结果,而是多个因素相互作用、互相耦合的结果。沉积环境决定了富有机质泥页岩的有机质丰度、类型以及显微组成和矿物组成,而盆地埋藏史和热史决定了富有机质泥页岩的生排烃过程。同时,由于富有机质泥页岩中有机质—黏土矿物纳米地质体的存在,也要注意这种有机质—黏土矿物纳米复合体对有机质生排烃过程中有机质孔形成的影响。在总结前人研究结果的基础上,还有一些问题仍需要进一步研究:

(1)不同沉积环境下发育的富有机质泥页岩的有机质母质来源不同,可能会造成不同的沉积环境中的泥页岩孔隙结构演化模式不同,因此需要分别研究。

(2)TOC对泥页岩孔隙结构特征的影响似乎存在一个门槛值,当研究泥页岩的TOC低于该门槛值时,有机质丰度增加引起泥页岩孔隙的增加;而当研究泥页岩的TOC高于该门槛值时,有机质丰度过高导致泥页岩更容易被压实,造成孔隙的降低。然而,如何确定这个门槛值还需要大量研究。

(3)自生有机质孔在哪个成熟度阶段开始出现,高演化阶段富有机质泥页岩孔隙结构演化行为以及有机质孔的演化模式和机理仍需进一步确认,即有机孔发育的上下限还不清楚。我国南方地区下古生界海相泥页岩热成熟度普遍在过熟阶段,Ro在2.0%~5.0%范围内变化。高的热演化程度是否会导致有机质碳化,碳化物再度充填孔隙呢?

(4)如何在扫描电镜下有效的识别有机质显微组成。

另外,还需要注意一些术语的使用,例如关于“沥青”这一术语在不同的热演化阶段应如何规范使用。遗憾的是,到目前为止还没有一个统一的标准去分辨及确定泥页岩中有机质的存在形式,也没有将一些相关术语进行统一标准化,也就是说很多情况下取决于研究者的主观辨认能力以及研究目的,这更加加剧了富有机质泥页岩孔隙结构演化特征研究的复杂性。此外,应用多种学科理论以及更精密的仪器对富有机质泥页岩纳米级孔隙结构网络进行更加精细地定性定量分析,将泥页岩微孔隙空间准确、直观的表征出来,以进一步完善页岩油气基础研究理论。

参考文献
[1]
邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 2版. 北京: 地质出版社, 2013: 127-148. [Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional petroleum geology[M]. 2nd ed. Beijing: Geological Publishing House, 2013: 127-148.]
[2]
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. [Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.]
[3]
陈更生, 董大忠, 王世谦, 等. 页岩气藏形成机理与富集规律初探[J]. 天然气工业, 2009, 29(5): 17-21. [Chen Gengsheng, Dong Dazhong, Wang Shiqian, et al. A preliminary study on accumulation mechanism and enrichment pattern of shale gas[J]. Natural Gas Industry, 2009, 29(5): 17-21. doi: 10.3787/j.issn.1000-0976.2009.05.004]
[4]
张金川, 薛会, 张德明, 等. 页岩气及其成藏机理[J]. 现代地质, 2003, 17(4): 466. [Zhang Jinchuan, Xue Hui, Zhang De-ming, et al. Shale gas and its accumulation mechanism[J]. Geoscience, 2003, 17(4): 466. doi: 10.3969/j.issn.1000-8527.2003.04.019]
[5]
Schmoker J W. Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-2000.
[6]
Sing K S W. Reporting physosorption data for gas/solid systems with special reference to the determination of surface area and porosity, IUPAC[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603
[7]
Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The mississippian barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
[8]
Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
[9]
Bustin R M, Bustin A M M, Cui A, et al. Impact of shale properties on pore structure and storage characteristics[C]//SPE Shale Gas Production Conference. Fort Worth, Texas, USA: Society of Petroleum Engineers, 2008.
[10]
Ma L, Taylor K G, Dowey P J, et al. Multi-scale 3D characterisation of porosity and organic matter in shales with variable TOC content and thermal maturity: Examples from the Lublin and Baltic Basins, Poland and Lithuania[J]. International Journal of Coal Geology, 2017, 180: 100-112. doi: 10.1016/j.coal.2017.08.002
[11]
Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061
[12]
Ko L T, Loucks R G, Zhang T W, et al. Pore and pore network evolution of upper cretaceous boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722. doi: 10.1306/04151615092
[13]
Clarkson C R, Wood J, Burgis S E, et al. Nanopore structure analysis and permeability predictions for a tight gas/shale reservoir using low-pressure adsorption and mercury intrusion techniques[C]//SPE Americas Unconventional Resources Conference. Pittsburgh, Pennsylvania USA: Society of Petroleum Engineers, 2012: 112-119.
[14]
谢晓永, 唐洪明, 王春华, 等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业, 2006, 26(12): 100-102. [Xie Xiaoyong, Tang Hongming, Wang Chunhua, et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry, 2006, 26(12): 100-102. doi: 10.3321/j.issn:1000-0976.2006.12.026]
[15]
田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427. [Tian Hua, Zhang Shuichang, Liu Shaobo, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427.]
[16]
张水连. 氮气吸附法在研究泥页岩孔隙特征中的应用[J]. 江汉石油科技, 2015, 25(4): 6-10. [Zhang Shuilian. Application of nitrogen adsorption method in studying pore characteristics of shale[J]. Jianghan Petroleum Science and Technology, 2015, 25(4): 6-10.]
[17]
Chen F W, Lu S F, Ding X, et al. The splicing of backscattered scanning electron microscopy method used on evaluation of microscopic pore characteristics in shale sample and compared with results from other methods[J]. Journal of Petroleum Science and Engineering, 2018, 160: 207-218. doi: 10.1016/j.petrol.2017.10.063
[18]
焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1): 151-161. [Jiao Kun, Yao Suping, Wu Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161. doi: 10.3969/j.issn.1006-7493.2014.01.015]
[19]
聂海宽, 张金川. 页岩气储层类型和特征研究:以四川盆地及其周缘下古生界为例[J]. 石油实验地质, 2011, 33(3): 219-225, 232. [Nie Haikuan, Zhang Jinchuan. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin[J]. Petroleum Geology & Experiment, 2011, 33(3): 219-225, 232. doi: 10.3969/j.issn.1001-6112.2011.03.001]
[20]
张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. [Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140. doi: 10.3787/j.issn.1000-0976.2008.06.040]
[21]
张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1): 74-86. [Zhang Jinchuan, Yang Chao, Chen Qian, et al. Deposition and distribution of potential shales in China[J]. Earth Science Frontiers, 2016, 23(1): 74-86.]
[22]
王铁冠, 韩克猷. 论中—新元古界的原生油气资源[J]. 石油学报, 2011, 32(1): 1-7. [Wang Tieguan, Han Keyou. On Meso-Neoproterozoic primary petroleum resources[J]. Acta Petrolei Sinica, 2011, 32(1): 1-7.]
[23]
郑民, 李建忠, 吴晓智, 等. 致密储集层原油充注物理模拟:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2016, 43(2): 219-227. [Zheng Min, Li Jianzhong, Wu Xiaozhi, et al. Physical modeling of oil charging in tight reservoirs: A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(2): 219-227.]
[24]
Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181. doi: 10.1016/j.fuel.2014.03.058
[25]
Tuo J C, Wu C J, Zhang M F. Organic matter properties and shale gas potential of Paleozoic shales in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 434-446. doi: 10.1016/j.jngse.2015.12.003
[26]
Wu C J, Tuo J C, Zhang L F, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017, 178: 13-25. doi: 10.1016/j.coal.2017.04.009
[27]
蒲泊伶.四川盆地页岩气成藏条件分析[D].青岛: 中国石油大学(华东), 2008. [Pu Boling. Analysis of the reservoir-forming conditions of shale gas potential in Sichuan Basin[D]. Qingdao: China University of Petroleum(East China), 2008.] http://cdmd.cnki.com.cn/Article/CDMD-10425-2008199455.htm
[28]
张金川, 聂海宽, 徐波, 等. 四川盆地页岩气成藏地质条件[J]. 天然气工业, 2008, 28(2): 151-156. [Zhang Jinchuan, Nie Haikuan, Xu Bo, et al. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 151-156. doi: 10.3787/j.issn.1000-0976.2008.02.045]
[29]
刘树根, 曾祥亮, 黄文明, 等. 四川盆地页岩气藏和连续型-非连续型气藏基本特征[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 578-592. [Liu Shugen, Zeng Xiangliang, Huang Wenming, et al. Basic characteristics of shale and continuous-discontinuous transition gas reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 36(6): 578-592. doi: 10.3969/j.issn.1671-9727.2009.06.002]
[30]
蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J]. 石油学报, 2010, 31(2): 225-230. [Pu Boling, Jiang Youlu, Wang Yi, et al. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(2): 225-230. doi: 10.3969/j.issn.1001-8719.2010.02.011]
[31]
曾祥亮.四川盆地及其周缘下志留统龙马溪组页岩气研究[D].成都: 成都理工大学, 2011. [Zeng Xiangliang. A study on shale gas of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas[D]. Chengdu: Chengdu University of Technology, 2011.] http://cdmd.cnki.com.cn/Article/CDMD-10616-1011236044.htm
[32]
周道容.四川盆地威远地区下古生界页岩气成藏条件及有利区优选[D].成都: 成都理工大学, 2013. [Zhou Daorong. Shale gas reservoiring conditions and favorable area preferred in Lower Paleozoic in Sichuan Weiyuan area[D]. Chengdu: Chengdu University of Technology, 2013.] http://cdmd.cnki.com.cn/Article/CDMD-10616-1013288769.htm
[33]
董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 31(12): 1-15. [Dong Dazhong, Gao Shikui, Huang Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 31(12): 1-15. doi: 10.3787/j.issn.1000-0976.2014.12.001]
[34]
Cao T T, Song Z G, Wang S B, et al. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2015, 61: 140-150. doi: 10.1016/j.marpetgeo.2014.12.007
[35]
谭淋耘, 徐铫, 李大华, 等. 渝东南地区五峰组—龙马溪组页岩气成藏地质条件与有利区预测[J]. 地质学报, 2015, 89(7): 1308-1317. [Tan Linyun, Xu Yao, Li Dahua, et al. Geological condition of shale gas accumulation and favorable area prediction for the Wufeng—Longmaxi Formations in southeastern Chongqing[J]. Acta Geologica Sinica, 2015, 89(7): 1308-1317. doi: 10.3969/j.issn.0001-5717.2015.07.013]
[36]
李晋宁, 姚素平, 孙超, 等. 宁镇地区下志留统高家边组富有机质页岩孔隙结构[J]. 高校地质学报, 2016, 22(1): 159-170. [Li Jinning, Yao Suping, Sun Chao, et al. Pore structure of organic-rich shales in the Lower Silurian Gaojiabian Formation from Ningzhen area, Jiangsu province[J]. Geological Journal of China Universities, 2016, 22(1): 159-170.]
[37]
朱彤, 王烽, 俞凌杰, 等. 四川盆地页岩气富集控制因素及类型[J]. 石油与天然气地质, 2016, 37(3): 399-407. [Zhu Tong, Wang Feng, Yu Lingjie, et al. Controlling factors and types of shale gas enrichment in the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(3): 399-407.]
[38]
Wang Y, Wang L H, Wang J Q, et al. Characterization of organic matter pores in typical marine and terrestrial shales, China[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 56-65. doi: 10.1016/j.jngse.2017.11.002
[39]
Wang Y, Zhu Y M, Liu S M, et al. Comparative study of nanoscale pore structure of Lower Palaeozoic marine shales in the Middle‐Upper Yangtze area, China: Implications for gas production potential[J]. Geological Journal, 2017, 53(6): 2413-2426.
[40]
郑民, 李建忠, 吴晓智, 等. 海相页岩烃源岩系中有机质的高温裂解生气潜力[J]. 中国石油勘探, 2014, 19(3): 1-11. [Zheng Min, Li Jianzhong, Wu Xiaozhi, et al. High-temperature pyrolysis gas-sourcing potential of organic matter in marine shale source rock system[J]. China Petroleum Exploration, 2014, 19(3): 1-11. doi: 10.3969/j.issn.1672-7703.2014.03.001]
[41]
杨华, 张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用-Ⅳ长7优质油源岩与低渗透油气成藏富集、油气分布的关系[C]//第十届全国有机地球化学学术会议论文摘要汇编.无锡: 中国地质学会, 2005. [Yang Hua, Zhang Wenzheng. Leading effect of the seventh member highquality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Ⅳ. Relationship between Chang 7 high-quality source rock and lowpermeability petroleum accumulation and distribution[C]//National Meeting on Organic Geochemistry in China. Wuxi: Geological Society of China, 2005.]
[42]
张文正, 杨华.论鄂尔多斯盆地长7优质油源岩在低渗透石油成藏富集中的主导作用Ⅱ-优质油源岩的生、排烃特征与排烃机理[C]//第十届全国有机地球化学学术会议论文摘要汇编.无锡: 中国地质学会, 2005. [Zhang Wenzheng, Yang Hua. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Ⅱ. Charateristics of hydrocarbon generation and expulsion andmechanism of hydrocarbon expulsion[C]//National Meeting on Organic Geochemistry in China. Wuxi: Geological Society of China, 2005.]
[43]
张文正, 杨华.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用-Ⅲ长7优质油源岩是中生界的主力油源岩[C]//第十届全国有机地球化学学术会议论文摘要汇编.无锡: 中国地质学会, 2005. [Zhang Wenzheng, Yang Hua. Leading effect of the seventh member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Ⅲ. Chang 7 high-quality source rock is the main source rock of the Mesozoic[C]//National Meeting on Organic Geochemistry in China. Wuxi: Geological Society of China, 2005.] http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200504001062.htm
[44]
任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J]. 地质学报, 2006, 80(5): 674-684. [Ren Zhanli, Zhang Sheng, Gao Shengli, et al. Research on region of maturation anomaly and formation time in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 674-684. doi: 10.3321/j.issn:0001-5717.2006.05.006]
[45]
张文正, 杨华, 李剑锋, 等. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:强生排烃特征及机理分析[J]. 石油勘探与开发, 2006, 33(3): 289-293. [Zhang Wenzheng, Yang Hua, Li Jianfeng, et al. Leading effect of high-class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation-hydrocarbon generation and expulsion mechanism[J]. Petroleum Exploration and Development, 2006, 33(3): 289-293. doi: 10.3321/j.issn:1000-0747.2006.03.006]
[46]
徐士林, 包书景. 鄂尔多斯盆地三叠系延长组页岩气形成条件及有利发育区预测[J]. 天然气地球科学, 2009, 20(3): 460-465. [Xu Shilin, Bao Shujing. Preliminary analysis of shale gas resource potential and favorable areas in Ordos Basin[J]. Natural Gas Geoscience, 2009, 20(3): 460-465.]
[47]
耳闯, 赵靖舟, 白玉彬, 等. 鄂尔多斯盆地三叠系延长组富有机质泥页岩储层特征[J]. 石油与天然气地质, 2013, 34(5): 708-716. [Er Chuang, Zhao Jingzhou, Bai Yubin, et al. Reservoir characteristics of the organic-rich shales of the Triassic Yanchang Formation in Ordos Basin[J]. Oil & Gas Geology, 2013, 34(5): 708-716.]
[48]
曾维特, 张金川, 丁文龙, 等. 延长组陆相页岩含气量及其主控因素:以鄂尔多斯盆地柳坪171井为例[J]. 天然气地球科学, 2014, 25(2): 291-301. [Zeng Weite, Zhang Jinchuan, Ding Wenlong, et al. The gas content of continental yanchang shale and its main controlling factors: A case study of Liuping-171 well in Ordos Basin[J]. Natural Gas Geoscience, 2014, 25(2): 291-301. doi: 10.11764/j.issn.1672-1926.2014.02.0291]
[49]
王香增, 高胜利, 高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014, 41(3): 294-304. [Wang Xiangzeng, Gao Shengli, Gao Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3): 294-304.]
[50]
曹茜, 周文, 陈文玲, 等. 鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型、尺度及成因分析[J]. 矿物岩石, 2015, 35(2): 90-97. [Cao Qian, Zhou Wen, Chen Wenling, et al. Analysis of pore types, sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation, Odros Basin[J]. Journal of Mineralogy and Petrology, 2015, 35(2): 90-97.]
[51]
赵靖舟, 王芮, 耳闯. 鄂尔多斯盆地延长组长7段暗色泥页岩吸附特征及其影响因素[J]. 地学前缘, 2016, 23(1): 146-153. [Zhao Jingzhou, Wang Rui, Er Chuang. Adsorption characteristics of Chang 7 shale from the Triassic Yanchang Formation in Ordos Basin, and its controlling factor[J]. Earth Science Frontiers, 2016, 23(1): 146-153.]
[52]
杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. [Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.]
[53]
王香增, 张丽霞, 李宗田, 等. 鄂尔多斯盆地延长组陆相页岩孔隙类型划分方案及其油气地质意义[J]. 石油与天然气地质, 2016, 37(1): 1-7. [Wang Xiangzeng, Zhang Lixia, Li Zongtian, et al. Pore type classification scheme for continental Yanchang shale in Ordos Basin and its geological significance[J]. Oil & Gas Geology, 2016, 37(1): 1-7.]
[54]
Loucks R G, Ruppel S C, Wang X Z, et al. Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China[J]. Interpretation, 2017, 5(2).
[55]
Sun L N, Tuo J C, Zhang M F, et al. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J]. Fuel, 2015, 158(1): 549-557.
[56]
Tang X, Zhang J C, Jin Z J, et al. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin[J]. Marine and Petroleum Geology, 2015, 64: 165-172. doi: 10.1016/j.marpetgeo.2015.02.046
[57]
Guo H J, Jia W L, Peng P A, et al. The composition and its impact on the methane sorption of lacustrine shales from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2014, 57: 509-520. doi: 10.1016/j.marpetgeo.2014.05.010
[58]
Fu H J, Wang X Z, Zhang L X, et al. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of Block X in the Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1422-1432. doi: 10.1016/j.jngse.2015.07.025
[59]
Jiang F J, Chen D, Wang Z F, et al. Pore characteristic analysis of a lacustrine shale: A case study in the Ordos Basin, NW China[J]. Marine and Petroleum Geology, 2016, 73: 554-571. doi: 10.1016/j.marpetgeo.2016.03.026
[60]
姜呈馥, 王香增, 张丽霞, 等. 鄂尔多斯盆地东南部延长组长7段陆相页岩气地质特征及勘探潜力评价[J]. 中国地质, 2013, 40(6): 1880-1888. [Jiang Chengfu, Wang Xiangzeng, Zhang Lixia, et al. Geological characteristics of shale and exploration potential of continental shale gas in 7th member of Yanchang Formation, southeast Ordos Basin[J]. Geology in China, 2013, 40(6): 1880-1888.]
[61]
何自新, 付金华, 孙六一. 鄂尔多斯盆地西北部地区天然气成藏地质特征与勘探潜力[J]. 中国石油勘探, 2002, 7(1): 56-66. [He Zixin, Fu Jinhua, Sun Liuyi. Geological characteristics and exploration potential of natural gas reservoir in northwest region of Ordos Basin[J]. China Petrleum Exploration, 2002, 7(1): 56-66. doi: 10.3969/j.issn.1672-7703.2002.01.006]
[62]
张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18. [Zhang Jinchuan, Jin Zhijun, Yuan Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. doi: 10.3321/j.issn:1000-0976.2004.07.005]
[63]
单衍胜, 张金川, 李晓光, 等. 辽河东部凸起上古生界海陆过渡相页岩气富集条件[J]. 大庆石油地质与开发, 2012, 31(3): 13-18. [Shan Yansheng, Zhang Jinchuan, Li Xiaoguang, et al. Shale gas enrichment conditions of marine-continental transitional facies of Upper Paleozoic in Liaohe eastern uplift[J]. Petroleum Geology and Oilfield Development in Daqing, 2012, 31(3): 13-18.]
[64]
葛明娜, 张金川, 李晓光, 等. 辽河东部凸起上古生界页岩含气性分析[J]. 断块油气田, 2012, 19(6): 722-726. [Ge Mingna, Zhang Jinchuan, Li Xiaoguang, et al. Gas-bearing property analysis on Upper Paleozoic shale in eastern uplift of Liaohe Basin[J]. Fault-Block Oil & Gas Field, 2012, 19(6): 722-726.]
[65]
荣丹文, 张劼, 荣晓伟, 等. 内蒙古自治区页岩气资源远景探讨[J]. 中国煤炭地质, 2013, 25(4): 23-26. [Rong Danwen, Zhang Jie, Rong Xiaowei, et al. Discussion on shale gas resources prospect in Inner Mongolia Autonomous Region[J]. Coal Geology of China, 2013, 25(4): 23-26. doi: 10.3969/j.issn.1674-1803.2013.04.06]
[66]
冯子齐.鄂尔多斯盆地东南部山西组海陆过渡相页岩储层特征与评价[D].北京: 中国地质大学(北京), 2014. [Feng Ziqi. Characteristics and evaluation of the organic-rich shale of Shanxi Formation, southeast in Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2014.] http://cdmd.cnki.com.cn/Article/CDMD-11415-1014239371.htm
[67]
唐玄, 张金川, 丁文龙, 等. 鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J]. 地学前缘, 2016, 23(2): 147-157. [Tang Xuan, Zhang Jinchuan, Ding Wenlong, et al. The reservoir property of the Upper Paleozoic marine-continental transitional shale and its gas-bearing capacity in the southeastern Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2): 147-157.]
[68]
魏晓亮, 张金川, 党伟, 等. 牟页1井海陆过渡相页岩发育特征及其含气性[J]. 科学技术与工程, 2016, 16(26): 42-50. [Wei Xiaoliang, Zhang Jinchuan, Dang Wei, et al. Characteristics and gas-bearing property of transitional shale in Well Mouye 1[J]. Science Technology and Engineering, 2016, 16(26): 42-50. doi: 10.3969/j.issn.1671-1815.2016.26.006]
[69]
周帅, 陈尚斌, 张楚, 等.海陆过渡相页岩气储层含气性特征及其影响因素[EB/OL].北京: 中国科技论文在线, 2016-12-27. [Zhou Shuai, Chen Shangbin, Zhang Chu, et al. The characteristics of gas bearing property in the transitional phase of shale gas reservoirs and its influence[EB/OL]. Sciencepaper Online, 2016http://www.paper.edu.cn/releasepaper/content/201612-535.]
[70]
陈晶, 黄文辉, 陈燕萍, 等. 沁水盆地煤系地层页岩储层评价及其影响因素[J]. 煤炭学报, 2017, 42(增刊1): 215-224. [Chen Jing, Huang Wenhui, Chen Yanping, et al. Evaluation of shale reservoir and its influencing factors in coal-bearing strata of Qinshui Basin[J]. Journal of China Coal Society, 2017, 42(Suppl.1): 215-224.]
[71]
孙彩蓉.鄂尔多斯盆地东缘石炭-二叠系页岩沉积相及微量元素地球化学研究[D].北京: 中国地质大学(北京), 2017. [Sun Cairong. Study on sedimentary facies and geochemistry of trace elements of Carboniferous-Permian shale in the eastern Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2017.] http://cdmd.cnki.com.cn/Article/CDMD-11415-1017125906.htm
[72]
翁凯, 李鑫, 李荣西, 等. 鄂尔多斯盆地东南部上古生界烃源岩评价及有利区预测[J]. 特种油气藏, 2012, 19(5): 21-25. [Weng Kai, Li Xin, Li Rongxi, et al. Evaluation of Upper Paleozoic source rocks and favorable region prediction in the southeast of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2012, 19(5): 21-25. doi: 10.3969/j.issn.1006-6535.2012.05.005]
[73]
陈术源, 秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881. [Chen Shuyuan, Qin Yong. Nanometer pore structure and geological controls of shale samples in northern Hebei province, China[J]. Natural Gas Geoscience, 2017, 28(6): 873-881.]
[74]
宋海强, 郑阁, 陈庆. 鄂尔多斯盆地L区块页岩气地质特征及勘探前景[J]. 石油地质与工程, 2017, 31(5): 33-36. [Song Haiqiang, Zheng Ge, Chen Qing. Geological characteristics and exploration prospects of shale gas in Block L of Ordos Basin[J]. Petroleum Geology and Engineering, 2017, 31(5): 33-36. doi: 10.3969/j.issn.1673-8217.2017.05.009]
[75]
林腊梅, 张金川, 唐玄, 等. 中国陆相页岩气的形成条件[J]. 天然气工业, 2013, 33(1): 35-40. [Lin Lamei, Zhang Jinchuan, Tang Xuan, et al. Conditions of continental shale gas accumulation in China[J]. Natural Gas Industry, 2013, 33(1): 35-40.]
[76]
Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[77]
Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
[78]
陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444. [Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444.]
[79]
Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of devonian and mississippian new albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194
[80]
Tian H, Pan L, Xiao X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19. doi: 10.1016/j.marpetgeo.2013.07.008
[81]
魏祥峰, 刘若冰, 张廷山, 等. 页岩气储层微观孔隙结构特征及发育控制因素:以川南—黔北XX地区龙马溪组为例[J]. 天然气地球科学, 2013, 24(5): 1048-1059. [Wei Xiangfeng, Liu Ruobing, Zhang Tingshan, et al. Micro-pores structure characteristics and development control factors of shale gas reservoir: A case of Longmaxi Formation in XX area of southern Sichuan and northern Guizhou[J]. Natural Gas Geoscience, 2013, 24(5): 1048-1059.]
[82]
Kuila U, Mccarty D K, Derkowski A, et al. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel, 2014, 135: 359-373. doi: 10.1016/j.fuel.2014.06.036
[83]
Fishman N S, Hackley P C, Lowers H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103: 32-50. doi: 10.1016/j.coal.2012.07.012
[84]
Katz B J, Arango I. Organic porosity: A geochemist's view of the current state of understanding[J]. Organic Geochemistry, 2018, 123: 1-16. doi: 10.1016/j.orggeochem.2018.05.015
[85]
Zargari S, Canter K L, Prasad M. Porosity evolution in oil-prone source rocks[J]. Fuel, 2015, 153: 110-117. doi: 10.1016/j.fuel.2015.02.072
[86]
Reed R M, Loucks R G, Milliken K L. Heterogeneity of shape and microscale spatial distribution in organic-matter-hosted pores of gas shales[C]//AAPG Annual Convention and Exhibition. Long Beach, California: AAPG, 2012: 22-24.
[87]
Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
[88]
叶玥豪, 刘树根, 孙玮, 等. 上扬子地区上震旦统—下志留统黑色页岩微孔隙特征[J]. 成都理工大学学报(自然科学版), 2012, 39(6): 575-582. [Ye Yuehao, Liu Shugen, Sun Wei, et al. Micropore characteristics of Upper Sinian-Lower Silurian black shale in Upper Yangtze area of China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(6): 575-582.]
[89]
Tiwari P, Deo M, Lin C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547-554. doi: 10.1016/j.fuel.2013.01.006
[90]
Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16. doi: 10.1016/j.orggeochem.2014.03.008
[91]
Hu H Y, Zhang T W, Wiggins-Camacho J D, et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59: 114-128. doi: 10.1016/j.marpetgeo.2014.07.029
[92]
Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 70-89. doi: 10.1016/j.marpetgeo.2011.05.010
[93]
Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048
[94]
赵佩, 李贤庆, 田兴旺, 等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6): 947-956. [Zhao Pei, Li Xianqing, Tian Xingwang, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience, 2014, 25(6): 947-956.]
[95]
Bernard S, Wirth R, Schreiber A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103: 3-11. doi: 10.1016/j.coal.2012.04.010
[96]
Loucks R G, Reed R M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. GCAGS Transactions, 2014, 64: 713.
[97]
Keller L M, Holzer L, Wepf R, et al. 3D geometry and topology of pore pathways in Opalinus clay: Implications for mass transport[J]. Applied Clay Science, 2011, 52(1/2): 85-95.
[98]
Keller L M, Holzer L, Wepf R, et al. On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(17/18): 1539-1544.
[99]
Hackley P C, Valentine B J, Voortman L M, et al. Utilization of integrated correlative light and electron microscopy (iCLEM) for imaging sedimentary organic matter[J]. Journal of Microscopy, 2017, 267(3): 371-383. doi: 10.1111/jmi.12576
[100]
Hackley P C, Zhang L X, Zhang T W. Organic petrology of peak oil maturity Triassic Yanchang Formation lacustrine mudrocks, Ordos Basin, China[J]. Interpretation, 2017, 5(2).
[101]
Liu B, Schieber J, Mastalerz M. Combined SEM and reflected light petrography of organic matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 2017, 184: 57-72. doi: 10.1016/j.coal.2017.11.002
[102]
Hou Y G, He S, Wang J G, et al. Preliminary study on the pore characterization of lacustrine shale reservoirs using low pressure nitrogen adsorption and field emission scanning electron microscopy methods: A case study of the Upper Jurassic Emuerhe Formation, Mohe basin, northeastern China[J]. Canadian Journal of Earth Sciences, 2015, 52(5): 294-306. doi: 10.1139/cjes-2014-0188
[103]
Chen Z H, Wang T G, Liu Q, et al. Quantitative evaluation of potential organic-matter porosity and hydrocarbon generation and expulsion from mudstone in continental lake basins: A case study of Dongying Sag, eastern China[J]. Marine and Petroleum Geology, 2015, 66: 906-924. doi: 10.1016/j.marpetgeo.2015.07.027
[104]
Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239.
[105]
Song D J, Tuo J C, Zhang M F, et al. Hydrocarbon generation potential and evolution of pore characteristics of Mesoproterozoic shales in north China: Results from semi-closed pyrolysis experiments[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 171-183. doi: 10.1016/j.jngse.2018.12.011
[106]
曹涛涛, 邓模, 罗厚勇, 等. 下扬子地区中上二叠统页岩有机孔发育特征[J]. 石油实验地质, 2018, 40(3): 315-322, 396. [Cao Taotao, Deng Mo, Luo Houyong, et al. Characteristics of organic pores in Middle and Upper Permian shale in the Lower Yangtze region[J]. Petroleum Geology & Experiment, 2018, 40(3): 315-322, 396.]
[107]
龙鹏宇, 张金川, 姜文利, 等. 渝页1井储层孔隙发育特征及其影响因素分析[J]. 中南大学学报(自然科学版), 2012, 43(10): 3954-3963. [Long Pengyu, Zhang Jinchuan, Jiang Wenli, et al. Analysis on pores forming features and its influence factors of reservoir Well Yuye-1[J]. Journal of Central South University (Science and Technology), 2012, 43(10): 3954-3963.]
[108]
吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256. [Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.]
[109]
吉利明, 邱军利, 宋之光, 等. 黏土岩孔隙内表面积对甲烷吸附能力的影响[J]. 地球化学, 2014, 43(3): 238-244. [Ji Li-ming, Qiu Junli, Song Zhiguang, et al. Impact of internal surface area of pores in clay rocks on their adsorption capacity of methane[J]. Geochimica, 2014, 43(3): 238-244.]
[110]
Jurg J W, Eisma E. Petroleum hydrocarbons: generation from fatty acid[J]. Science, 1964, 144(3625): 1451-1452. doi: 10.1126/science.144.3625.1451
[111]
Heller-Kallai L, Aizenshtat Z, Miloslavski I. The effect of various clay minerals on the thermal decomposition of stearic acid under `bulk flow' conditions[J]. Clay Minerals, 1984, 19(5): 779-788. doi: 10.1180/claymin.1984.019.5.08
[112]
Liu H M, Yuan P, Liu D, et al. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216. doi: 10.1016/j.clay.2017.12.028
[113]
Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879-893. doi: 10.1016/0016-7037(94)90512-6
[114]
Kennedy M J, Pevear D R, Hill R J. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5555): 657-660. doi: 10.1126/science.1066611
[115]
Kennedy M J, Wagner T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9776-9781. doi: 10.1073/pnas.1018670108
[116]
Kennedy M J, Löhr S C, Fraser S A, et al. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis[J]. Earth and Planetary Science Letters, 2014, 388: 59-70. doi: 10.1016/j.epsl.2013.11.044
[117]
Berthonneau J, Grauby O, Abuhaikal M, et al. Evolution of organo-clay composites with respect to thermal maturity in type Ⅱ organic-rich source rocks[J]. Geochimica et Cosmochimica Acta, 2016, 195: 68-83. doi: 10.1016/j.gca.2016.09.008
[118]
Rahman H M, Kennedy M, Löhr S, et al. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis[J]. Geochimica et Cosmochimica Acta, 2017, 220: 429-448.
[119]
Zhu X J, Cai J G, Wang G L, et al. Role of organo-clay composites in hydrocarbon generation of shale[J]. International Journal of Coal Geology, 2018, 192: 83-90. doi: 10.1016/j.coal.2018.04.002
[120]
Chen Q, Zhang J C, Tang X, et al. Relationship between pore type and pore size of marine shale: An example from the Sinian–Cambrian formation, upper Yangtze region, South China[J]. International Journal of Coal Geology, 2016, 158: 13-28. doi: 10.1016/j.coal.2016.03.001
[121]
赖锦, 王贵文. 川中蓬莱地区须二段储层成岩相及其对孔隙结构影响[J]. 特种油气藏, 2013, 20(1): 34-38. [Lai Jin, Wang Guiwen. Diagenetic facies of Xu Member Ⅱ of Penglai area of central Sichuan Basin and its influences on reservoir pore structure[J]. Special Oil & Gas Reservoirs, 2013, 20(1): 34-38. doi: 10.3969/j.issn.1006-6535.2013.01.009]
[122]
Liang M L, Wang Z X, Gao L, et al. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 2017, 197: 310-319. doi: 10.1016/j.fuel.2017.02.035
[123]
Zhu H J, Ju Y W, Qi Y, et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 2018, 228: 272-289. doi: 10.1016/j.fuel.2018.04.137
[124]
Wu Y D, Ji L M, He C, et al. The effects of pressure and hydrocarbon expulsion on hydrocarbon generation during hydrous pyrolysis of type-Ⅰ kerogen in source rock[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1215-1224. doi: 10.1016/j.jngse.2016.08.017
[125]
Jiang S, Xu Z Y, Feng Y L, et al. Geologic characteristics of hydrocarbon-bearing marine, transitional and lacustrine shales in China[J]. Journal of Asian Earth Sciences, 2016, 115: 404-418. doi: 10.1016/j.jseaes.2015.10.016
[126]
Xu Z Y, Jiang S, Yao G S, et al. Tectonic and depositional setting of the lower Cambrian and lower Silurian marine shales in the Yangtze Platform, South China: implications for shale gas exploration and production[J]. Journal of Asian Earth Sciences, 2018, 170: 1-19.
[127]
Stach E, Murchison D G. Stach's Textbook of Coal Petrology[M]. Berlin: Gebruder Borntraeger, 1982: 535.
[128]
Taylor G H, Teichmüller M, Davis A, et al. Organic Petrology[M]. Berlin, Germany: Borntraeger, 1998: 704.
[129]
Bernard S, Beyssac O, Benzerara K, et al. XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis[J]. Carbon, 2010, 48(9): 2506-2516. doi: 10.1016/j.carbon.2010.03.024
[130]
Bernard S, Horsfield B, Schulz H M, et al. Multi-scale detection of organic and inorganic signatures provides insights into gas shale properties and evolution[J]. Chemie der Erde - Geochemistry, 2010, 70(S3): 119-133.
[131]
Kelemen S R, Walters C C, Kwiatek P J, et al. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5305-5332. doi: 10.1016/j.gca.2010.06.013
[132]
Tannenbaum E, Aizenshtat Z. Formation of immature asphalt from organic-rich carbonate rock — Ⅱ. Correlation of maturation indicators[J]. Organic Geochemistry, 1984, 6: 503-511. doi: 10.1016/0146-6380(84)90073-1
[133]
Tannenbaum E, Aizenshtat Z. Formation of immature asphalt from organic-rich carbonate rocks—Ⅰ. Geochemical correlation[J]. Organic Geochemistry, 1985, 8(2): 181-192. doi: 10.1016/0146-6380(85)90037-3
[134]
Jacob H. Classification, structure, genesis and practical importance of natural solid oil bitumen ("migrabitumen")[J]. International Journal of Coal Geology, 1989, 11(1): 65-79. doi: 10.1016/0166-5162(89)90113-4
[135]
Thompson-Rizer C L. Some optical characteristics of solid bitumen in visual kerogen preparations[J]. Organic Geochemistry, 1987, 11(5): 385-392. doi: 10.1016/0146-6380(87)90071-4
[136]
Mastalerz M, Drobniak A, Stankiewicz A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36. doi: 10.1016/j.coal.2018.05.013
[137]
Zhang H, Zhu Y M, Wang Y, et al. Comparison of organic matter occurrence and organic nanopore structure within marine and terrestrial shale[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 356-363. doi: 10.1016/j.jngse.2016.04.040
[138]
Yang C, Zhang J C, Tang X, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China[J]. International Journal of Coal Geology, 2017, 171: 76-92. doi: 10.1016/j.coal.2016.12.001
[139]
孙超, 姚素平, 李晋宁, 等. 东营凹陷页岩油储层特征[J]. 地质论评, 2016, 62(6): 1497-1510. [Sun Chao, Yao Suping, Li Jinning, et al. The characterization of shale oil reservoir in Dongying Sag[J]. Geological Review, 2016, 62(6): 1497-1510.]
[140]
张顺, 刘惠民, 王敏, 等. 东营凹陷页岩油储层孔隙演化[J]. 石油学报, 2018, 39(7): 754-766. [Zhang Shun, Liu Huimin, Wang Min, et al. Pore evolution of shale oil reservoirs in Dong-ying Sag[J]. Acta Petrolei Sinica, 2018, 39(7): 754-766.]
[141]
姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. [Jiang Zaixing, Zhang Wenzhao, Liang Chao, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196.]
[142]
Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Berlin: Springer-Verlag, 1984: 643-644.
[143]
Horsfield B. Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography[J]. Geochimica et Cosmochimica Acta, 1989, 53(4): 891-901. doi: 10.1016/0016-7037(89)90033-1
[144]
Mohnhoff D, Littke R, Krooss B M, et al. Flow-through extraction of oil and gas shales under controlled stress using organic solvents: Implications for organic matter-related porosity and permeability changes with thermal maturity[J]. International Journal of Coal Geology, 2016, 157: 84-99. doi: 10.1016/j.coal.2015.09.010
[145]
侯读杰, 冯子辉. 油气地球化学[M]. 北京: 石油工业出版社, 2011: 166-167. [Hou Dujie, Feng Zihui. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2011: 166-167.]
[146]
Guo H J, Jia W L, Peng P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang shale with type Ⅱ kerogen[J]. Organic Geochemistry, 2017, 105: 56-66. doi: 10.1016/j.orggeochem.2017.01.004
[147]
Lewan M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2
[148]
Seewald J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. doi: 10.1038/nature02132
[149]
Cander H. Sweet spots in shale gas and liquids plays: prediction of fluid composition and reservoir pressure[C]//AAPG Annual Convention. California, USA: 2012.
[150]
王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768. [Wang Feiyu, Guan Jing, Feng Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768.]