沉积学报  2019, Vol. 37 Issue (6): 1162−1180

扩展功能

文章信息

文华国, 罗连超, 罗晓彤, 游雅贤, 杜磊
WEN HuaGuo, LUO LianChao, LUO XiaoTong, YOU YaXian, DU Lei
陆地热泉钙华研究进展与展望
Advances and Prospects of Terrestrial Thermal Spring Travertine Research
沉积学报, 2019, 37(6): 1162-1180
ACTA SEDIMENTOLOGICA SINCA, 2019, 37(6): 1162-1180
10.14027/j.issn.1000-0550.2019.066

文章历史

收稿日期:2019-03-21
收修改稿日期: 2019-06-24
陆地热泉钙华研究进展与展望
文华国1,2 , 罗连超2 , 罗晓彤2 , 游雅贤2 , 杜磊2     
1. 油气藏地质及开发工程国家重点实验室 (成都理工大学), 成都 610059;
2. 成都理工大学沉积地质研究院, 成都 610059
摘要: 陆地热泉钙华是沉淀于富Ca2+和HCO3-热泉(普遍T≥30℃)的陆地碳酸盐沉积物/岩。热泉钙华独特的形成环境、岩石矿物学特征、地球化学特征和流体性质对古环境、古气候、早期生命起源、新构造运动、陆相热水沉积学、地热资源等方面研究具有重要指示意义。尽管相关学者对陆地热泉钙华开展了相关研究,但由于热泉钙华沉积—成岩过程中受复杂外界条件控制,其时空分布、沉积特征、矿物组成、地球化学特征、微生物作用、流体来源、成岩作用、古气候记录等系列科学问题有待深入研究。在国内外大量文献的基础上,结合研究团队对云南腾冲火山地热区热泉钙华的认识,综述了目前国内外学者对陆地热泉钙华的研究进展,总结了热泉钙华研究意义,提出了当前热泉钙华研究存在的问题及下步研究方向,为更加全面地认识陆地热泉钙华沉积及未来研究提供启示。
关键词: 热泉钙华    沉积特征    岩石矿物学    地球化学    微生物    早期成岩作用    
Advances and Prospects of Terrestrial Thermal Spring Travertine Research
WEN HuaGuo1,2 , LUO LianChao2 , LUO XiaoTong2 , YOU YaXian2 , DU Lei2     
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology), Chengdu 610059, China;
2. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
Foundation: National Natural Science Foundation of China, No.41572097, 41972116, 41472088
Abstract: A thermal spring travertine is a form of terrestrial carbonate rock/deposit formed in Ca2+ and HCO3- enriched hot springs(generally T ≥ 30℃). Its unique depositional environment, petrological and mineralogical characteristics, geochemical features, and fluid characteristics are of great significance to studies of paleoenvironment, paleoclimate, origin of early life, neotectonic evolution, terrestrial hydrothermal sedimentology, geothermal resources, etc. Although geologists have carried out many studies related to thermal spring travertines, their spatial and temporal distribution, sedimentary characteristics, mineral composition, geochemical characteristics, microbial processes, fluid origins, diagenesis, and paleoclimate significance are still unclear because of the complex depositional and diagenetic conditions of thermal spring travertines, and further studies are needed. Based on a detailed literature review and our previous studies, this study:1) reviewed the current research progress of thermal spring travertines, 2) summarized the significance of thermal spring travertine research, and 3) proposed the current problems and next directions in thermal spring travertine research. Combining this information, this study can help us better understand the geological features of thermal spring travertines and their significance and provide new insights into further research.
Key words: thermal spring travertine    sedimentary feature    petrology and mineralogy    geochemistry    microorganism    early diagenesis    

区别于形成于流出地表的高温、近中性、氯碱性流体中的硅华/硅质沉积物[1-3],钙华是从泉水中经过有机和无机过程沉淀形成的淡水碳酸盐沉积物或碳酸盐岩[4],其沉积流体包括常温流体和热流体。近年来,虽然越来越多的学者倾向于使用“travertine”表示陆地环境下与热流体相关的碳酸盐沉积[5-9],但关于钙华名称的限定,尤其是“tufa”和“travertine”名称的选取,似乎不能明确钙华形成温度、外形、沉积环境等限定条件,可能无法准确表达复杂钙华类型完整的概念,如中国的四川黄龙沟钙华与云南白水台钙华,地球化学特征显示为热成因钙华(thermogene travertine)[10-12],若按照泉水温度的分类,四川黄龙沟钙华(约7 ℃)[13]与云南白水台钙华(约10 ℃)[14]属于冷水钙华(tufa)。基于此,本文对热泉钙华(thermal spring travertine)的定义为:沉淀于富Ca2+和HCO3-热泉(T≥20 ℃,普遍T≥30 ℃)[15]的陆地碳酸盐沉积物/岩。

目前,热泉钙华在古气候、古环境重建和油气勘探中扮演着越来越重要的角色,并引起国际上相关学者的关注。尽管相关学者对热泉钙华开展了相关研究:如热泉钙华与新构造运动的关系[16-19],热泉钙华的沉积格架与古环境重建[20-24],微生物在钙华形成中的作用[8, 25-28],钙华中特殊组构(如“方解石树”)的成因[29-32],热泉钙华的古气候重建[24, 33-35]等,但仍然存在一系列科学问题有待探索和研究。本文在阅读国内外大量文献的基础上,结合研究团队对云南腾冲热泉钙华的研究,阐述了热泉钙华的研究现状,包括热泉钙华时空分布、沉积特征、矿物组成、地球化学特征、微生物作用、流体来源、早期成岩作用、古气候记录等方面,并总结了热泉钙华研究意义,提出了当前热泉钙华研究存在的问题及下一步研究方向。

1 热泉钙华分类与时空分布

目前,世界上针对钙华(travertine、tufa、calcareous tufa)的分类方式众多,常见的有成因分类、形态分类、温度分类等,如Pentecost et al.[36]按照CO2来源,将钙华分为大气成因钙华(meteogene travertine,δ13C多介于0~-11‰)与热成因钙华(thermogene travertine,δ13C介于-4‰ ~ 8‰),根据钙华体形态与发育位置将钙华分为原地钙华(autochthonous travertine)和碎屑钙华(clastic travertines)两个亚类,并进一步划分出了泉华丘、裂脊钙华和瀑布钙华等9个小类。Ford et al.[37]依据温度与发育位置将钙华分为冷水钙华(tufa)、热水钙华(travertine)和洞穴沉积物(speleothem)。热泉钙华属于热成因钙华或热水钙华,主要分布在第四纪,第四纪前的热泉古钙华发现较少,其原因可能是:1)热泉古钙华体规模较小和空间区域分布范围小,2)强烈的成岩改造,3)纹层状钙华与湖/海相叠层石的相似性导致的误判。

目前已发现/证实的热泉钙华主要分布于北半球,以第四纪和现代钙华发育为主(图 1),其具体时空分布特征表现为:

图 1 全球不同时代热泉钙华分布(红色圆圈表示第四纪与现代钙华;黄色圆圈表示古近纪与新近纪钙华;绿色圆圈表示中生代钙华;紫色圆圈表示古生代与前寒武钙华) 据Chafetz et al.[38]; Jones et al. [39]; Guo et al. [40]; Frank et al.[41]; Jones et al.[42]; Rihs et al.[43]; Melezhik et al. [44]; Bonny et al. [45]; Canet et al. [46]; Słowakiewicz [47]; Pichler et al. [48]; Altunel et al. [49]; Jones et al.[29]; Moore et al.[50]; Jorge-Villar et al.[51]; Pentecost et al. [25]; Pedley[52]; Rainey et al. [53]; Vylita et al. [54]; Fouke[55]; Guido et al. [56]; Kanellopoulos[57]; Ni-shikawa et al.[58]; Okumura et al.[6]; Rodríguez-Berriguete et al.[59]; Villanueva-Estrada et al.[60]; Brasier et al.[61]; Okumura et al.[62]; Prado-Pérez et al.[63]; Kalender et al.[64]; Sugihara et al. [8]; Tchouatcha et al. [22]; Billi et al. [65]; Claes et al. [66]; D′Alessandro et al. [67]; Frery et al. [68]; Henchiri et al. [69]; Kanellopoulos et al. [9]; Pereira et al. [70]; Tatarinov et al. [27]; Török et al. [71]; Alhejoj et al.[72]; Capezzuoli et al.[73]; Chafetz et al.[74]; Shiraishi et al.[28] Fig.1 Worldwide distribution map of different thermal spring travertine occurrences

(1)受地热活动控制的现代热泉钙华报道最为丰富,如:中国云南腾冲地热区[31, 75-76]与西藏地区[77-78]、美国Yellowstone National Park[55, 79-80]、日本Nagano-yu Hot Spring[81]、冰岛Lýsuhóll地区[29, 82]、西班牙Alhama-Jaraba地区[83]

(2)热泉活动已经停止的第四纪钙华也有较多发现,主要有:中国云南腾冲地区[30, 84-85]与西藏地区[35, 86-89]、加拿大Miette Hot Springs地区全新世残余钙华[45]与Fairmont Hot Springs地区的全新世钙华裙、意大利Tiber峡谷更新世瀑布钙华[24]与Euganean地热区更新世钙华丘[90]、土耳其Cakmak地区更新世钙华斜坡[80]

(3)前第四纪热泉古钙华仅见于少数地区,研究程度较低,如匈牙利Budakalász的古近系钙华[66]、阿根廷Deseado Massif的侏罗纪地热区[56, 91-92]、欧洲Pechenga Greenstone Belt的古元古代钙华[20, 44]。在中国新疆柯坪硫磺沟地区也见有奥陶系古钙华出露[93-94],但是否为古热泉钙华还有待考证。

2 热泉钙华的沉积特征 2.1 沉积特殊性

作为非海相碳酸盐岩的特殊沉积类型,区别于常见的湖相碳酸盐岩与石笋等洞穴沉积物,热泉钙华的沉积具有独特性,主要表现为:

(1)外形的多样性,表现为瀑布状、台地状、斜坡状、裂脊状、塔状、丘状等多种外形[76, 95-100]图 2)。

图 2 典型热泉钙华体宏观形态特征 (a)钙华瀑布,西班牙(Berrazales(Camuera et al.[100]);(b)钙华阶地,美国Yellowstone National Park(Fouke [55]);(c)钙华丘,印度尼西亚Sumatra(Sugihara et al. [8]);(d)钙华蘑菇,云南腾冲石墙;(e)钙华台地,云南腾冲猴桥;(f)钙华裂脊,土耳其Başkale(Sağlam et al. [101]);(g)光滑钙华斜坡,云南腾冲曩宋阿昌族乡;(h)热泉池及其周缘的黄色钙华,云南腾冲瑞滇乡 Fig.2 Macroscopic morphological characteristics of typical thermal spring travertines

(2)沉积体系的多样性,可划分为斜坡沉积体系、凹陷沉积体系和Reed丘沉积体系(低角度斜坡沉积体系)[102],各类沉积体系下又分多个沉积相类型[52, 103]

(3)岩相划分类型众多,可分为非生物结晶岩相、微生物岩相和碎屑颗粒岩相三大类,再细分为22个微相[103]

(4)快速的相变,由于热泉水从泉口流向周缘过程中,温度急剧下降,热泉钙华沉积会很快过渡为冷水钙华(T < 20 ℃)[52]

(5)沉积速率快[15],平均沉积速率可高达1.75 mm/年与30.9 mg/cm2/天[58, 104]

(6)根据热泉喷口到远端裙距离和温度差异,可将热泉钙华沉淀环境划分为四类:喷口区、邻近斜坡、中裙和远端裙—沼泽[56]图 3表 1)。

图 3 喷口到远端裙不同温度梯度热泉及其钙华结构特征图(据Guido et al. [56],修改) Fig.3 Hot springs with different temperature gradients from vent to distal-apron and travertine texture characteristics(modified from Guido et al.[56])
表 1 阿根廷德塞阿多地块的热泉沉积物的相组合及其特征(据Guido et al. [56],修改) Table 1 The facies association and characteristics of thermal spring sediments in the Deseado Massif, Argentina (modified from Guido et al.[56])
相组合 结构 叠层石组合 阿根廷Claudia 阿根廷
Cerro Negro
阿根廷
El Macanudo
近端 喷口 水道/喉道
角砾
沟渠
针状/结节状/葡萄状 表层生物膜
串珠状
辐射微葡萄状
近端斜坡 细层 表面生物膜
水下 火山状锥 水道周围倾斜沉积 围绕水道基部呈花菜状
同心锥 齿状同心层 微生物结构为主
管状 早期辐射柱状 管状物上的“花菜”包壳
土丘/阶地 同心葡萄状/层状 结构中包含微生物
中端 流道 泡沫席 微生物结构为主
充填碎屑 暖流底部藻席(搬运)
带状结构 微生物结构为主
中裙池 厚栅状层 微生物结构为主
网状结构/锥形簇 微生物结构为主
泡沫状结构
远端 远裙 阶形/薄栅状层 微生物结构为主
低振幅波状层 生物+物理结构
球晶/核形石 基本微生物结构
沼泽 窗形 普遍在微生物沉积物形成
斑点状/凝结状/球状粒 微生物结构为主
植物/动物 某些地方,微生物岩包裹
古土壤 风化硅华碎片,含微生物
2.2 矿物组成特征

第四纪热泉钙华的矿物组成主要包括非晶质碳酸钙、文石和方解石[105]图 4),尤以文石和方解石最为普遍[64, 108-109],而沉淀的非晶质碳酸钙由于不稳定,会快速转化为方解石和/或文石[110-112],这些关注和报道都相对较少[48]。钙华中矿物组成与温度、Mg/Ca比值、热液成分、CO2放气幅度、黏度、微生物、沉淀速率具有密切联系[38, 79, 113-116],但任何单一的控制因素都无法适用于任何地区。如腾冲热水塘地区与热海地区古钙华形成温度接近沸点[30, 76],根据Folk [114]的观点如此高温下形成的钙华应主要由文石组成,但事实却是热水塘地区与热海地区古钙华主要由方解石组成。同样的由方解石组成的高温钙华在肯尼亚Lake Bogoria[117-119]和新西兰[39]都有发现。因此,钙华的矿物组成是多因素综合作用的结果。此外,在部分热泉钙华中也发现了硫酸盐[120-121]和自生SiO2沉淀[122-123]的踪迹(图 4),这可能是由于热液原始组成与形成条件的差异等造成的。受控于热泉喷流活动的影响,也会存在或多或少的外源碎屑矿物[51];而成岩作用的改造也会导致钙华体中出现其他矿物,如白云石[51],且这种现象在越古老的钙华体中更为明显[20]

图 4 典型热泉钙华矿物晶体形态显微照片 (a)方解石树,腾冲瑞滇;(b)文石,腾冲蒲热水塘;(c)无定型方解石,云南腾冲(Jones et al. [30]);(d)重晶石,加拿大Twitya Spring(Bonny et al. [106]);(e)方解石和无定形二氧化硅,新西兰Waikite(Jones et al.[42]);(f)石盐与石膏,伊朗Badab-e Surt Spring(Sotohian et al.[107]);(g)锰铁质和方解石,腾冲朗蒲热水塘(Luo et al. [76]);(h)石盐和方解石,腾冲朗蒲热水塘(Luo et al.[76]);(i)石盐、方解石和无水芒硝,腾冲朗蒲热水塘(Luo et al.[76] Fig.4 Crystal morphology micrograph of typical thermal spring travertine minerals
3 热泉钙华的地球化学特征

热泉钙华的地球化学特征更多的反映了热泉钙华形成主要受深源物质的加入与高温热流体的影响。与深部岩浆活动和/或深大断裂相关的热泉钙华由于受深源物质的混入影响,主要表现为:1)代表深循环流体的低U含量[124]与代表长期水岩反应的高234U/238U比值[125];2)热水沉积岩中常见的Eu正异常[7];3)深部来源Sr与其他来源Sr的混合[126];4)表示深源CO2混入的较高的δ13C值[127-128]

形成热泉钙华的高温热流体地球化学性质可能表现为:1)低pH值、更高络合配位体浓度和/或表示更高温条件的高ΣREE值[7];2)较高的As与Te含量[123];3)高Mn与Fe含量[99, 129];4)较高的(普遍 > 50 ℃)流体包裹体均一化温度[47, 130-131];5)较高的氧同位素测温结果[85, 132]

4 热泉钙华的微生物组成与意义

生物在热泉钙华沉积中较常见[133-135],且在热泉钙华的识别与形成中意义重大。热泉的特殊环境条件决定了其内部生长的生物独特性(图 5)。在相对高温条件下,微生物主要以硫细菌与嗜热型微生物存在[8],如肯尼亚与新西兰的高温热泉(> 90 ℃)沉积物中广泛存在的嗜热型细菌[39]。随着水温与硫化物浓度的降低,温度对蓝细菌生长的抑制作用越趋变小[137],在水温低于50 ℃的环境下,丝状蓝绿藻在微生物中占据主导地位[6, 62]

图 5 热泉钙华微生物痕迹显微照片 (a)丝状微生物,云南腾冲朗蒲热水塘;(b)管状微生物,日本Pancuran Pitu(Okumura et al.[62]);(c)硅藻,云南腾冲猴桥镇;(d)杆状微生物,加拿大Clinton(Jones et al. [136]);(e)球状微生物,加拿大Clinton(Jones et al. [136]);(f)螺旋状微生物,日本Satono-yu hot spring(Shiraishi et al.[28] Fig.5 Micrograph of microbial traces for thermal spring travertines

生物在热泉钙华的识别与形成中的意义包括三点:

(1)大型植物缺乏是热泉钙华区别于冷水钙华的重要标志[15],高温条件并不利于大型植物的生长,但对微生物活动限制弱[26, 82, 138-140],但是单一的植物证据并不能完全区分热水和冷水钙华,如热泉钙华内的树叶化石也可能源于周围高山上的植被[136]

(2)微生物的发育一定程度上不利于钙华的沉淀,蓝细菌分泌的酸性物质或络合物(如胞外聚合物)会诱导小晶体的产生,而这类小晶体极有可能被溶解[141]

(3)微生物对钙华的沉淀过程影响较大,蓝细菌的光合作用以及其他细菌的氨化作用、反硝化作用和硫酸盐还原作用能够诱导方解石或文石沉淀[142-143]

5 热泉钙华的流体来源

热成因钙华水来源对解释热泉钙华的成因机制[21, 144],区域构造断裂活动[22, 90],以及古环境和古气候重建[11, 22, 35, 37, 78, 145]等具有重要作用。形成热泉水的来源主要为大气降水,包括雨水、地表水、地下水,它们沿断层和断裂带渗入地下,与深循环水汇合,吸收热源热量,携带深源CO2向上输送到地表[146]图 6)。热泉钙华流体来源强烈受地热深部高二氧化碳流体的影响[9, 24, 99],主要体现在富CO2流体对渗入的大气水的贡献[24]。大部分热泉钙华是大气降水于构造活动区渗透于地下深部岩浆层携带深源CO2在地表脱气而成[147],如我国青藏高原[89, 148]、云南[144, 149-150]等构造地热活动强烈区,中非喀麦隆火山线[151],美国黄石公园[152-153]和伊朗北部Kopet-Dagh Zone[154]等。Karaisaoğlu et al.[109]认为Kavakköy钙华中高δ13C值和计算δ13C值与CO2来自于幔源有关。另外,基于氢氧同位素稳定化学性质和对水的标记作用,利用氢氧稳定同位素组成数据可区分泉水是否为大气降水补给来源[149]。位于永久冻土带的Pymvashor亚北极热液系统热泉流体δ18O和δ2H及其与大气降水H、O同位素组成的关系表明大气水在热液系统补给区域内的渗透[155]。同样,云南白水台温泉水δ2H、δ18O数据分布在大气降水线附近[144],也表明泉水的补给主要来源为大气降水;伊朗北部Ayub-Peighambar沉积钙华的热泉水δ2H、δ18O数据反映出泉水来源于沿深大断裂渗透的大气降水经过地下岩溶系统循环后经泉口排出[154]

图 6 地热体系地下水流动地质横剖面(据Navarro et al.[146],修改) Fig.6 Geological cross-section showing the groundwater flow in the geothermal system (modified from Navarro et al. [146])
6 热泉钙华的早期成岩作用 6.1 热泉钙华的早期成岩作用定义及类型划分

热泉钙华的早期成岩作用被定义为“发生或开始于沉积期或沉积期后的原始岩石组构的改变或转化过程”[156]。目前针对热泉钙华的早期成岩作用研究主要停留在早期成岩作用类型分析上[102, 157-161],系统性研究很少。由于早期成岩作用的过程发生很早,因此不管是正在活动的现代热泉钙华还是古钙华沉积都经历了一定程度的早期成岩作用改造,其早期成岩作用包括胶结作用、溶解作用、重结晶作用、交代作用、新生变形作用、泥晶化作用、角砾化作用、干缩裂缝、侵蚀作用、破裂作用、有机质腐烂、软沉积变形[52, 100, 102, 159, 162-164]。上述早期成岩作用中尤其是胶结作用、溶解作用、新生变形作用最为明显(图 7),其中胶结作用表现为:1)块状或板片状方解石[7, 136, 159];2)叶片状方解石等厚环边[164];3)他形方解石—文石壳、镶嵌状胶结物和增生胶结物[103, 136, 164]。陆地环境决定了热泉钙华受大气淡水的溶解作用明显,导致原生空隙的扩大、溶蚀空隙的产生和原生构造的破坏[159]。新生变形作用则主要表现为纤维状和泥晶状的文石向他形镶嵌状方解石晶体的转化[79, 159]。此外,泥晶化作用(图 7e)的出现也具有较大意义,可在一定程度上反映早期成岩过程微生物的活跃性[66, 100, 102]

图 7 热泉钙华典型成岩作用类型显微照片 (a)孔隙中的方解石胶结物,匈牙利Gazda(Török et al.[71]);(b)溶解作用形成的溶孔(红色箭头),腾冲朗蒲热水塘;(c)侵蚀作用形成的蚀刻痕,加拿大Clinton(Jones et al.[136]);(d)泥晶方解石的重结晶作用,匈牙利Gazda(Török et al.[71]);(e)亮晶方解石周缘的泥晶套(Claes et al.[66]);(f)交代作用(方解石交代文石),美国Yellowstone National Park(Fouke[55] Fig.7 Micrograph of typical diagenesis types of thermal spring travertines
6.2 热泉钙华的早期成岩流体

热泉钙华早期成岩流体的研究极少有报道。El Desouky et al. [165]利用流体包裹体与同位素地球化学手段对土耳其Denizli盆地的热泉钙华胶结物进行研究,发现其成岩流体为高温高盐度的流体。直观来看,陆相碳酸盐岩的早期成岩流体基本都是沉积物同期赋存流体与大气水,但这种认识并不完全适用于火山地热区热泉钙华的成岩流体判别,因为这些地区的热泉钙华受深部岩浆活动的影响较大,深部来源流体在其早期成岩过程中仍然十分重要,周期性的热泉活动带入的热流体很可能导致已固结钙华的早期成岩流体性质发生极大变化,这也使得其早期成岩流体中记录了热泉活动、深部流体来源强度等信息。

6.3 热泉钙华的早期成岩作用与微生物保存

成岩作用会导致泉华沉积物中赋存的微生物或胞外聚合物信息的快速丢失[105]。Love et al. [166]认为纹层状钙华的新生变形作用会导致富生物纹层向柱状粗晶的转化,并最终丢失生物信息。Okumura et al. [62]在研究日本Nagano-yu Hot Spring钙华纹层时,发现蓝细菌生物膜会在10天内快速降解,留下类似于古叠层石的纹层状碳酸盐沉积物。这种生物痕迹丢失的现象在越古老的钙华中越明显[29, 85],如在俄罗斯Pechenga绿岩带中的前寒武系热泉钙华中微生物的痕迹已基本消失[20, 44]。这就带来了两个值得思考的难题:1)在古老热泉钙华中微生物的缺少到底是成岩作用还是沉积作用的结果,或者是沉积—成岩作用共同结果;2)如何才能从地质历史时期广泛发育的叠层石中识别出热泉钙华成因的叠层石。热泉钙华所处的陆地环境决定了其早期成岩作用必然会对其进行强烈改造,但如何改造及改造程度如何却依然是个值得深入研究的课题。

7 热泉钙华赋存的古气候记录信息及成岩作用对其的影响

近期的研究[41, 167-168]表明,热泉钙华的形成会受到气候因素的控制,这种气候控制的特征体现为热泉钙华主要发育于温暖潮湿的间冰期,如中安第斯山更新世热泉钙华主要形成于MIS 3期与MIS 6期的间冰期潮湿气候条件[130]。Rihs et al. [43]认为,在湿润气候时期,大量的大气降水促进了热水系统循环和地下水位的增高,使得更多的热水运移排出在地表,从而有利于热泉钙华的形成,而在干旱寒冷期则相反。这些实例反映了热泉钙华气候记录信息能有效的重建古气候。但也有研究认为,气候对热泉钙华的形成影响较小,如土耳其Denizli Basin的更新世热泉钙华在干燥寒冷的MIS 2期也有发育[132]。显然,温暖潮湿的间冰期虽然有利于热泉钙华的形成[169],但并不意味着热泉钙华仅形成于温暖潮湿的间冰期。

关于古今热泉钙华与古气候记录关系的研究还多停留在用热泉钙华定年测定的形成时间与该时期的古气候记录对比上[24, 33-34, 87, 170]图 8),这种简单的对比是无法获得准确的古气候信息的,因为构造活动(如断层的开启与关闭)对钙华的形成也具有很大影响[17, 125, 170, 173]。因此,对赋存于热泉钙华中的古气候记录信息的提取,尤其是冷暖记录与降雨量记录信息的提取十分重要。

图 8 意大利Albegna盆地冰期—间冰期主要古气候指标的比较图(据Vignaroli et al.[170] 将该地区层状、带状钙华,方解石脉和似洞穴碳酸盐沉积物样品U/Th测年结果与深海氧同位素值(Zachos et al. [171])和来自意大利中部Valle di Castiglione的花粉数据集(Tzedakis et al. [172])做比较。AP.木本植物孢粉;NAP.非木本植物孢粉 Fig.8 A comparative diagram of the main paleoclimatic indices in the Albegna Basin, Italy, during the glacial-interglacial period (after Vignaroli et al. [170])

目前针对热泉钙华古气候记录的地球化学信息研究很少[63, 78, 174-175],这些研究明确了热泉钙华的碳、氧同位素与微量元素指标能较好的反映古气候信息(图 9)。如高竞[174]、覃建勋等[78]在U系法定年的基础上,参照古里雅冰芯δ18O的气候记录,对西藏荣玛钙华微量元素、稀土元素、氧同位素与古气候关系进行系统分析,进而挖掘钙华的古气候信息。研究发现,氧同位素在研究气候冷暖上更显优势[63, 173],而微量元素则与降雨量的关系密切[78]。需要注意的是,热泉钙华中的古气候信息的替代指标往往受到多因素的影响,如氧同位素组成除了受沉积期流体氧同位素组成和流体温度的影响[99, 167, 176],还受到成岩作用的改造;而微量元素的组成除了受到沉积流体成分等的影响外,也受到成岩作用的改造。

图 9 西班牙伊比利亚半岛南部Alicún de las Torres地热体系钙华层顶部碳、氧同位素曲线及其气候和环境事件记录(据Prado-Pérez et al. [63] 将在(a)Alicún de las Torres确定的主要气候事件,(b)Alicún de las Torres钙华顶层δ18O记录和(c)Alicún de las Torres钙华顶层的δ13C记录做比较。暗色条代表导致δ13C值升高的主要环境事件,亮色条表示该值急剧下降;T-1到T-4代表了文中该地区主要气候趋势,E-1和E-2代表了已确定的主要气候事件;Eem表示埃姆间冰期;黑色箭头表示最大值,亮色箭头表示最小值 Fig.9 The travertine Upper Unit carbon and oxygen isotope curves and records of climate and environmental events from Alicún de las Torres geothermal system in the southeastern Iberian Peninsula, Spain (after Prado-Pérez et al. [63])

陆相碳酸盐岩成岩作用对地球化学信息的影响研究集中于洞穴沉积物[177-181]与冷水钙华[182-183]。由于早期成岩过程中不同期次的成岩胶结物、不同的有机组分或生物碎屑等的存在,许多类型的陆相碳酸盐岩都是非均匀相[156],使得其微量元素组成与氧同位素组成在经历早期成岩作用后都经历了不同程度的改变。例如,早期成岩作用导致中国神龙洞石笋的氧同位素变化了约0.85‰ [184],导致摩洛哥石笋的微量元素(Sr、Mg、Ba等)发生了不同程度的变化[185],导致Belgium地区冷水钙华的碳、氧同位素值不同程度的增加(其中δ13C增加约1.5‰[182])。这种发生在早期成岩过程中的地球化学特征的改变程度的研究十分薄弱[66, 158],而且部分研究并没有考虑成岩作用对同位素地球化学信息的影响[19, 24, 68, 165]。针对热泉钙华,这种早期成岩作用的过程发生很早,其对热泉钙华原生矿物改造和次生矿物形成的影响显著[156],继而影响并改变了反映古气候记录的地球化学信息。这种地球化学信息的微小改变往往对古气候分析具有重大影响。例如:土耳其Kocaba地区更新世热泉钙华在任何一个剖面上氧同位素变化值都不超过4‰[175],如果以早期成岩作用对洞穴沉积物氧同位素的改变值(0.85‰ ± 0.29‰)为参考标准[184],那么这种接近1‰的改变很可能导致古气候分析不准确,甚至获得完全相反的信息。因此,如果将这些受成岩改造可能发生改变或部分发生改变的古气候记录替代指标的直接应用,势必导致古气候意义解释的偏差,且这种认识及相关研究还未被重视。

8 研究意义及展望 8.1 研究意义

(1)热泉钙华在中低纬度的火山地热区较发育,不严格受区域内碳酸盐岩地层展布的控制,且保存年龄较长,目前的研究已表明热泉钙华在古气候重建中的潜力[63, 78, 175],但其古气候替代指标却受到流体组成、沉积作用与环境因素、成岩作用的影响。有必要研究控制热泉钙华古气候替代指标的影响因素,并进行区域性和全球性气候类比,来评价热泉钙华在古气候重建中的意义及其实用性,为中低纬度地热区和碳酸盐岩贫乏区热泉钙华的古气候重建提供新启示。

(2)热泉地区的极端环境很可能是地球早期生物或者地外生物的生长环境[2, 55, 186],热泉钙华将可能成为揭示地球早期生命起源的钥匙之一。

(3)热泉钙华的发育与新构造运动的关系密切,是良好的构造运动指示工具[101, 187-188]

(4)热泉钙华沉积可以作为人工CO2储库中CO2流失的研究代替物[68, 189-191]

(5)目前针对非海相碳酸盐岩成岩机理的研究则主要集中在湖相碳酸盐岩,热泉钙华作为一种与岩浆和/或地热活动相关的非海相碳酸盐岩,通过研究其早期成岩作用机理,将增添非海相碳酸盐岩成岩作用研究新内容。

(6)近期在巴西Santos盆地和Campos盆地下白垩统[192-194]以及安哥拉Namibe盆地发现了油气勘探潜力巨大的储集层[195],热泉钙华在这些储层中占据了重要位置。另外,陆上地热资源在实际利用过程中存在严重的结垢问题,制约地热能高效利用,其结垢与热泉钙华沉淀具有极大相关性。因此,研究热泉钙华沉淀机理,对了解地热流体结垢机理及解决目前我国面临的化石能源短缺问题具有重要意义。

(7)与湖相热水沉积岩[196-200]在现代素材的稀缺与研究难度相比,热泉钙华具有更好的研究优势。热泉钙华作为常见的陆相热水沉积岩,在自然界广泛发育,这使得我们可以从现代热泉钙华出发,结合热泉古钙华研究,综合对比分析热泉钙华的地质地球化学特征,将进一步丰富和完善陆相热水沉积学理论。

8.2 存在的问题及下步展望

近些年来,针对热泉钙华的研究呈现逐渐增多的趋势,岩石学、矿物学与碳氧同位素地球化学成为热泉钙华的必要研究手段,关于钙华成因、保存、微生物、沉积特征等的理解逐渐加深,但对热泉钙华的成因机制、与微生物作用关系、油气储集性评估、成岩作用机理和古气候重建等方面仍然存在很多问题亟待解决。

(1)热泉古钙华成因界定和时空演化不明确。钙华的古生物痕迹与碳氧同位素特征是划分大气成因钙华与热成因钙华、确定钙华形成古水温的主要手段;相比于现代热泉钙华,地质历史时期的热泉钙华缺乏热泉流体原始信息,无法获取热流体的氧同位素组成,无法计算获取沉积古水温,且由于经历了较强的成岩改造会进一步改变钙华原始碳氧同位素记录;另外,热泉古钙华缺乏生物痕迹(尤其是志留纪前),导致无法直接利用古生物痕迹定性区别钙华沉积古温度;即便确定了热泉古钙华成因,由于缺乏针对热泉钙华(甚至热泉泉华)的高分辨率(毫米至厘米级)沉积学和微观地层学研究,导致热泉古钙华时空演化不清楚。基于上述原因使得热泉古钙华成因界定和时空演化研究具有挑战性。

(2)热泉钙华矿物晶体形态及其成因研究薄弱。热泉钙华主要由方解石与文石组成,但是受水温、CO2分压、pH、流速等多种因素的影响,这两类矿物的形态却多种多样,尤其是方解石,可分为树状晶(结晶树状晶、非结晶树状晶)、骸晶、片状晶等多种类型,但对这些矿物晶形的成因与单因素的具体影响却了解甚少。

(3)热泉钙华的储集性能评估研究有待加强。巴西Santos盆地等地区巨大的非海相碳酸盐岩(疑似钙华)油气储/产层的发现,显示了钙华的良好油气潜力。储层特征与储集潜力的评估与成藏组合的刻画是油气开发与利用的重要基础,但是目前却仅有少数研究针对钙华物性分析,基本不见发育于湖泊周缘的钙华和陆地热泉钙华储层特征分析、储集潜力的评估与成藏组合的刻画。

(4)纹层状热泉钙华的生物成因与非生物成因不清楚。不同于冷水钙华或海/湖相叠层石,热泉钙华形成的高温环境不利于大多数微生物的发育,在热泉钙华中既发现了富生物的纹层,也发现了众多缺乏微生物痕迹的大段热泉钙华沉积。目前的研究初步显示热泉钙华的纹层似乎受到流速、间歇性暴露、CO2分压等的影响,但微生物在纹层状热泉钙华形成中的作用和影响程度尚不明确。

(5)热泉钙华成岩作用及其在古气候重建中的意义研究十分薄弱。成岩作用对古气候记录的影响研究对地热区古气候的重建具有重要指导。但目前国际上相关学者关于热泉钙华成岩过程的研究基本处于成岩作用识别与描述阶段[71, 100, 164],很少涉及热泉钙华早期成岩作用与古气候记录关系研究。一般而言,早期成岩作用很可能会改变热泉钙华原始矿物组构,甚至影响其内部保存的古环境与古气候信息,成岩过程中热泉钙华地球化学特征的变化能更准确的恢复其原始地球化学记录,但这种发生在成岩过程中的地球化学特征的改变程度的研究却极少。

综上所述,随着科技进步带来的实验手段的革新,建议加强如下方面热泉钙华的研究:1)古钙华形成环境与成因的替代指标(如包裹体温度、微生物痕迹)的建立,并利用高分辨率沉积学和微观地层学揭示热泉钙华沉积动力学机制和控制因素;2)热泉矿物形态的控制因素及矿物形态与环境的耦合性分析;3)湖缘热泉钙华的储集性分析及其与邻近相带的时空组合模式建立;4)微生物与非生物因素对纹层状钙华形成的具体影响与划分识别;5)热泉钙华矿物学与地球化学特征在成岩作用过程中的变化及其影响因素分析;6)热泉钙华的古气候意义与实用性评价。

参考文献
[1]
Fournier R O, Rowe J J. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells[J]. American Journal of Science, 1966, 264(9): 685-697.
[2]
Campbell K A, Guido D M, Gautret P, et al. Geyserite in hotspring siliceous sinter:Window on Earth's hottest terrestrial(paleo)environment and its extreme life[J]. Earth-Science Reviews, 2015, 148: 44-64.
[3]
游雅贤, 文华国, 郑荣才, 等. 陆地热泉硅华研究进展与展望[J]. 地质科技情报, 2019, 38(1): 68-81. [You Yaxian, Wen Huaguo, Zheng Rongcai, et al. Advances and prospects of the terrestrial geothermal siliceous sinter research[J]. Geological Science and Technology Information, 2019, 38(1): 68-81.]
[4]
Feth J H, Barnes I. Map showing occurrences of spring-deposited travertine in the conterminous Western United States[J]. Center for Integrated Data Analytics Wisconsin Science Center, 1979.
[5]
Veysey II J, Fouke B W, Kandianis M T, et al. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies[J]. Journal of Sedimentary Research, 2008, 78(2): 69-76.
[6]
Okumura T, Takashima C, Shiraishi F, et al. Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia[J]. Sedimentary Geology, 2012, 265-266: 195-209.
[7]
Arp G, Kolepka C, Simon K, et al. New evidence for persistent impact-generated hydrothermal activity in the Miocene Ries impact structure, Germany[J]. Meteoritics & Planetary Science, 2013, 48(12): 2491-2516.
[8]
Sugihara C, Yanagawa K, Okumura T, et al. Transition of microbiological and sedimentological features associated with the geochemical gradient in a travertine mound in northern Sumatra, Indonesia[J]. Sedimentary Geology, 2016, 343: 85-98.
[9]
Kanellopoulos C, Mitropoulos P, Valsami-Jones E, et al. A new terrestrial active mineralizing hydrothermal system associated with ore-bearing travertines in Greece(northern Euboea Island and Sperchios area)[J]. Journal of Geochemical Exploration, 2017, 179: 9-24.
[10]
刘再华, 游省易, 李强. 云南白水台钙华景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义[J]. 第四纪研究, 2002, 22(5): 459-467. [Liu Zaihua, You Shengyi, Li Qiang. Hydrochemical and isotopic characteristics of tufa in the Baishuitai scenic area of Yunnan and their implications for paleoenvironment reconstruction[J]. Quaternary Sciences, 2002, 22(5): 459-467.]
[11]
Liu Z, Zhang M, Li Q, et al. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China)and their meaning for paleoenvironmental reconstruction[J]. Environmental Geology, 2003, 44(6): 698-704.
[12]
Yoshimura K, Liu Z, Cao J, et al. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China[J]. Chemical Geology, 2004, 205(1/2): 141-153.
[13]
Zhang J L, Wang H J, Liu Z H, et al. Spatial-temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China-A world's heritage site[J]. Applied Geochemistry, 2012, 27(1): 211-222.
[14]
Liu Z H, Li Q, Sun H L, et al. Diurnal variations of hydrochemistry in a travertine-depositing stream at Baishuitai, Yunnan, SW China[J]. Aquatic Geochemistry, 2006, 12(2): 103-121.
[15]
Capezzuoli E, Gandin A, Pedley M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record:the state of the art[J]. Sedimentology, 2014, 61(1): 1-21.
[16]
Ricketts J W, Karlstrom K E, Priewisch A, et al. Quaternary extension in the Rio Grande rift at elevated strain rates recorded in travertine deposits, central New Mexico[J]. Lithosphere, 2014, 6(1): 3-16.
[17]
Brogi A, Capezzuoli E. Earthquake impact on fissure-ridge type travertine deposition[J]. Geological Magazine, 2014, 151(6): 1135-1143.
[18]
Erol S Ç, Özkul M, Aksoy E, et al. Travertine occurrences along major strike-slip fault zones:structural, depositional and geochemical constraints from the Eastern Anatolian Fault System(EAFS), Turkey[J]. Geodinamica Acta, 2015, 27(2/3): 155-174.
[19]
Brogi A, Capezzuoli E, Kele S, et al. Key travertine tectofacies for neotectonics and palaeoseismicity reconstruction:effects of hydrothermal overpressured fluid injection[J]. Journal of the Geological Society, 2017, 174(4): 679-699.
[20]
Melezhik V A, Fallick A E, Grillo S M. Subaerial exposure surfaces in a Palaeoproterozoic 13C-rich dolostone sequence from the Pechenga Greenstone Belt:palaeoenvironmental and isotopic implications for the 2330-2060 Ma global isotope excursion of 13C/12C[J]. Precambrian Research, 2004, 133(1/2): 75-103.
[21]
Croci A, Della Porta G, Capezzuoli E. Depositional architecture of a mixed travertine-terrigenous system in a fault-controlled continental extensional basin(Messinian, Southern Tuscany, Central Italy)[J]. Sedimentary Geology, 2016, 332: 13-39.
[22]
Tchouatcha M S, Njoya A, Ganno S, et al. Origin and paleoenvironment of Pleistocene-Holocene Travertine deposit from the Mbéré sedimentary sub-basin along the Central Cameroon shear zone:insights from petrology and palynology and evidence for neotectonics[J]. Journal of African Earth Sciences, 2016, 118: 24-34.
[23]
Della Porta G, Capezzuoli E, De Bernardo A. Facies character and depositional architecture of hydrothermal travertine slope aprons(Pleistocene, Acquasanta Terme, Central Italy)[J]. Marine and Petroleum Geology, 2017, 87: 171-187.
[24]
Giustini F, Brilli M, Mancini M. Geochemical study of travertines along middle-lower Tiber valley(central Italy):genesis, palaeo-environmental and tectonic implications[J]. International Journal of Earth Sciences, 2018, 107(4): 1321-1342.
[25]
Pentecost A, Zhang Z H. Microfossils and geochemistry of some modern, Holocene and Pleistocene travertines from North Yorkshire and Derbyshire[J]. Proceedings of the Yorkshire Geological Society, 2008, 57(2): 79-94.
[26]
Starke V, Kirshtein J, Fogel M L, et al. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation[J]. Environmental Microbiology Reports, 2013, 5(5): 648-659.
[27]
Tatarinov A V, Yalovik L I, Kashkak E S, et al. Mineralogical and geochemical features of bacterial mats and travertines of the Khoito-Gol thermal spring(East Sayan)[J]. Russian Geology and Geophysics, 2017, 58(1): 47-58.
[28]
Shiraishi F, Eno Y, Nakamura Y, et al. Relative influence of biotic and abiotic processes on travertine fabrics, Satono-yu hot spring, Japan[J]. Sedimentology, 2019, 66(2): 459-479.
[29]
Jones B, Renaut R W, Bernhart Owen R, et al. Growth patterns and implications of complex dendrites in calcite travertines from Lýsuhóll, Snæfellsnes, Iceland[J]. Sedimentology, 2005, 52(6): 1277-1301.
[30]
Jones B, Peng X T. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China[J]. Sedimentary Geology, 2012, 249-250: 45-62.
[31]
Peng X T, Jones B. Patterns of biomediated CaCO3 crystal bushes in hot spring deposits[J]. Sedimentary Geology, 2013, 294: 105-117.
[32]
Erthal M M, Capezzuoli E, Mancini A, et al. Shrub morphotypes as indicator for the water flow energy-Tivoli travertine case (Central Italy)[J]. Sedimentary Geology, 2017, 347: 79-99.
[33]
De Filippis L, Faccenna C, Billi A, et al. Growth of fissure ridge travertines from geothermal springs of Denizli basin, western Turkey[J]. GSA Bulletin, 2012, 124(9/10): 1629-1645.
[34]
Priewisch A, Crossey L J, Karlstrom K E, et al. U-series geochronology of large-volume Quaternary travertine deposits of the southeastern Colorado Plateau:evaluating episodicity and tectonic and paleohydrologic controls[J]. Geosphere, 2014, 10(2): 401-423.
[35]
Wang Z J, Meyer M C, Gliganic L A, et al. Timing of fluvial terrace formation and concomitant travertine deposition in the upper Sutlej River(Tirthapuri, southwestern Tibet)and paleoclimatic implications[J]. Quaternary Science Reviews, 2017, 169: 357-377.
[36]
Pentecost A, Viles H. A review and reassessment of travertine classification[J]. Géographie Physique et Quaternaire, 1994, 48(3): 305-314.
[37]
Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3/4): 117-175.
[38]
Chafetz H S, Utech N M, Fitzmaurice S P. Differences in the δ18O and δ13C signatures of seasonal laminae comprising travertine stromatolites[J]. Journal of Sedimentary Research, 1991, 61(6): 1015-1028.
[39]
Jones B, Renaut R W. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand[J]. Journal of Sedimentary Research, 1996, 66(1): 265-274.
[40]
Guo L, Riding R. Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy[J]. Sedimentology, 1998, 45(1): 163-180.
[41]
Frank N, Braum M, Hambach U, et al. Warm period growth of travertine during the last interglaciation in southern Germany[J]. Quaternary Research, 2000, 54(1): 38-48.
[42]
Jones B, Renaut R W, Rosen M R. Trigonal dendritic calcite crystals forming from hot spring waters at Waikite, North Island, New Zealand[J]. Journal of Sedimentary Research, 2000, 70(3): 586-603.
[43]
Rihs S, Condomines M, Poidevin J L. Long-term behaviour of continental hydrothermal systems:U-series study of hydrothermal carbonates from the French Massif Central(Allier Valley)[J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3189-3199.
[44]
Melezhik V A, Fallick A E. Palaeoproterozoic travertines of volcanic affiliation from a 13C-rich rift lake environment[J]. Chemical Geology, 2001, 173(4): 293-312.
[45]
Bonny S, Jones B. Relict tufa at Miette Hot Springs, Jasper National Park, Alberta, Canada[J]. Canadian Journal of Earth Sciences, 2003, 40(11): 1459-1481.
[46]
Canet C, Prol-Ledesma R M, Melgarejo J C, et al. Methane-related carbonates formed at submarine hydrothermal springs:a new setting for microbially-derived carbonates?[J]. Marine Geology, 2003, 199(3/4): 245-261.
[47]
Słowakiewicz M. Fluid inclusion data in calcite from the Upper Triassic hot-spring travertines in southern Poland[J]. Journal of Geochemical Exploration, 2003, 78-79: 123-126.
[48]
Pichler T, Veizer J. The precipitation of aragonite from shallowwater hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea[J]. Chemical Geology, 2004, 207(1/2): 31-45.
[49]
Altunel E, Karabacak V. Determination of horizontal extension from fissure-ridge travertines:a case study from the Denizli Basin, southwestern Turkey[J]. Geodinamica Acta, 2005, 18(3/4): 333-342.
[50]
Moore J, Adams M, Allis R, et al. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs:an example from the Springerville-St. Johns Field, Arizona, and New Mexico, U. S. A.[J]. Chemical Geology, 2005, 217(3/4): 365-385.
[51]
Jorge-Villar S E, Benning L G, Edwards H G M. Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway[J]. Geochemical Transactions, 2007, 8: 8.
[52]
Pedley M. Tufas and travertines of the Mediterranean region:A testing ground for freshwater carbonate concepts and developments[J]. Sedimentology, 2009, 56(1): 221-246.
[53]
Rainey D K, Jones B. Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada[J]. Sedimentology, 2009, 56(6): 1832-1857.
[54]
Vylita T, Žák K. Travertine deposits of the Karlovy Vary thermal water system[J]. Environmental Geology, 2009, 58(8): 1639-1644.
[55]
Fouke B W. Hot-spring Systems Geobiology:abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1): 170-219.
[56]
Guido D M, Campbell K A. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina):characteristics and controls on regional distribution[J]. Journal of Volcanology and Geothermal Research, 2011, 203(1/2): 35-47.
[57]
Kanellopoulos C. Distribution, lithotypes and mineralogical study of newly formed thermogenic travertines in Northern Euboea and Eastern Central Greece[J]. Central European Journal of Geosciences, 2012, 4(4): 545-560.
[58]
Nishikawa O, Furuhashi K, Masuyama M, et al. Radiocarbon dating of residual organic matter in travertine formed along the Yumoto Fault in Oga Peninsula, northeast Japan:implications for long-term hot spring activity under the influence of earthquakes[J]. Sedimentary Geology, 2012, 243-244: 181-190.
[59]
Rodríguez-Berriguete A, Alonso-Zarza A M, Cabrera M C, et al. The Azuaje travertine:an example of aragonite deposition in a recent volcanic setting, N Gran Canaria Island, Spain[J]. Sedimentary Geology, 2012, 277-278: 61-71.
[60]
Villanueva-Estrada R E, Prol-Ledesma R M, Rodríguez-Díaz A A, et al. Geochemical processes in an active shallow submarine hydrothermal system, Bahía Concepción, México:mixing or boiling?[J]. International Geology Review, 2012, 54(8): 907-919.
[61]
Brasier A T, Martin A P, Melezhik V A, et al. Earth's earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia[J]. Precambrian Research, 2013, 235: 278-294.
[62]
Okumura T, Takashima C, Kano A. Textures and processes of laminated travertines formed by unicellular cyanobacteria in Myoken hot spring, southwestern Japan[J]. Island Arc, 2013, 22(3): 410-426.
[63]
Prado-Pérez A J, Huertas A D, Crespo M T, et al. Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction:an approach based on the isotopic record from a travertine formation in the Guadix-Baza basin, Spain[J]. Geological Magazine, 2013, 150(4): 602-625.
[64]
Kalender L, Öztekin Okan Ö, İnceöz M, et al. Geochemistry of travertine deposits in the Eastern Anatolia District:an example of the Karakoçan-Yoğunağaç(Elazığ)and Mazgirt-Dedebağ (Tunceli)travertines, Turkey[J]. Turkish Journal of Earth Sciences, 2015, 24(6): 607-626.
[65]
Billi A, Berardi G, Gratier J P, et al. First records of syn-diagenetic non-tectonic folding in quaternary thermogene travertines caused by hydrothermal incremental veining[J]. Tectonophysics, 2017, 700-701: 60-79.
[66]
Claes H, Degros M, Soete J, et al. Geobody architecture, genesis and petrophysical characteristics of the Budakalász travertines, Buda Hills (Hungary)[J]. Quaternary International, 2017, 437: 107-128.
[67]
D'Alessandro W, Giammanco S, Bellomo S, et al. Geochemistry and mineralogy of travertine deposits of the SW flank of Mt. Etna(Italy):relationships with past volcanic and degassing activity[J]. Journal of Volcanology and Geothermal Research, 2007, 165(1/2): 64-70.
[68]
Frery E, Gratier J P, Ellouz-Zimmerman N, et al. Geochemical transect through a travertine mount:a detailed record of CO2-enriched fluid leakage from Late Pleistocene to present-day-Little Grand Wash fault(Utah, USA)[J]. Quaternary International, 2017, 437: 98-106.
[69]
Henchiri M, Ben Ahmed W, Brogi A, et al. Evolution of Pleistocene travertine depositional system from terraced slope to fissure-ridge in a mixed travertine-alluvial succession (Jebel El Mida, Gafsa, southern Tunisia)[J]. Geodinamica Acta, 2017, 29(1): 20-41.
[70]
Pereira G D C R, De Oliveira E C, Bergamaschi S. Continental carbonates from Itaboraí Formation in southeastern, Brazil[J]. Quaternary International, 2017, 437: 199-211.
[71]
Török Á, Mindszenty A, Claes H, et al. Geobody architecture of continental carbonates:"Gazda" travertine quarry (Süttő, Gerecse Hills, Hungary)[J]. Quaternary International, 2017, 437: 164-185.
[72]
Alhejoj I, Bandel K, Salameh E, et al. Traces of ancient geysers preserved in the travertine of Siwaqa, Jordan:conditions of their formation[J]. Environmental Earth Sciences, 2018, 77(7): 281.
[73]
Capezzuoli E, Ruggieri G, Rimondi V, et al. Calcite veining and feeding conduits in a hydrothermal system:insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)[J]. Sedimentary Geology, 2018, 364: 180-203.
[74]
Chafetz H, Barth J, Cook M, et al. Origins of carbonate spherulites:implications for Brazilian Aptian pre-salt reservoir[J]. Sedimentary Geology, 2018, 365: 21-33.
[75]
Jones B, Peng X T. Signatures of biologically influenced CaCO 3 and Mg-Fe silicate precipitation in hot springs:case study from the Ruidian geothermal area, western Yunnan Province, China[J]. Sedimentology, 2014, 61(1): 56-89.
[76]
Luo L C, Wen H G, Li Y, et al. Mineralogical, crystal morphological, and isotopic characteristics of smooth slope travertine deposits at Reshuitang, Tengchong, China[J]. Sedimentary Geology, 2019, 381: 29-45.
[77]
Yuan G L, Wu M Z, Sun Y, et al. One century of air deposition of hydrocarbons recorded in travertine in North Tibetan Plateau, China:sources and evolution[J]. Science of the Total Environment, 2016, 560.
[78]
覃建勋, 韩鹏, 车晓超, 等. 利用荣玛地区温泉钙华δ18O及微量元素重建西藏全新世以来古气候[J]. 地学前缘, 2014, 21(2): 312-322. [Qin Jianxun, Han Peng, Che Xiaochao, et al. Resuming the Holocene paleoclimate using δ18O and trace elements of travertine in Rongma area, Tibet[J]. Earth Science Frontiers, 2014, 21(2): 312-322.]
[79]
Fouke B W, Farmer J D, Des Marais D J, et al. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs(Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U. S. A.)[J]. Journal of Sedimentary Research, 2000, 70(3): 565-585.
[80]
De Boever E, Foubert A, Lopez B, et al. Comparative study of the Pleistocene Cakmak quarry (Denizli Basin, Turkey) and modern mammoth hot springs deposits (Yellowstone national park, USA)[J]. Quaternary International, 2017a, 437: 129-146.
[81]
Okumura T, Takashima C, Shiraishi F, et al. Microbial processes forming daily lamination in an aragonite travertine, Nagano-yu Hot Spring, Southwest Japan[J]. Geomicrobiology Journal, 2011, 28(2): 135-148.
[82]
Pentecost A. Some observations on travertine algae from Stjáni hot spring, Lýsuhóll, Iceland[J]. Nordic Journal of Botany, 2011, 29(6): 741-745.
[83]
Asta M P, Auqué L F, Sanz F J, et al. Travertines associated with the Alhama-Jaraba thermal waters(NE, Spain):genesis and geochemistry[J]. Sedimentary Geology, 2017, 347: 100-116.
[84]
Jones B, Peng X T. Amorphous calcium carbonate associated with biofilms in hot spring deposits[J]. Sedimentary Geology, 2012, 269-270: 58-68.
[85]
Jones B, Peng X T. Growth and development of spring towers at Shiqiang, Yunnan Province, China[J]. Sedimentary Geology, 2017, 347: 183-209.
[86]
王绍令. 青藏高原古泉华及其意义[J]. 水文地质工程地质, 1992, 19(4): 29-31. [Wang Shaoling. Palaeosinters and its significance, Qing-Xizang Plateau[J]. Hydrogeology and Engineering Geology, 1992, 19(4): 29-31.]
[87]
Gao J, Zhou X, Fang B, et al. U-series dating of the travertine depositing near the Rongma hot springs in northern Tibet, China, and its paleoclimatic implication[J]. Quaternary International, 2013, 298: 98-106.
[88]
Wang Z J, Meyer M C, Hoffmann D L. Sedimentology, petrography and early diagenesis of a travertine-colluvium succession from Chusang (southern Tibet)[J]. Sedimentary Geology, 2016, 342: 218-236.
[89]
牛新生, 郑绵平, 刘喜方, 等. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 2017, 35(6): 59-64. [Niu Xinsheng, Zheng Mianping, Liu Xifang, et al. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2017, 35(6): 59-64.]
[90]
Pola M, Gandin A, Tuccimei P, et al. A multidisciplinary approach to understanding carbonate deposition under tectonically controlled hydrothermal circulation:a case study from a recent travertine mound in the Euganean hydrothermal system, northern Italy[J]. Sedimentology, 2014, 61(1): 172-199.
[91]
Guido D M, Campbell K A. Diverse subaerial and sublacustrine hot spring settings of the Cerro Negro epithermal system(Jurassic, Deseado Massif), Patagonia, Argentina[J]. Journal of Volcanology and Geothermal Research, 2012, 229-230: 1-12.
[92]
Guido D M, Campbell K A. A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina[J]. Journal of Volcanology and Geothermal Research, 2014, 275: 61-70.
[93]
牛永斌, 钟建华, 王培俊, 等. 塔里木盆地西北缘奥陶系露头中的钙华特征及其石油地质意义[J]. 中国石油大学学报(自然科学版), 2010, 34(4): 25-32. [Niu Yongbin, Zhong Jianhua, Wang Peijun, et al. Tufa character and its oil-gas significance of Ordovician outcrops in the northwest margin of Tarim Basin[J]. Journal of China University of Petroleum, 2010, 34(4): 25-32.]
[94]
钟建华, 苏飞飞, 倪良田, 等. 柯坪硫磺沟奥陶系(纹层状)古钙华的特征及石油地质意义[J]. 中国岩溶, 2017, 36(1): 1-14. [Zhong Jianhua, Su Feifei, Ni Liangtian, et al. Palaeo-tufa from the Liuhuanggou cave 2 in the Ordovician carbonate, North Tarim Basin, China:Features and petroleum-geologic significances[J]. Carsologica Sinica, 2017, 36(1): 1-14.]
[95]
Chafetz H S, Folk R L. Travertines:depositional morphology and the bacterially constructed constituents[J]. Journal of Sedimentary Research, 1984, 54(1): 289-316.
[96]
Altunel E, Hancock P L. Active fissuring, faulting and travertine deposition at Pamukkale(W Turkey)[J]. Neotectonics and Active Faulting, Zeitsch. Fur Geomorphologie Supp, 1993a, 94: 285-302.
[97]
Altunel E, Hancock P L. Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey[J]. Geological Journal, 1993b, 28(3/4): 335-346.
[98]
Pentecost A. The quaternary travertine deposits of Europe and Asia Minor[J]. Quaternary Science Reviews, 1995, 14(10): 1005-1028.
[99]
Pentecost A. Travertine[M]. Berlin Heidelberg: Springer Science + Business Media, 2005.
[100]
Camuera J, Alonso-Zarza A M, Rodríguez-Berriguete Á, et al. Origin and palaeo-environmental significance of the Berrazales carbonate spring deposit, North of Gran Canaria Island, Spain[J]. Sedimentary Geology, 2014, 308: 32-43.
[101]
Sağlam Selçuk A, Erturaç M K, Üner S, et al. Evolution of Çamlık fissure-ridge travertines in the Başkale basin (Van, Eastern Anatolia)[J]. GeodinamicaActa, 2017, 29(1): 1-19.
[102]
Guo L, Riding R. Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano Terme, central Italy[J]. Sedimentology, 1994, 41(3): 499-520.
[103]
Gandin A, Capezzuoli E. Travertine:distinctive depositional fabrics of carbonates from thermal spring systems[J]. Sedimentology, 2014, 61(1): 264-290.
[104]
Pentecost A, Coletta P. The role of photosynthesis and CO2 evasion in travertine formation:a quantitative investigation at an important travertine-depositing hot spring, Le Zitelle, Lazio, Italy[J]. Journal of the Geological Society, 2007, 164(4): 843-853.
[105]
Jones B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354: 9-23.
[106]
Bonny S M, Jones B. Controls on the precipitation of barite (BaSO4)crystals in calcite travertine at Twitya Spring, a warm sulphur spring in Canada's northwest Territories[J]. Sedimentary Geology, 2008, 203(1/2): 36-53.
[107]
Sotohian F, Ranjbaran M. Depositional system and facies analysis of travertine deposits:Badab-e Surt Spring Mazandaran, Iran[J]. Arabian Journal of Geosciences, 2015, 8(7): 4939-4947.
[108]
Cook M, Chafetz H S. Sloping fan travertine, Belen, New Mexico, USA[J]. Sedimentary Geology, 2017, 352: 30-44.
[109]
Karaisaoğlu S, Orhan H. Sedimentology and geochemistry of the Kavakköy Travertine(Konya, central Turkey)[J]. Carbonates and Evaporites, 2018, 33(4): 783-800.
[110]
Xu X R, Han J T, Cho K. Deposition of amorphous calcium carbonate hemispheres on substrates[J]. Langmuir, 2005, 21(11): 4801-4804.
[111]
Njegić-Džakula B, Falini G, Brečević L, et al. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-amino acids[J]. Journal of Colloid and Interface Science, 2010, 343(2): 553-563.
[112]
Radha A V, Forbes T Z, Killian C E, et al. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16438-16443.
[113]
Friedman I. Some investigations of the deposition of travertine from hot springs-I. The isotopic chemistry of a travertine-depositing spring[J]. Geochimica et Cosmochimica Acta, 1970, 34(12): 1303-1315.
[114]
Folk R. Interaction between bacteria, nannobacteria, and mineral precipitation in hot springs of central Italy[J]. Géographie Physique et Quaternaire, 1994, 48(3): 233-246.
[115]
Kawano M, Obokata S. Effects of cyanobacteria on precipitation rate and polymorphism of CaCO3 minerals in hot spring water[J]. Journal of the Clay Science Society of Japan(in Japanese), 2007, 46(3): 156-168.
[116]
Rossi C, Lozano R P. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters[J]. Geochimica et Cosmochimica Acta, 2016, 192: 70-96.
[117]
Jones B, Renaut R W. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya[J]. Journal of Sedimentary Research, 1995, A65(1): 154-169.
[118]
Jones B, Renaut R W. Origin of platy calcite crystals in hotspring deposits in the Kenya Rift valley[J]. Journal of Sedimentary Research, 1998, 68(5): 913-927.
[119]
Renaut R W, Owen R B, Jones B, et al. Impact of lake-level changes on the formation of thermogene travertine in continental rifts:evidence from Lake Bogoria, Kenya Rift Valley[J]. Sedimentology, 2013, 60(2): 428-468.
[120]
Younger P L. Barite travertine from southwestern Oklahoma and west-central Colorado[D]. Stillwater Oklahoma USA: Oklahoma State University, 1986.
[121]
Bonny S M, Jones B. Diatom-mediated barite precipitation in microbial mats calcifying at Stinking Springs, a warm sulphur spring system in Northwestern Utah, USA[J]. Sedimentary Geology, 2007, 194(3/4): 223-244.
[122]
Campbell K A, Rodgers K A, Brotheridge J M A, et al. An unusual modern silica-carbonate sinter from Pavlova spring, Ngatamariki, New Zealand[J]. Sedimentology, 2002, 49(4): 835-854.
[123]
Smith D J, Jenkin G R T, Petterson M G, et al. Unusual mixed silica-carbonate deposits from magmatic-hydrothermal hot springs, Savo, Solomon Islands[J]. Journal of the Geological Society, 2011, 168(6): 1297-1310.
[124]
Blundy J D, Wood B. Mineral-melt partitioning of uranium, thorium and their daughters[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 59-123.
[125]
Brogi A, Capezzuoli E, Aqué R, et al. Studying travertines for neotectonics investigations:middle-late Pleistocene syntectonic travertine deposition at Serre di Rapolano(northern Apennines, Italy)[J]. International Journal of Earth Sciences, 2010, 99(6): 1383-1398.
[126]
Sant'Anna L G, Riccomini C, Rodrigues-Francisco B H, et al. The Paleocene travertine system of the Itaboraí basin, Southeastern Brazil[J]. Journal of South American Earth Sciences, 2004, 18(1): 11-25.
[127]
Minissale A, Kerrick D M, Magro G, et al. Geochemistry of Quaternary travertines in the region north of Rome(Italy):structural, hydrologic and paleoclimatic implications[J]. Earth and Planetary Science Letters, 2002, 203(2): 709-728.
[128]
Kele S, Demény A, Siklósy Z, et al. Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary:depositional facies and non-equilibrium fractionation[J]. Sedimentary Geology, 2008, 211(3/4): 53-72.
[129]
Tanaka A, Seyama H, Soma M. Iron and manganese-rich sediments as an indicator of hot spring activities at the bottom of Lake Mashu, Japan[J]. Geochemical Journal, 1994, 28(3): 289-306.
[130]
Gibert R O, Taberner C, Sáez A, et al. Igneous origin of CO2 in ancient and recent hot-spring waters and travertines from the northern Argentinean Andes[J]. Journal of Sedimentary Research, 2009, 79(8): 554-567.
[131]
Brogi A, Alçiçek M C, Yalçıner C Ç, et al. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting:insights from the Kamara geothermal area(western Anatolia, Turkey)[J]. Tectonophysics, 2016, 680: 211-232.
[132]
Özkul M, Kele S, Gökgöz A, et al. Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data[J]. Sedimentary Geology, 2013, 294: 179-204.
[133]
Tekin E, Kayabali K, Ayyidiz T, et al. Evidence of microbiologic activity in modern travertines:Sicakcermik geothermal field, central Turkey[J]. Carbonates and Evaporites, 2000, 15(1): 18.
[134]
Takashima C, Kano A. Microbial processes forming daily lamination in a stromatolitic travertine[J]. Sedimentary Geology, 2008, 208(3/4): 114-119.
[135]
Kanellopoulos C, Lamprinou V, Mitropoulos P, et al. Thermogenic travertine deposits in Thermopylae hot springs (Greece) in association with cyanobacterial microflora[J]. Carbonates and Evaporites, 2016, 31(3): 239-248.
[136]
Jones B, Renaut R W. Cyclic development of large, complex, calcite dendrite crystals in the Clinton travertine, Interior British Columbia, Canada[J]. Sedimentary Geology, 2008, 203(1/2): 17-35.
[137]
Brock T D. Thermophilic microorganisms and life at high temperatures[M]. New York, NY: Springer Science & Business Media, 2012.
[138]
Pentecost A. Cyanobacteria associated with hot spring travertines[J]. Canadian Journal of Earth Sciences, 2003, 40(11): 1447-1457.
[139]
Pristas P, Cunderlikova M, Judova J. Oceanobacillus-like bacterium isolated from Vyhna travertine spring[J]. Folia Microbiologica, 2014, 59(2): 141-145.
[140]
Ghosh W, Roy C, Roy R, et al. Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions[J]. Scientific Reports, 2015, 5: 12179.
[141]
Schneider J, Le Campion-Alsumard T. Construction and destruction of carbonates by marine and freshwater cyanobacteria[J]. European Journal of Phycology, 1999, 34(4): 417-426.
[142]
Riding R. Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(S1): 179-214.
[143]
Beltrán-Magos Y, Carmona J, Vilaclara G, et al. Calcification of the filamentous cyanobacterium Blennothrix ganeshii in calcareous tropical streams of central Mexico region[J]. Hidrobiológica, 2013, 23(1): 17-27.
[144]
王蒙蒙.云南西北地区部分温泉和盐泉特征及钙华成因[D].北京: 中国地质大学(北京), 2017. [Wang Mengmeng. Characteristics of some hot springs and salt springs and formation of travertines in northwestern Yunnan[D]. Beijing: China University of Geosciences(Beijing), 2017.] http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126216.htm
[145]
刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23): 2229-2239. [Liu Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23): 2229-2239.]
[146]
Navarro A, Font X, Viladevall M. Geochemistry and groundwater contamination in the La Selva geothermal system(Girona, Northeast Spain)[J]. Geothermics, 2011, 40(4): 275-285.
[147]
汪智军, 殷建军, 袁道先. 钙华在第四纪研究中的应用:以青藏高原为例[J]. 科学通报, 2018, 63(11): 1012-1023. [Wang Zhijun, Yin Jianjun, Yuan Daoxian. Possibilities and problems associated with travertines and tufas in Quaternary studies:A case of the Tibetan Plateau[J]. Chinese Science Bulletin, 2018, 63(11): 1012-1023.]
[148]
沈立成, 伍坤宇, 肖琼, 等. 西藏地热异常区CO2脱气研究:以朗久和搭格架地热区为例[J]. 科学通报, 2011, 56(26): 2198-2208. [Shen Licheng, Wu Kunyu, Xiao Qiong, et al. Carbon dioxide degassing flux from two geothermal fields in Tibet[J]. Chinese Science Bulletin, 2011, 56(26): 2198-2208.]
[149]
郑玉慧.云南省香格里拉县天生桥温泉和下给温泉特征及钙华形成分析[D].北京: 中国地质大学(北京), 2015. [Zheng Yuhui. Characteristics of the Tianshengqiao and Xiagei hots prings in Shangrila county of Yunnan and analysis of the formation of the travertine[D]. Beijing: China University of Geosciences(Beijing), 2015.] http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391427.htm
[150]
Jones B, Peng X T. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan province, China[J]. Sedimentary Geology, 2016, 345: 103-125.
[151]
Tchouatcha M S, Kouske A P, Nguemo R E T, et al. The active thermogene travertine deposits along the Cameroon volcanic line(CVL), Central Africa:petrology and insights for neotectonics and paleoenvironmental approach[J]. Journal of African Earth Sciences, 2018, 144: 1-16.
[152]
Guidry S A, Chafetz H S. Petrography and Stable Isotopic Trend Associated with Mammoth Hotspring Travertine, Yellowstone National Park, Wyoming[C]//Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, 2002. http://www.researchgate.net/publication/4658530_Petrography_and_Stable_Isotopic_Trend_Associated_with_Mammoth_Hotspring_Travertine_Yellowstone_National_Park_Wyoming
[153]
Zhang C L, Fouke B W, Bonheyo G T, et al. Lipid biomarkers and carbon-isotopes of modern travertine deposits(Yellowstone National Park, USA):implications for biogeochemical dynamics in hot-spring systems[J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3157-3169.
[154]
Mohammadzadeh H, Kazemi M. Geofluids assessment of the Ayub and Shafa hot springs in Kopet-Dagh Zone(NE Iran):an isotopic geochemistry approach[J]. Geofluids, 2017, 2017: 6358680.
[155]
Malov A I, Bolotov I N, Pokrovsky O S, et al. Modeling past and present activity of a subarctic hydrothermal system using O, H, C, U and Th isotopes[J]. Applied Geochemistry, 2015, 63: 93-104.
[156]
De Boever E, Brasier A T, Foubert A, et al. What do we really know about early diagenesis of non-marine carbonates?[J]. Sedimentary Geology, 2017b, 361: 25-51.
[157]
Meredith J C. Diagenesis of Holocene-Pleistocene travertine deposits: fritz creek, Clark county and fall creek, Bonneville county, Idaho[D]. Houston: University of Houston, 1980.
[158]
Sturchio N C. Radium isotopes, alkaline earth diagenesis, and age determination of travertine from Mammoth Hot Springs, Wyoming, U. S. A.[J]. Applied Geochemistry, 1990, 5(5/6): 631-640.
[159]
Chafetz H S, Guidry S A. Deposition and diagenesis of Mammoth hot springs travertine, Yellowstone National Park, Wyoming, U. S. A.[J]. Canadian Journal of Earth Sciences, 2003, 40(11): 1515-1529.
[160]
Rodríguez-Berriguete Á, Alonso-Zarza A M, Martín-García R. Diagenesis of continental carbonate country rocks underlying surficial travertine spring deposits[J]. Quaternary International, 2017, 437: 4-14.
[161]
Mohammadi Z, Claes H, Capezzuoli E, et al. Lateral and vertical variations in sedimentology and geochemistry of sub-horizontal laminated travertines(Çakmak quarry, Denizli Basin, Turkey)[J]. Quaternary International, 2018.
[162]
Guo L, Riding R. Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy[J]. Sedimentology, 1992, 39(6): 1067-1079.
[163]
赵元艺, 崔玉斌, 赵希涛. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 2010, 29(1): 124-141. [Zhao Yuanyi, Cui Yubin, Zhao Xitao. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 2010, 29(1): 124-141.]
[164]
Claes H, Soete J, Van Noten K, et al. Sedimentology, threedimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area(south-west Turkey)[J]. Sedimentology, 2015, 62(5): 1408-1445.
[165]
El Desouky H, Soete J, Claes H, et al. Novel applications of fluid inclusions and isotope geochemistry in unravelling the genesis of fossil travertine systems[J]. Sedimentology, 2015, 62(1): 27-56.
[166]
Love K M, Chafetz H S. Diagenesis of laminated travertine crusts, Arbuckle Mountains, Oklahoma[J]. Journal of Sedimentary Research, 1988, 58(3): 441-445.
[167]
Faccenna C, Soligo M, Billi A, et al. Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine(Tivoli, Central Italy):possible influence of climate and fault activity[J]. Global and Planetary Change, 2008, 63(4): 299-308.
[168]
De Filippis L, Faccenna C, Billi A, et al. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey:interactions and feedbacks between fluid discharge, paleoclimate, and tectonics[J]. Earth-Science Reviews, 2013, 123: 35-52.
[169]
Berardi G, Vignaroli G, Billi A, et al. Growth of a Pleistocene giant carbonate vein and nearby thermogene travertine deposits at Semproniano, southern Tuscany, Italy:estimate of CO 2 leakage[J]. Tectonophysics, 2016, 690: 219-239.
[170]
Vignaroli G, Berardi G, Billi A, et al. Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy:insights on Tyrrhenian margin neotectonics[J]. Lithosphere, 2016, 8(4): 335-358.
[171]
Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and ab errations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412
[172]
Tzedakis P C, Andrieu V, de Beaulieu, et al. Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons[J]. Quaternary Science Reviews, 2001, 20(16/17): 1583-1592. doi: 10.1016/S0277-3791(01)00025-7
[173]
Uysal I T, Feng Y X, Zhao J X, et al. U-series dating and geochemical tracing of Late Quaternary travertine in co-seismic fissures[J]. Earth and Planetary Science Letters, 2007, 257(3/4): 450-462.
[174]
高竞.地下热水钙华沉积的水化学影响因素和热水钙华微层的气候环境指示意义[D].北京: 中国地质大学(北京), 2013. [Gao Jing. Hydrochemical control factors of travetine precipitation and the significance of laminated travetine as archives of climate and environment[D]. Beijing: China University of Geosciences(Beijing), 2013.] http://cdmd.cnki.com.cn/Article/CDMD-11415-1013261783.htm
[175]
Toker E, Kayseri-Özer M S, Özkul M, et al. Depositional system and palaeoclimatic interpretations of Middle to Late Pleistocene travertines:Kocabaş, Denizli, south-west Turkey[J]. Sedimentology, 2015, 62(5): 1360-1383.
[176]
Guo L, Andrews J, Riding R, et al. Possible microbial effects of stable carbon isotopes in hot-spring travertines[J]. Journal of Sedimentary Research, 1996, 66(3): 468-473.
[177]
Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 105-153.
[178]
Martín-García R, Alonso-Zarza A M, Martín-Pérez A. Loss of primary texture and geochemical signatures in speleothems due to diagenesis:evidences from Castañar Cave, Spain[J]. Sedimentary Geology, 2009, 221(1/2/3/4): 141-149.
[179]
Jones B. Microbes in caves:agents of calcite corrosion and precipitation[J]. Geological Society, London, Special Publications, 2010, 336(1): 7-30.
[180]
Demény A, Németh P, Czuppon G, et al. Formation of amorphous calcium carbonate in caves and its implications for speleothem research[J]. Scientific Reports, 2016, 6: 39602.
[181]
Domínguez-Villar D, Krklec K, Pelicon P, et al. Geochemistry of speleothems affected by aragonite to calcite recrystallization-Potential inheritance from the precursor mineral[J]. Geochimica et Cosmochimica Acta, 2017, 200: 310-329.
[182]
Janssen A, Swennen R, Podoor N, et al. Biological and diagenetic influence in Recent and fossil tufa deposits from Belgium[J]. Sedimentary Geology, 1999, 126(1/2/3/4): 75-95.
[183]
Andrews J E. Palaeoclimatic records from stable isotopes in riverine tufas:synthesis and review[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 85-104.
[184]
Zhang H W, Cai Y J, Tan L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309: 1-14.
[185]
Wassenburg J A, Immenhauser A, Richter D K, et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco:elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92: 23-47.
[186]
Allen C C, Oehler D Z. A case for ancient springs in Arabia Terra, Mars[J]. Astrobiology, 2008, 8(6): 1093-1112.
[187]
Gradziński M, Wróblewski W, Duliński M, et al. Earthquakeaffected development of a travertine ridge[J]. Sedimentology, 2014, 61(1): 238-263.
[188]
Temiz U, Savaş F. Relationship between Akhüyük fissure ridge travertines and active tectonics:their neotecteonic significance(Ereğli-Konya, Central Anatolia)[J]. Arabian Journal of Geosciences, 2015, 8(4): 2383-2392.
[189]
Bickle M, Kampman N. Lessons in carbon storage from geological analogues[J]. Geology, 2013, 41(4): 525-526.
[190]
Burnside N M, Shipton Z K, Dockrill B, et al. Man-made versus natural CO 2 leakage:A 400 k. y. history of an analogue for engineered geological storage of CO2[J]. Geology, 2013, 41(4): 471-474.
[191]
Frery E, Gratier J P, Ellouz-Zimmerman N, et al. Evolution of fault permeability during episodic fluid circulation:evidence for the effects of fluid-rock interactions from travertine studies (Utah-USA)[J]. Tectonophysics, 2015, 651-652: 121-137.
[192]
Carminatti M, Wolff B, Gamboa L. New exploratory frontiers in Brazil[C]//Proceedings of the 19th world petroleum congress. Madrid, Spain: World Petroleum Congress, 2008.
[193]
Terra G J S, Spadini A R, França A B, et al. Classificação de rochas carbonáticas aplicável às bacias sedimentares brasileiras[J]. Boletim de Geociências da Petrobras, 2010, 18(1): 9-29.
[194]
Wright V P. Lacustrine carbonates in rift settings:the interaction of volcanic and microbial processes on carbonate deposition[J]. Geological Society, London, Special Publications, 2012, 370(1): 39-47.
[195]
Sharp I, Verwer K, Ferreira H, et al. Pre-and post-salt nonmarine carbonates of the Namibe basin, Angola[J]. Microbial Carbonates in Space and Time:Implications for Global Exploration and Production. Programme and Abstract Volume, 2013, 52.
[196]
郑荣才, 文华国, 范铭涛, 等. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J]. 岩石学报, 2006, 22(12): 3027-3038. [Zheng Rongcai, Wen Huaguo, Fan Mingtao, et al. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica Sinica, 2006, 22(12): 3027-3038.]
[197]
文华国.酒泉盆地青西凹陷湖相"白烟型"热水沉积岩地质地球化学特征及成因[D].成都: 成都理工大学, 2008. [Wen Huaguo. Geochemical characteristics and genesis of lacustrine "White SmokeType" hydrothermal sedimentary rock in Qingxi Sag, Jiuquan Basin[D]. Chengdu: Chengdu University of Technology, 2008.] http://d.wanfangdata.com.cn/Thesis/Y1259190
[198]
文华国, 郑荣才, Qing Hairuo, 等. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩[J]. 中国科学(D辑):地球科学, 2014, 44(4): 591-604. [Wen Huaguo, Zheng Rongcai, Qing Hairuo, et al. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi Sag, Jiuquan Basin on the northern Tibetan Plateau[J]. Science China(Seri. D):Earth Sciences, 2014, 44(4): 591-604.]
[199]
柳益群, 李红, 朱玉双, 等. 白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩[J]. 沉积学报, 2010, 28(5): 861-867. [Liu Yiqun, Li Hong, Zhu Yushuang, et al. Permian lacustrine eruptive hydrothermal dolomites, Santanghu Basin, Xinjiang province[J]. Acta Sedimentologica Sinica, 2010, 28(5): 861-867.]
[200]
钟大康, 姜振昌, 郭强, 等. 内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义[J]. 石油与天然气地质, 2015, 36(4): 587-595. [Zhong Dakang, Jiang Zhenchang, Guo Qiang, et al. Discovery of hydrothermal dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia, and its geologic and mineral significance[J]. Oil & Gas Geology, 2015, 36(4): 587-595.]