沉积学报  2019, Vol. 37 Issue (3): 477−490

扩展功能

文章信息

陈登辉, 隋清霖, 赵晓健, 荆德龙, 滕家欣, 高永宝
CHEN DengHui, SUI QingLin, ZHAO XiaoJian, JING DeLong, TENG JiaXin, GAO YongBao
西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境
Geology, Geochemical Characteristics, and Sedimentary Environment of Mn-bearing Carbonate from the Late Carboniferous Muhu Manganese Deposit in West Kunlun
沉积学报, 2019, 37(3): 477-490
ACTA SEDIMENTOLOGICA SINCA, 2019, 37(3): 477-490
10.14027/j.issn.1000-0550.2018.157

文章历史

收稿日期:2018-04-12
收修改稿日期: 2018-07-30
西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境
陈登辉1,2,3 , 隋清霖1,2,3 , 赵晓健1,2,3 , 荆德龙1,2,3 , 滕家欣1,2,3 , 高永宝1,2,3     
1. 自然资源部岩浆作用成矿与找矿重点实验室, 西安 710054;
2. 中国地质调查局造山带地质研究中心, 西安 710054;
3. 中国地质调查局西安地质调查中心, 西安 710054
摘要: 西昆仑玛尔坎苏地区晚石炭世发育一套碎屑岩-碳酸盐岩建造,近期研究成果揭示其具有巨大的菱锰矿找矿前景而备受关注。通过对穆呼锰矿含锰岩系剖面测量、薄片鉴定、电子探针、扫描电镜、地球化学分析和碳酸盐岩锶同位素测试,对其进行碎屑岩-碳酸盐岩岩相划分与沉积环境分析。研究结果表明,含锰岩系可以识别出八种碎屑岩-碳酸盐岩岩相:泥灰岩相、砂屑灰岩相、微晶碳酸锰相、微晶-粉晶灰岩相、砾屑灰岩相、含砾砂屑灰岩相、钙质砂岩相、钙质砾岩相和3种岩相组合。结合矿体及其顶底板岩石地球化学和锶同位素特征,指示古海水温度平均22.68℃,属于亚热带区。含锰岩系为海水较浅的碎屑滨岸相和浅海陆棚相沉积,矿体顶底板处于海水相对较浅的氧化-弱还原环境,菱锰矿则形成于海水相对较深的浅海陆棚沉积洼地,处于还原沉积环境,与海底火山热液有关。
关键词: 晚石炭世    碎屑岩-碳酸盐盐岩    沉积环境    穆呼锰矿    西昆仑    
Geology, Geochemical Characteristics, and Sedimentary Environment of Mn-bearing Carbonate from the Late Carboniferous Muhu Manganese Deposit in West Kunlun
CHEN DengHui1,2,3 , SUI QingLin1,2,3 , ZHAO XiaoJian1,2,3 , JING DeLong1,2,3 , TENG JiaXin1,2,3 , GAO YongBao1,2,3     
1. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MNR, Xi'an 710054, China;
2. Research Centre for Orogenic Geology, China Geological Survey, Xi'an 710054, China;
3. Xi'an Center of China Geological Survey, China Geological Survey, Xi'an 710054, China
Foundation: National Natural Science Foundation of China, No. 41503046; Natureal Science Foundation of Shaanxi Province, No. 2017MJ4024; Geological Survey Project of China Geological Survey, No. DD20160015
Abstract: A set of clastic-carbonate rocks developed in the Maerkansu of West Kunlun during the Late Carboniferous recently revealed that it has a great potential for rhodochrosite prospecting and has attracted significant attention. The clastic-carbonate lithofacies division and sedimentary environment analyses were carried out by measuring the manganese-bearing rock series profile, thin section identification, electron probe, scanning electron microscope, geochemical analysis, and strontium isotope testing of the carbonate rocks in the Muhu manganese mine. Our study indicates that the manganese-bearing rock series consists of eight clastic-carbonate rock facies:marlite, arenaceous limestone, microcrystalline manganese carbonate, microcrystalline-micrite limestone, gravelly limestone, gravelly arenaceous limestone, calcareous sandstone, calcareous conglomerate, and combinations of three rock facies. Based on the geochemical and strontium isotope characteristics of the ore body and its roof and floor rocks, the ancient seawater temperature averaged 22.68℃, which belongs to the subtropical zone. In all, the manganese-bearing rocks are clastic shore facies and shallow sea-land shelf facies deposits with shallow seawater. The roof and floor rocks of the ore body were in a relatively shallow oxidation-weak reduction environment with seawater, while the rhodochrosite was formed in shallow sea-land shelf sedimentary depressions with relatively deep seawater under a reduced sedimentary environment, which is related to submarine volcanic hydrothermal activity.
Key words: Late Carboniferous    terrigenous clastics-carbonate    sedimentary environment    Muhu manganese deposit    West Kunlun    
0 引言

中国的锰矿主要分布在“泛扬子区”、华北陆块的燕辽地区等区域[1-2],新疆地区锰矿资源较少。近年来,在新疆西昆仑玛尔坎苏一带新发现了奥尔托喀讷什、穆呼、玛尔坎土等多个大中型锰矿床,锰矿石具有品位高、厚度大、层位稳定等特点,是新疆地区乃至全国都少有的优质菱锰矿。初步查明奥尔托喀讷什锰矿和穆呼锰矿资源量已超过3 000万吨。玛尔坎苏一带含锰岩系东西延伸近100 km,具有较大的找矿潜力,但是锰矿层在含锰岩系中的分布规律、沉积相和沉积环境特征尚不清楚,严重制约了玛尔坎苏一带锰矿层的精确定位和锰矿找矿勘查。同时,西昆仑地区石炭纪—二叠纪处于洋陆转换的重要阶段[3],是古特提斯洋闭合的重要时期[4-5],因此,玛尔坎苏一带晚石炭世含锰岩系是构造演化也是沉积环境变迁的关键层位。

目前,关于研究区含锰岩系的研究仅限于简单的地层划分,对于其区域沉积格局和古地理特征,特别是该时期盆地水体分布范围、盆地形态、沉积环境介质条件、古气候特征、古海水特征均缺乏相关研究,这些都是玛尔坎苏一带含锰碎屑岩—碳酸盐岩沉积环境分析中存在的问题。本文通过对玛尔坎苏地区穆呼锰矿含锰碳酸盐岩剖面测量、岩石特征、岩矿地球化学特征、锶同位素分析等工作,探讨了玛尔坎苏一带穆呼锰矿含锰岩系沉积相特征和沉积环境,为下一步在玛尔坎苏一带含锰岩系及其延伸带进行锰矿层精确定位,明确西昆仑—塔西南一带晚古生代构造演化、环境变迁均具有重要的实际意义和理论意义。

1 地质背景

西昆仑玛尔坎苏锰矿带位于新疆克孜勒苏柯尔克孜自治州阿克陶县木吉乡北80 km处,大地构造位置处于西昆仑造山带和塔里木陆块的结合部,构造变形强烈,含锰岩系沿西昆仑构造带北部的昆盖山—库尔浪晚古生代裂谷分布[6-7],在玛尔坎苏一带含锰岩系西段30 km范围内已经发现了奥尔托喀讷什大型锰矿、玛尔坎土中型锰矿、穆呼中型锰矿及一批锰矿化点(图 1b)[8]

图 1 西昆仑玛尔坎苏一带区域地质简图[8] 1.第四系; 2.新近系; 3.古近系; 4.白垩系; 5.二叠系; 6.上石炭统; 7.下石炭统; 8.泥盆系; 9.志留系; 10.古元古界; 11.花岗斑岩; 12.斜长花岗岩; 13.断裂; 14.锰矿床(点); 15.国界 Figure 1 Regional geological map of Maerkansu, West Kunlun[8]

区域地层以玛尔坎苏锰矿带北侧乌赤别离山口—阿克彻依断裂为界,北侧为塔里木地层分区,南侧为西昆仑地层分区。西昆仑地层分区出露地层主要有古元古界、志留系、泥盆系、石炭系、二叠系及第四系。其中下石炭统为一套基性火山岩,上石炭统为一套碎屑岩—碳酸盐岩建造局部夹少量凝灰岩,是区内主要含锰层位(图 1b)。玛尔坎苏地区石炭纪—二叠纪地质体自早古生代晚期开始至新近纪晚期经历了多期构造变形影响[9-10],形成了由南西向北东叠瓦式逆冲推覆,泥盆系和上石炭统(含锰岩系)为推覆构造前锋带,多发育断裂和褶皱构造。

2 矿床地质特征

穆呼锰矿位于阿克陶县木吉乡喀拉阿特河与玛尔坎苏河交汇处,与玛尔坎土锰矿实为一个矿床,分属两个矿权(图 2)。矿区出露地层为早二叠世玛尔坎雀库塞山组(P1m)、晚石炭世喀拉阿特河组(C2k)及第四系(Q)(图 2)。玛尔坎雀库塞山组岩性主要为变质砾岩、长石砂岩及硅质大理岩;喀拉阿特河组上段为赋矿层位,主要为一套碎屑岩—碳酸盐岩,可以识别出三个岩性层,上部和下部为颗粒较细的钙质粉砂岩、泥灰岩、砂屑灰岩、微晶—粉晶灰岩等,中部岩性层为碎屑颗粒较粗的砾屑灰岩、含砾砂屑灰岩和钙质砾岩等;下段为长石石英砂岩,在矿区内未出露。矿区内含锰岩系出露长度近4 km,分4层矿,近20个矿体,部分矿体沿走向相连(图 2),矿体厚度1.17~12.3 m;矿石矿物以菱锰矿为主,品位11.20%~38.08%,平均品位30%左右。矿层与地层产状一致,均为南倾,为背斜的南翼,受逆冲推覆构造影响矿区东部含锰岩系和矿体发生了强烈的褶皱变形,并且形成了一系列断层将矿体错断(图 2)。矿区产出少量碳酸盐化安山岩夹层。

图 2 穆呼—玛尔坎土锰矿地质简图 1.冲洪积物;2.上石炭统第一岩性段碎屑岩、碳酸盐岩;3.上石炭统第二岩性段长石砂岩;4.下二叠统未分变质砾岩、长石砂岩、硅质大理岩;5.矿体及编号;6.岩层产状;7.隐伏矿体及推测矿体;8.断层;9.实测剖面 Figure 2 Geological map of the Maerkantu-Muhu manganese deposit, West Kunlun
3 含锰碎屑岩—碳酸盐岩岩相特征

玛尔坎苏一带含锰岩系主要为一套碎屑岩—碳酸盐岩组合(图 3)。通过对穆呼锰矿含锰岩系剖面测量(图 2)、岩矿镜下鉴定,对穆呼锰矿含锰岩系岩石特征进行了系统研究。在矿区内识别出了8个岩相和3个岩相组合(图 3):

图 3 玛尔坎苏一带穆呼锰矿含锰岩系地层岩性及沉积相划分 Figure 3 Lithification diagram and sedimentary facies of the Muhu manganese deposit

相A:泥灰岩岩相主要由泥晶方解石组成,含少量的粉砂级颗粒(图 4a),为薄层—纹层状构造(图 5a),发育少量钙质粉砂岩夹层;主要产出于穆呼矿区顶部安山质凝灰岩之下和剖面中下部,局部可见残留的水平层理(图 5a)。其沉积水体相对较深,水动力条件较弱。

图 4 含锰岩系岩石镜下照片电子探针背散射图像及扫描电镜图像 a.泥灰岩,单偏光;b.砂屑灰岩,单偏光;c.含方解石、碳质菱锰矿,单偏光;d.粉晶灰岩,单偏光;e.砾屑灰岩,正交偏光;f.钙质砂岩,正交偏光;g.含石英脉锰方解石的菱锰矿,背散射图像;h.薄层状、片状菱锰矿;i.菱锰矿中石英脉;j.片状菱锰矿;k.颗粒状菱锰矿;l.含黄铁矿菱锰矿。Py.黄铁矿;B.生物碎屑;C.碳质成分;Cal.方解石;R.岩屑;Q.石英;Rds.菱锰矿;Mc.锰方解石;Pyr.软锰矿 Figure 4 Micrograph, back scattered electron, and SEM images of the manganese-bearing rock series
图 5 含锰岩系岩石、矿石照片及沉积构造 a.泥灰岩中水平层理;b.锰矿体与围岩接触界线;c.纹层状菱锰矿矿石;d.粉晶灰岩中水平层理;e.水平层理;f.小型透镜状层理;g.砾屑灰岩;h.钙质砂岩中的斜层理;i.钙质砾岩 Figure 5 Rock and ore photos and sedimentary structure photos of the manganese-bearing rock series

相B:砂屑灰岩岩相主要由岩屑颗粒组成,含少量的灰泥(图 4b),局部含少量的石英颗粒、火山岩碎屑和生物碎屑,生物碎屑以海百合茎为主(图 4b),胶结物主要为灰泥和少量碳质成分。薄层—纹层状构造,局部夹1~3 mm的钙质粉砂岩(岩相G)夹层。其分布范围较大,主要出露于剖面中上部和下部,与菱锰矿层有着密切的关系,一般都产出于菱锰矿层之上。其形成的水动力条件相对较弱,应处于浪基面以下。

相C:微晶碳酸锰岩相主要由微晶碳酸锰组成,含少量的灰泥。菱锰矿呈他形粒状集合体,粒径多在0.005~0.02 mm(图 4c),菱锰矿含量60%~95%,局部含少量生物碎屑,以海百合茎为主(图 3图 4e),有后期锰方解石脉和石英脉穿切菱锰矿(图 4g)。电子探针和扫描电镜分析发现菱锰矿主要以两种形态产出(图 4ghjk),原生的菱锰矿呈薄层状(图 4h),发育后期改造脉状产出的菱锰矿碎屑(图 4jk),菱锰矿中还有少量石英颗粒和黄铁矿(图 4il)。纹层状构造(图 5b)或块状构造,局部发育方解石脉和石英脉(图 5c),矿体与围岩呈突变的接触关系(图 5b)。该岩相沿走向断续出露,呈透镜状,在剖面上出露3层(图 2),厚度从1~19 m不等。其沉积的水动力条件比围岩要弱,沉积水体更深,处于低能、局限条件。

相D:微晶—粉晶灰岩相主要由0.03~0.05 mm方解石颗粒组成(图 4d),少量的泥质和碳质成分充填于方解石颗粒之间,含少量自形和半自形黄铁矿。局部发育少量次棱角—次圆状石英颗粒。薄层—纹层状构造,局部夹纹层状钙质砂岩。发育水平层理(图 5de)、透镜状层理和小型波状层理(图 5f)。其沉积的水动力条件比岩相C要强,但是比岩相B弱,水体深度也介于二者之间。

相E:砾屑灰岩岩相主要由砾级的岩屑颗粒组成,局部为竹叶状灰岩(图 4e图 5g)。砾屑粒径一般小于15 mm×30 mm,砾石呈次棱角状—次圆状,颗粒支撑,分选较差,钙质胶结,以泥晶方解石为主,砾屑长轴顺层分布。砾屑灰岩为中厚层状构造,砾石分布不均。该岩相特征反映出其沉积的水动力条件较强,应处于浪基面以上。

相F:含砾砂质砂屑灰岩岩相主要由泥晶方解石、砂级岩屑和少量的砾级碎屑颗粒组成。碎屑颗粒以钙质为主,含石英碎屑和火山碎屑,含10%左右的砾级碎屑,粒径一般2~5 mm,碎屑颗粒以灰泥岩为主,呈次棱角—次圆状。岩石呈中薄层状构造。水动力条件比岩相E较弱,但仍然反映出较强的水动力条件,水体较浅。

相G:钙质砂岩相主要为钙质细砂岩—粉砂岩,由石英颗粒、长石和岩屑组成,钙质胶结(图 4f),呈薄层状或纹层状产出。剖面上部和下部的钙质砂岩相以钙质粉砂岩为主,与砂屑灰岩岩相关系密切,常呈纹层状夹于砂屑灰岩之中或呈纹层状产出于砂屑灰岩之上,其沉积的水体相对较深,处于浪基面以下;剖面中部的钙质砂岩相以钙质细砂岩为主,反映出较强的水动力条件,受波浪影响明显,发育交错层理(图 5h),其沉积水体较浅,处于浪基面以上。

相H:钙质砾岩相主要由砾级碎屑颗粒组成,砾石粒径一般2~3 cm,向上砾石粒径变大,多数在5~10 cm,砾石成分复杂,以火山岩、钙质砂岩、灰岩砾石为主,一般呈次棱角状—次圆状(图 5i),分选较差,纹层状砂屑灰岩砾石多呈长条状或透镜状产出。钙质砾岩为厚层状构造,沿走向厚度变化较大。其沉积时水动力条件较强,处于浪基面以上。

除此之外,在穆呼矿区含锰岩系中识别出3种岩相组合(图 3),F+B相组合主要含砾砂屑灰岩和砂屑灰岩组成,砂屑灰岩含量20%左右,局部陆缘碎屑含量较高,反映出水动力条件较强;B+G相组合主要由砂屑灰岩和钙质粉砂岩组成,钙质粉砂岩含量10%左右,整体水平层理发育,含少量生物碎屑,以海百合茎为主,反应出其沉积的水动力条件较弱;C+G相组合主要由细晶菱锰矿和钙质粉砂岩组成,呈突变接触关系,钙质粉砂岩含量10%左右,锰矿层总体反映出水动力条件较弱的水体相对较深的环境。

4 含锰碎屑岩—碳酸盐岩地球化学特征

重点针对菱锰矿矿体及顶底板围岩采集地球化学样品23件,Sr同位素样品30件。为了保证准确的测试结果,本次在野外剖面上主要采取未经蚀变、无后期方解石脉的样品,室内精选后送样测试。地球化学样品在自然资源部岩浆作用成矿与找矿重点实验室进行了全岩地球化学分析,主量元素用Xios4.0kw型X荧光光谱仪,检测温度为23 ℃,检测湿度46%,RSD < 5%;微量元素及稀土元素利用酸溶法制备样品,用电耦合等离子体—质谱ICP-MS测试,RSD < 2.5%。Sr同位素样品采用碱熔消解分离—扇形磁场等离子质谱(HR-ICP-SFMS)进行87Sr/86Sr分析。

4.1 主量元素沉积地球化学特征

穆呼锰矿菱锰矿及其顶底板围岩主量元素成分见表 1。由于穆呼锰矿含锰岩系砂屑灰岩和粉晶灰岩中含有大量的纹层状钙质砂岩夹层,因此在全岩分析结果中砂屑灰岩分析结果显示多个样品CaO含量偏低。

表 1 穆呼锰矿矿石围岩主量元素分析结果 Table 1 Major element compositions of the wall rock and rhodochrosite from the Muhu manganese deposit (wt%)
序号样品号样品名SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnOH2O+LOI
1P2-16砂质砂屑灰岩34.284.811.240.8030.861.220.310.800.1700.0630.261.8025.08
2P2-17/4砂质砂屑灰岩42.719.5210.640.0514.932.261.750.540.3500.2402.486.9414.27
3P2-20砂质砂屑灰岩44.9511.121.735.6010.299.940.111.320.3700.0620.715.3613.57
4P2-21砂质砂屑灰岩38.359.293.282.9820.313.730.432.540.3400.0710.463.6017.99
5P2-21/2砂质砂屑灰岩36.948.182.373.0222.433.820.122.370.3100.0710.523.0219.68
6P2-21/4砂质砂屑灰岩39.879.582.413.4019.064.320.073.210.3500.0730.533.0216.91
7P2-23钙质砂岩52.779.376.210.708.932.031.382.340.3800.0840.633.8614.99
8P2-23/2砂质砂屑灰岩20.794.902.512.0832.733.570.520.900.1400.2001.172.1230.31
9P2-22/5钙质粉砂岩35.1110.433.331.2510.1412.180.710.610.4200.0585.705.2019.60
10P2-22/7钙质粉砂岩46.1511.8710.120.0510.881.802.421.400.4600.1600.565.3413.90
11P2-22/11钙质粉砂岩37.0211.775.200.0510.389.561.331.470.4800.0644.715.2217.50
12P2-22/14钙质粉砂岩35.8111.248.620.058.6410.780.940.780.4400.0554.425.8617.84
13P2-18/1菱锰矿2.450.980.520.4210.882.080.070.130.0380.34044.882.0032.69
14P2-22菱锰矿4.401.580.300.424.742.300.040.140.0340.68049.131.9830.60
15P2-22/2菱锰矿9.230.570.020.5112.991.950.030.090.0170.31039.591.2431.22
16P2-22/4菱锰矿12.110.680.010.395.602.340.050.090.0130.13044.711.1432.78
17P2-22/6菱锰矿8.002.032.04<0.108.993.340.330.360.0720.14041.895.7224.79
18P2-22/8菱锰矿12.761.380.650.645.522.580.070.420.0260.30042.781.2330.25
19P2-22/9菱锰矿6.921.020.090.482.861.750.070.130.0160.13051.251.2032.26
20P2-22/10菱锰矿3.781.94<0.010.963.162.490.310.120.0390.21050.191.3033.30
21P2-22/12菱锰矿5.661.90<0.011.094.743.100.220.250.0350.58046.391.3232.70
22P2-22/15菱锰矿5.701.14<0.011.033.432.800.090.110.0160.38048.781.2832.52
23P2-22/17菱锰矿4.281.04<0.010.585.692.230.120.100.0171.15048.951.3632.59

菱锰矿中陆源元素Al2O3含量在0.98%~2.03%之间,平均值为1.30%,TiO2含量在0.016%~0.072%之间,平均值为0.030%,远低于矿体顶底板围岩和夹层(表 1),且所有样品Al2O3与TiO2具有较好正相关性(R2=0.99),表明含锰岩系受陆源碎屑影响较大[11]

海洋沉积物中,典型热水沉积物的Al/(Al+Fe+Mn) < 0.35[11-12],而穆呼锰矿围岩及夹层的Al/(Al+Fe+Mn)值介于0.35~0.60之间,反映了较少的热水来源,而菱锰矿Al/(Al+Fe+Mn)比值变化范围为0.009 6~0.031,具典型热水沉积特征。热水沉积物的元素组成在Fe-Mn-(Cu+Co+Ni)×10的三角图解(图 6)中有明显的集中区[11],穆呼锰矿矿石及顶底板围岩基本全部投在热水沉积区和红海热水沉积区(图 6),说明菱锰矿为热水沉积。此外,锰矿顶底板SiO2/Al2O3比值在3.1~7.1之间,平均4.3,接近于陆源值3.6,而矿层SiO2/Al2O3比值在2.5~17.8之间,平均6.7,远高于陆壳中SiO2/Al2O3比值3.6,反映了穆呼锰矿与热水作用关系比较密切,其物源可能来自洋壳深部[13]

图 6 Fe-Mn-(Cu+Co+Ni)×10三角图解[11] A.水成沉积区;B.红海热水沉积区;C.东太平洋中脊沉积区;D.热水沉积区 Figure 6 Triangular diagram of Fe-Mn-(Cu+Co+Ni)×10[11]
4.2 微量稀土元素地球化学特征

穆呼锰矿菱锰矿矿石、围岩及矿体中夹层的微量稀土元素分析结果及标准化稀土配分曲线和微量元素蜘蛛网图如表 2图 7所示。微量元素经球粒陨石标准化得到的蛛网图显示围岩与矿体夹层具有相似分布形态,Sr/Ba比值在0.36~10.51之间,平均3.64,V/Ni比值在1.03~2.58之间,平均1.97。而菱锰矿与围岩和夹层的微量元素蛛网图存在较大差别(图 7),菱锰矿中Sr/Ba比值在0.75~9.94之间,平均3.83,V/Ni比值在0.11~2.72之间,平均0.86。含锰岩系富集Cu、Pb、Zn、Ni、Co、Mo、As、Sr、Ba、Zr、Ga、Ag等具有热水沉积特征的元素[14-15]

表 2 穆呼锰矿矿石围岩微量稀土元素分析结果 Table 2 Trace element and REE compositions of the wall rock and rhodochrosite from the Muhu manganese deposit (×10-6)
样品编号P2-16P2-17/4P2-20P2-21P2-21/2P2-21/4P2-22/5P2-22/7P2-22/11P2-22/14P2-23P2-23/2P2-18/1P2-22P2-22/2P2-22/4P2-22/6P2-22/8P2-22/9P2-22/10P2-22/12P2-22/15P2-22/17
岩性砂质砂
屑灰岩
砂质砂
屑灰岩
砂质砂
屑灰岩
砂质砂
屑灰岩
砂质砂
屑灰岩
砂质砂
屑灰岩
钙质粉
砂岩
钙质粉
砂岩
钙质粉
砂岩
钙质粉
砂岩
钙质
砂岩
砂质砂
屑灰岩
菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿菱锰矿
Cu24.2086.6047.5052.3047.4039.2029.3087.0038.6046.2097.4024.1012.2020.903.062.3712.1011.403.166.2315.809.6918.10
Pb3.7811.203.916.135.527.735.7332.0016.407.5624.907.840.361.160.120.120.190.490.990.940.130.210.11
Zn27.00358.0053.6055.0051.8061.8057.5098.6057.0069.8079.1033.0034.4034.7013.1011.9031.6022.3015.5027.9017.4014.2020.90
Cr14.1076.60460.00207.00192.00178.00103.00131.0089.8088.50124.00115.0062.0079.0016.805.9837.4042.8014.8024.8070.8031.6097.40
Ni38.40141.00114.0083.4079.7064.6038.60103.0044.2043.2091.8062.0026.6021.4023.9016.6026.5025.008.3412.1017.6010.1017.30
Co10.80111.0030.1026.5023.5023.6012.2039.6015.2019.3038.0017.5013.8012.806.245.8010.7010.603.376.746.165.165.33
Cd1.04016.9000.1200.5500.5100.3400.3403.2500.4700.6503.6500.3300.2400.2700.1800.0910.2600.2200.0740.2100.2200.0930.170
Li15.4013.4041.4019.7020.6018.2043.705.8732.8041.202.633.803.129.102.412.195.651.543.241.211.361.901.33
Rb11.0029.303.248.422.896.4515.2055.3029.0021.8032.8013.303.180.860.941.807.944.321.866.956.782.843.77
Cs1.132.160.650.620.430.661.294.752.651.772.480.990.340.420.290.231.050.600.300.600.650.330.42
W1.030.700.980.860.891.245.284.087.087.714.752.070.650.400.400.330.540.380.270.330.320.440.46
Mo6.9206.9901.5806.5807.7604.0205.30043.2005.2103.90053.6004.5000.2400.1500.2400.1400.2000.2100.0640.1100.0900.0930.130
As9.6551.308.1812.609.141.9448.4074.4061.9050.20112.0054.10104.0054.8053.3022.90229.0053.9022.8027.3023.9021.7028.90
Sb0.945.960.951.281.041.3111.9021.0013.0020.1018.408.1413.809.596.592.1614.5023.306.624.386.938.104.69
Bi< 0.10< 0.10< 0.10< 0.10< 0.10< 0.100.110.160.130.100.24< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10< 0.10
Sr1180.00416.00936.001150.001160.001240.00631.00549.00738.00577.00606.001680.001630.00263.00748.00400.001250.00528.00155.00176.00408.00196.00527.00
Ba219.001120.00172.00355.00118.00118.00543.001540.00948.00582.00771.00348.00164.00352.0085.4086.70303.00121.00103.00194.00238.00107.00144.00
V67.00145.00165.00147.00137.00142.00111.00211.00114.00107.00180.00111.0013.1020.102.553.779.7426.101.437.8231.2027.5016.70
Sc6.9814.2025.9015.4018.4019.5015.9020.8019.2016.2017.4012.704.243.750.800.153.341.762.033.673.681.531.68
Nb5.202.425.863.684.083.233.813.172.982.572.173.471.571.121.370.901.690.620.500.751.060.610.95
Ta0.420.220.450.300.340.250.310.270.240.210.190.300.1300.0910.1200.0780.1500.0620.0400.0680.0780.0520.075
Zr21.9040.6029.6036.9035.8044.2043.4052.9047.9046.0040.6025.3015.2016.509.216.1314.6010.608.8311.8016.709.8022.10
Be0.210.620.290.400.350.490.410.610.260.410.400.330.350.310.170.180.370.380.160.200.250.220.42
Ga6.8225.0018.5012.5012.6013.4052.6017.2045.8044.8017.2016.90196.00256.0095.70210.00213.00248.00252.00249.00267.00197.00191.00
Sn1.340.981.321.141.090.981.221.260.920.920.830.790.510.320.500.400.610.320.300.310.380.310.30
Ge0.601.061.621.231.151.191.281.231.081.431.050.940.280.240.190.110.430.280.110.110.260.230.25
Tl0.4201.0700.2200.4400.3100.1400.6601.8900.8401.8001.3800.5200.2000.0920.1300.1500.1400.2200.0750.1100.1900.1500.160
Ag64.00664.0060.00124.00110.00159.00421.002400.00705.00488.001150.00319.00804.00763.00961.00940.00540.00768.00688.00545.001010.00936.00698.00
U2.242.941.142.602.192.321.933.381.411.472.390.872.952.761.701.296.502.431.791.922.261.414.15
Th1.221.341.241.201.292.151.002.541.121.163.170.833.844.322.371.411.742.001.261.524.322.896.76
Cu/Zn0.900.240.890.950.920.630.510.880.680.661.230.730.350.600.230.200.380.510.200.220.910.680.87
Sr/Ba5.390.375.443.249.8310.511.160.360.780.990.794.839.940.758.764.614.134.361.500.911.711.833.66
V/Ni1.741.031.451.761.722.202.882.052.582.481.961.790.490.940.110.230.371.040.170.651.772.720.97
La9.5910.85.337.166.5310.205.179.595.735.879.205.5927.8029.0011.807.3813.4012.806.889.6031.0020.7069.30
Ce20.329.1012.0015.6014.6021.3012.2027.6014.7018.2037.1011.80178.00206.0065.3047.2071.0084.6041.0054.80219.00149.00472.00
Pr2.523.401.482.021.902.571.593.121.751.822.751.476.266.323.001.903.172.881.682.206.834.5214.30
Nd10.0015.206.118.417.5710.406.6613.107.868.2211.805.6824.8025.0013.408.1912.2012.106.809.2628.3018.8058.10
Sm2.514.841.602.101.812.281.793.462.132.112.871.465.145.223.171.923.022.611.482.065.524.0411.10
Eu0.651.380.510.610.460.690.551.240.740.590.660.751.091.040.680.421.030.600.410.590.960.701.87
Gd2.735.401.782.181.882.392.053.462.182.352.661.495.265.483.312.063.102.661.672.305.323.8810.50
Tb0.460.910.310.390.330.410.370.640.440.420.460.250.880.880.550.370.540.460.270.400.860.671.71
Dy3.005.782.102.542.222.632.434.232.922.923.011.525.265.303.512.353.402.961.722.615.264.2210.10
Ho0.621.120.450.540.480.570.540.900.660.640.650.311.061.040.690.490.700.620.360.561.020.861.98
Er1.702.941.321.521.411.651.562.581.921.861.820.852.742.621.861.381.901.710.921.602.712.215.09
Tm0.250.440.210.230.220.260.240.400.300.290.280.130.390.360.260.200.280.250.140.240.380.320.69
Yb1.602.741.341.501.391.691.562.601.961.861.810.822.332.281.561.261.701.620.851.532.361.964.02
Lu0.240.420.200.230.210.250.240.390.300.280.280.120.360.340.220.180.240.230.130.230.330.290.55
Y18.1029.9011.8012.5012.8014.9013.1022.6016.9016.2014.809.9022.5020.4015.0011.1015.9012.808.4812.6021.7017.8041.30
ΣREE74.27114.3746.5457.5353.8172.1950.0595.9160.4963.6390.1542.14283.87311.28124.3186.4131.58138.972.79100.58331.55229.97702.61
δCe0.981.131.010.970.980.991.001.191.101.311.740.983.203.602.602.992.583.302.862.833.563.653.54
δEu1.161.261.411.331.171.381.341.681.611.241.122.380.980.910.980.991.581.071.211.260.830.830.81
Ceanom-0.030.02-0.02-0.04-0.02-0.03-0.020.060.010.080.21-0.030.480.530.370.440.390.480.430.410.520.520.51
图 7 穆呼锰矿菱锰矿及围岩稀土元素和微量元素配分图解 Figure 7 REE and trace element distribution patterns for wall rock and rhodochrosite from the Muhu manganese deposit

稀土元素分析结果显示围岩和矿体中夹层的稀土总量较低,围岩和矿体中夹层的ΣREE在42.14×10-6~114.37×10-6之间,平均68.42×10-6,LΣREE/HΣREE介于1.2~2.5之间,均值1.58,指示轻重稀土分异较弱;菱锰矿中的稀土总量相对较高,菱锰矿ΣREE在72.79×10-6~702.61×10-6之间,平均228.53×10-6,LΣREE/HΣREE介于3.46~8.25之间,均值5.28,指示轻重稀土分异较弱。Ceanom=lg[3CeN/(2LaN+NdN)],式中CeN、LaN、NdN均为经北美页岩标准化值[16]。经北美页岩标准化的样品反映出围岩与夹层有相似的配分曲线,弱Eu正异常,而菱锰矿与围岩和夹层稀土配分曲线存在较大差异,明显的Ce正异常。

4.3 锶同位素地球化学特征

在穆呼锰矿选择主矿体顶底板围岩、夹层和矿石共30件进行了Sr同位素测试,测试结果如表 3所示。

表 3 穆呼锰矿含锰碳酸盐岩及菱锰矿锶同位素分析数据 Table 3 Strontium isotopic compositions of the wall rock and rhodochrosite from the Muhu manganese deposit
样品编号岩性87Sr/86Sr
P2-16砂质砂屑灰岩0.707 94
P2-17/1砂质砂屑灰岩0.707 89
P2-17/4砂质砂屑灰岩0.707 92
P2-20砂质砂屑灰岩0.707 79
P2-20/2砂质砂屑灰岩0.707 79
P2-21砂质砂屑灰岩0.707 72
P2-21/2砂质砂屑灰岩0.707 74
P2-21/4砂质砂屑灰岩0.707 70
P2-23钙质砂岩0.707 93
P2-23/1砂质砂屑灰岩0.707 97
P2-23/2砂质砂屑灰岩0.707 90
P2-22/5钙质粉砂岩0.707 80
P2-22/7钙质粉砂岩0.708 00
P2-22/11钙质粉砂岩0.707 85
P2-22/14钙质粉砂岩0.707 85
P2-18菱锰矿0.707 86
P2-18/1菱锰矿0.707 80
P2-18/2菱锰矿0.707 79
P2-22菱锰矿0.707 78
P2-22/1菱锰矿0.707 90
P2-22/2菱锰矿0.707 89
P2-22/4菱锰矿0.708 64
P2-22/6菱锰矿0.708 11
P2-22/9菱锰矿0.707 75
P2-22/10菱锰矿0.707 83
P2-22/12菱锰矿0.707 79
P2-22/13菱锰矿0.707 89
P2-22/15菱锰矿0.707 64
P2-22/16菱锰矿0.707 82
P2-22/17菱锰矿0.707 81

穆呼锰矿含锰岩系剖面碳酸盐岩87Sr/86Sr值介于0.707 70~0.708 64之间,平均值0.707 87,与全球同期海相碳酸盐岩基本一致[17],这表明穆呼矿区晚石炭世Sr同位素具有良好的全球对比意义。海洋中的锶同位素主要有两个来源,由大陆河流带入高放射成因锶(87Sr/86Sr=0.711 9)和洋中脊热液交换及海底玄武岩热液蚀变供应的低放射成因锶(87Sr/86Sr=0.703 5)[18-19]。大量研究表明,Sr对海平面的变化有较好指示,当海平面下降时由大陆风化带入海洋的陆源锶增加,引起海水87Sr/86Sr比值相对升高;当海平面上升时,一方面由于陆源锶减少,另一方面由于海底扩张使热液活动增强,幔源锶的增加使得海水87Sr/86Sr比值相对减小[20-22]。穆呼锰矿顶底板围岩87Sr/86Sr值相对较高,介于0.707 70~0.707 97之间,平均0.707 845;M1矿体(图 3)中夹层(P2-22/5、P2-22/7、P2-22/11、P2-22/14)及夹层附近的部分菱锰矿(P2-22/4、P2-22/6)87Sr/86Sr值也相对较高,介于0.707 80~0.708 64之间,平均0.708 041;M2矿体和M1矿体(图 3)远离夹层的菱锰矿87Sr/86Sr值相对较低,介于0.707 64~0.707 90之间,平均值为0.707 81。穆呼锰矿87Sr/86Sr值由围岩到菱锰矿层减小的趋势一方面说明菱锰矿沉积时处于海水相对较深的海进时期,另一方面反映出菱锰矿的来源可能与海底火山热液有关[20-22];此外,M1矿体顶部夹层及部分菱锰矿较高的87Sr/86Sr值反映出较多陆源物质的参与[18-19]

5 讨论 5.1 沉积相特征

关于陆源碎屑与碳酸盐岩的沉积组合国内外学者进行了大量的研究工作,Mount[23]首先提出了“混积物”的概念,并提出了浅水陆棚环境下混合沉积的组分及成因分类。近年来对陆源碎屑与碳酸盐岩的沉积组合沉积相模式、沉积环境进行了较多的研究,建立了海陆过渡带—陆棚,斜坡盆地等不同沉积环境下的混合沉积相模式[24-27]。研究表明其主要为陆缘碎屑岩和碳酸盐岩之间的过渡沉积[28-30],可形成于海陆过渡、陆棚、斜坡等过渡沉积环境之中[31-33],是现代和地质历史时期一种普遍的沉积现象。陆棚是正常浪基面以下向外海,与大陆斜坡相接的广阔浅海沉积区,常与碎屑滨岸沉积体系共生[34]

关于玛尔坎苏一带晚石炭世沉积环境的研究很少,但是前人对西昆仑—塔西南晚古生代沉积环境的研究表明,区域上石炭纪西昆仑—塔西南属于塔里木地块南缘的浅海陆棚沉积环境[3, 35-39],结合穆呼锰矿区碎屑岩—碳酸盐岩岩相组合特征和有关陆缘碎屑岩—碳酸盐岩沉积模式的相关研究[40-44],建立了穆呼锰矿含锰岩系碎屑岩滨岸—浅海陆棚沉积体系,并在研究区识别出了碎屑滨岸相和浅海陆棚相两个沉积相和多个沉积亚相(图 3)。

碎屑滨岸相主要分布在剖面中部,由岩相E、G、H和岩相组合F+B组成,主要以一套砾岩、钙质砂岩和含砾砂屑灰岩组成,钙质砂岩发育斜层理,夹薄层的碳酸盐化安山岩[41, 45]。根据碎屑滨岸相岩相组合特征进一步识别出了前滨亚相和近滨亚相,前滨亚相主要由碎屑颗粒较粗的砾屑(岩相E、G、H)组成,水动力条件较强,并含有较多的陆缘碎屑;近滨亚相主要由含较小砾屑颗粒和砂屑的含砾砂屑灰岩和钙质砂岩(岩相F+G)组成,水动力相对较弱。

浅海陆棚相主要分布在剖面的顶部和底部,发育岩相A、B、C、D、G和相组合B+G、C+G,为一套粒度较细的碎屑岩—碳酸盐岩组合,局部发育微晶菱锰矿,发育薄水平层理、透镜状层理、小型波纹层理等[46-49]。浅海陆棚沉积相带对锰矿沉积最为有利,该相带既是滞留安静的环境,水体又相对较浅,同时成矿区外广袤的陆棚平原,可以大规模接受来自深源或陆缘的成矿物质,并在相对低洼的部位沉积成矿[50]。根据穆呼锰矿区含锰岩系岩相组合特征和沉积构造进一步识别出了滨外陆棚亚相和过渡带亚相,过渡带岩相主要由泥灰岩(A)组成;滨外陆棚亚相主要由岩相B、C、D、G)和岩相组合B+G、C+G组成,局部含有较多的黄铁矿脉和黄铁矿颗粒,反映其海水较深,水动力条件较弱,菱锰矿沉积期的海水要相对更深。研究区晚石炭世菱锰矿沉积期经历了海进—海退—海进的过程,碎屑滨岸沉积主要为前期海进结束后海平面下降,陡峭的陆棚边缘在波浪的作用下坍塌、磨圆,并与陆源碎屑一起沉积形成[51]。碎屑岩—碳酸盐岩中的火山岩夹层说明该时期火山仍频繁活动。菱锰矿主要形成于滨外陆棚亚相中水体较深的沉积洼地中。

5.2 古水温与古气候

利用碳酸盐中的锶含量(Y)和温度的关系(T/℃)经验公式Y=2 578-80.8T[52-53],计算穆呼锰矿含锰碳酸盐岩沉积时古水温为11.10 ℃~29.98 ℃,平均22.68 ℃,属于亚热带区,同时菱锰矿沉积时的古水温明显高于围岩及夹层的古水温。

5.3 古盐度、古水深和离岸距离

常用Sr/Ba值作为区分咸水和淡水的沉积标志,当Sr/Ba>1是反应海相环境,当Sr/Ba < 1时反应陆相沉积[52-57]。穆呼锰矿矿石和围岩的Sr/Ba值大多在4~5之间,属于咸水沉积,钙质砂岩和少量砂质砂屑灰岩Sr/Ba < 1,说明其在一定程度上受到了淡水的影响。围岩及夹层的V/Ni值在1.03~2.88之间,平均1.97,菱锰矿的V/Ni值在0.11~2.72之间,平均0.86,说明围岩和矿体中夹层沉积时海水相对较浅,离岸较近,菱锰矿沉积时海水深度增加,离岸距离也相应增加[53],这与Sr同位素分析的水深变化一致。

5.4 氧化还原条件

穆呼锰矿围岩和夹层的Ceanom值介于-0.04~0.21,有7个样品的Ceanom值< 0,只有1个样品为0.21,其他样品均在0附近,说明围岩和夹层沉积时水体为氧化—弱还原环境;菱锰矿的Ceanom值介于0.37~0.53,反映出菱锰矿沉积时水体缺氧[16, 53, 58]。此外,围岩及夹层Fe2+/Fe3+值在0.005 2~3.6之间,平均0.82,反映出氧化环境,菱锰矿的Fe2+/Fe3+值在0.05~121.1之间,平均44.35,同样反映出菱锰矿沉积时海水环境为还原环境[53]。围岩和矿体夹层的δCe在0.97~1.74之间,平均1.12,也反映出氧化的沉积坏境,菱锰矿的δCe在2.58~3.65之间,平均3.16,反映出还原的沉积环境[59-60]。沉积物Ce亏损一直被认为指示缺氧环境,但有研究表明Ce异常并不能随时记录环境的氧化还原条件的变化,强还原环境中也可能出现Ce正异常,菱锰矿中出现较高的Ce正异常与锰离子选择性的捕获更多的Ce有关[61-62]

6 结论

(1) 通过沉积相分析,在穆呼锰矿含锰岩系中识别出了碎屑滨岸沉积相、浅海陆棚沉积相。菱锰矿主要形成于滨外陆棚亚相中水体相对较深的沉积洼地。

(2) 穆呼锰矿含锰岩系地球地球化学特征反映出其受陆源碎屑影响较大,其沉积的古海水水温为11.10 ℃~29.98 ℃,平均22.68 ℃,属于亚热带区。围岩和夹层为离岸较近、海水深度较浅的氧化环境沉积物,菱锰矿为海水相对较深的还原环境沉积物,且菱锰矿与海底火山热液有关。

(3) 含锰岩系碳酸盐岩锶同位素分析表明研究区晚石炭世与全球同时期Sr同位素具有较好的对比意义,含锰岩系沉积水体经历了海进—海退—海进的演化过程,沉积环境属于受陆表水影响的滨岸—浅海陆棚环境。

致谢 在野外地质工作和样品采集过程中得到新疆地矿局第二地质大队冯昌荣总工、查斌高级工程师和何立东高级工程师的大力支持,中国地质调查局西安地质调查中心王永和研究员、审稿专家及编辑部对本文的完善提出了宝贵意见,在此一并表示感谢!

参考文献
[1]
陈仁义, 柏琴. 中国锰矿资源现状及锰矿勘查设想[J]. 中国锰业, 2004, 22(2): 1-4. [ Chen Renyi, Bai Qin. The resources situation of China's Mn-ore and its exploration[J]. China's Manganese Industry, 2004, 22(2): 1-4. DOI:10.3969/j.issn.1002-4336.2004.02.001]
[2]
付勇, 徐志刚, 裴浩翔, 等. 中国锰矿成矿规律初探[J]. 地质学报, 2014, 88(12): 2192-2207. [ Fu Yong, Xu Zhigang, Pei Haoxiang, et al. Study on metallogenic regularity of manganese ore deposits in China[J]. Acta Geologica Sinica, 2014, 88(12): 2192-2207.]
[3]
方爱民, 马建英, 王世刚, 等. 西昆仑-塔西南坳陷晚古生代以来的沉积构造演化[J]. 岩石学报, 2009, 25(12): 3396-3406. [ Fang Aimin, Ma Jianying, Wang Shigang, et al. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since Late Paleozoic[J]. Acta Petrologica Sinica, 2009, 25(12): 3396-3406.]
[4]
肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑):地球科学, 2000, 30(增刊1): 22-28. [ Xiao Wenjiao, Hou Quanlin, Li Jiliang, et al. Tectonic facies and the archipelago-accretion process of the West Kunlun, China[J]. Science China (Seri.D):Earth Sciences, 2000, 30(Suppl.1): 22-28.]
[5]
刘训. 天山-西昆仑地区沉积-构造演化史:新疆地学断面走廊域及邻区不同地体的沉积-构造演化[J]. 古地理学报, 2001, 3(3): 21-31. [ Liu Xun. Sedimentary-tectonic evolutionary history of the Tianshan to West Kunlun area in West China:The sedimentary-tectonic evolution of the terranes in the corridor of the Xinjiang geotransect and its adjacent areas[J]. Journal of Palaeogeography, 2001, 3(3): 21-31. DOI:10.3969/j.issn.1671-1505.2001.03.003]
[6]
祝新友, 汪东波, 王书来. 西昆仑海相火山岩及其有关大型铜矿成矿前景的初步分析[J]. 地质论评, 1999, 45(7): 995-1001. [ Zhu Xinyou, Wang Dongbo, Wang Shulai. The characteristics of marine volcanic rocks and the prospect of the exploring for copper deposits in western Kunlun, Xinjiang[J]. Geological Review, 1999, 45(7): 995-1001.]
[7]
计文化.西昆仑-喀喇昆仑晚古生代-早中生代构造格局[D].北京: 中国地质大学, 2005: 1-89. [Ji Wenhua. The Late Paleozoic-Early Mesozoic tectonic frame in the western Kunlun-Karakorum area[D]. Beijing: China University of Geosciences, 2005: 1-89.] http://d.wanfangdata.com.cn/Thesis/Y859836
[8]
高永宝, 滕家欣, 陈登辉, 等. 新疆西昆仑玛尔坎苏锰矿带成矿地质特征及找矿方向[J]. 西北地质, 2017, 50(1): 261-269. [ Gao Yongbao, Teng Jiaxin, Chen Denghui, et al. Metallogenic geological characteristics and prospecting direction of Maerkansu manganese ore belt in West Kunlun, Xinjiang[J]. Northwestern Geology, 2017, 50(1): 261-269. DOI:10.3969/j.issn.1009-6248.2017.01.022]
[9]
Matte P, Tapponnier P, Arnaud N, et al. Tectonics of western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142(3/4): 311-330.
[10]
丁道桂, 王道轩, 刘伟新, 等. 西昆仑造山带与盆地[M]. 北京: 地质出版社, 1996: 12-49. [ Ding Daogui, Wang Daoxuan, Liu Weixin, et al. The western Kunlun orogenic belt and basin[M]. Beijing: Geological Publishing House, 1996: 12-49.]
[11]
杨瑞东, 程玛莉, 魏怀瑞. 贵州水城二叠系茅口组含锰岩系地质地球化学特征与锰矿成因分析[J]. 大地构造与成矿学, 2009, 32(4): 613-619. [ Yang Ruidong, Cheng Mali, Wei Huairui. Geochemical characteristics and origin of a manganese deposit in the Middle Permian Maokou Formation in Shuicheng, Guizhou, China[J]. Geotectonica et Metallogenia, 2009, 32(4): 613-619. DOI:10.3969/j.issn.1001-1552.2009.04.016]
[12]
Boström K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[M]//Rona P A, Boström K, Laubier L, et al. Hydrothermal processes at seafloor spreading centers. Boston, MA: Springer, 1983: 473-483.
[13]
Taylor S R, McLennan S M. The continental crust:its composition and evolution:an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford, Melbourne: Blackwell Scientific Publications, 1985: 5-96.
[14]
杨瑞东, 高军波, 程玛莉, 等. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征[J]. 地质学报, 2010, 84(12): 1781-1790. [ Yang Ruidong, Gao Junbo, Cheng Mali, et al. Sedimentary geochemistry of manganese deposit of the Neoproterozoic Datangpo Formation in Guizhou province, China[J]. Acta Geologica Sinica, 2010, 84(12): 1781-1790.]
[15]
谢桂青, 胡瑞忠, 方维萱, 等. 云南墨江金矿热水喷流沉积成岩成矿的地质地球化学证据[J]. 沉积学报, 2002, 20(3): 387-393. [ Xie Guiqing, Hu Ruizhong, Fang Weixuan, et al. Evidence for geology and geochemistry of hydrothermal exhalative genesis from Mojiang gold deposit, Yunnan[J]. Acta Sedimentologica Sinica, 2002, 20(3): 387-393. DOI:10.3969/j.issn.1000-0550.2002.03.005]
[16]
Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1990, 51(3): 631-644.
[17]
Veizer J, Demovic R. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Research, 1974, 44(1): 93-115.
[18]
Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011): 526-528. DOI:10.1038/314526a0
[19]
Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11-26. DOI:10.1016/0012-821X(89)90017-4
[20]
田景春, 曾允孚. 中国南方二叠纪古海洋锶同位素演化[J]. 沉积学报, 1995, 13(4): 125-130. [ Tian Jingchun, Zeng Yunfu. The revolution of the isotopic composition of strontium in the Permian paleo-ocean in South China[J]. Acta Sedimentologica Sinica, 1995, 13(4): 125-130.]
[21]
郑荣才, 刘文均. 龙门山泥盆纪层序地层的碳、锶同位素效应[J]. 地质论评, 1997, 43(3): 264-272. [ Zheng Rongcai, Liu Wenjun. Carbon and strontium isotopic effects of the Devonian sequence in the Longmen Mountains area[J]. Geological Review, 1997, 43(3): 264-272. DOI:10.3321/j.issn:0371-5736.1997.03.006]
[22]
汪凯明, 罗顺社. 海相碳酸盐岩锶同位素及微量元素特征与海平面变化[J]. 海洋地质与第四纪地质, 2009, 29(6): 51-58. [ Wang Kaiming, Luo Shunshe. Strontium isotope and trace element characteristics of marine carbonate and sea level fluctuation[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 51-58.]
[23]
Mount J. Mixed siliciclastic and carbonate sediments:a proposed first-order textural and compositional classification[J]. Sedimentology, 1985, 32(3): 435-442. DOI:10.1111/sed.1985.32.issue-3
[24]
Davis H R, Byers C W. Shelf sandstones in the Mowry shale:evidence for deposition during Cretaceous sea level falls[J]. Journal of Sedimentary Research, 1989, 59(4): 548-560.
[25]
王国忠. 南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用[J]. 古地理学报, 2001, 3(2): 47-54. [ Wang Guozhong. Mixed sedimentation of recent reefoid carbonates and terrigenous clastics in the north continental shelf of the South China Sea[J]. Journal of Palaeogeography, 2001, 3(2): 47-54. DOI:10.3969/j.issn.1671-1505.2001.02.007]
[26]
董桂玉, 陈洪德, 李君文, 等. 环渤海湾盆地寒武系混合沉积研究[J]. 地质学报, 2009, 83(6): 800-811. [ Dong Guiyu, Chen Hongde, Li Junwen, et al. The Cambrian mixed sedimentation around Bohai Sea Bay Basin[J]. Acta Geologica Sinica, 2009, 83(6): 800-811. DOI:10.3321/j.issn:0001-5717.2009.06.006]
[27]
杨永剑, 刘家铎, 田景春, 等. 塔里木盆地下石炭统巴楚组岩相古地理特征及演化[J]. 天然气地球科学, 2011, 22(1): 81-88. [ Yang Yongjian, Liu Jiaduo, Tian Jingchun, et al. Lithofacies palaeogeography and evolution of Bachu Formation of Lower Carbonniferous in Tarim Basin[J]. Natural Gas Geoscience, 2011, 22(1): 81-88.]
[28]
Holmes C W. Carbonate and siliciclastic deposits on slope and abyssal floor adjacent to southwestern Florida platform[J]. AAPG Bulletin, 1983, 67(3): 484-485.
[29]
Tirsgaard H. Cyclic sedimentation of carbonate and siliciclastic deposits on a Late Precambrian ramp:the Elisabeth Bjerg formation (Eleonore Bay Supergroup), east Greenland[J]. Journal of Sedimentary Research, 1996, 66(4): 699-712.
[30]
曹剑, 谭秀成, 陈景山. 川西南犍为地区下三叠统嘉陵江组沉积相及其演化特征[J]. 高校地质学报, 2004, 10(3): 429-439. [ Cao Jian, Tan Xiucheng, Chen Jingshan. Sedimentary facies and their evolution characteristics in Jialingjiang Formation of Qianwei area, Southwest Sichuan Basin[J]. Geological Journal of China Universities, 2004, 10(3): 429-439. DOI:10.3969/j.issn.1006-7493.2004.03.013]
[31]
Brooks G R, Doyle L J, Suthard B C, et al. Facies architecture of the mixed carbonate/siliciclastic inner continental shelf of west-central Florida:implications for Holocene barrier development[J]. Marine Geology, 2003, 200(1/2/3/4): 325-349.
[32]
Brandano M, Civitelli G. Non-seagrass meadow sedimentary facies of the Pontinian islands, Tyrrhenian sea:A modern example of mixed carbonate-siliciclastic sedimentation[J]. Sedimentary Geology, 2007, 201(3/4): 286-301.
[33]
García-Hidalgo J F, Gil J, Segura M, et al. Internal anatomy of a mixed siliciclastic-carbonate platform:The Late Cenomanian-mid Turonian at the southern margin of the Spanish central system[J]. Sedimentology, 2007, 54(6): 1245-1271. DOI:10.1111/sed.2007.54.issue-6
[34]
杨永剑, 刘家铎, 田景春, 等. 塔里木盆地上奥陶统桑塔木组混合沉积特征及控制因素[J]. 地质论评, 2011, 57(2): 185-192. [ Yang Yongjian, Liu Jiaduo, Tian Jingchun, et al. Mixed sedimentary characteristics and controlling factors of Upper Ordovician Sangtamu Formation in Tarim Basin[J]. Geological Review, 2011, 57(2): 185-192.]
[35]
刘训, Graham S, Chang E, 等. 塔里木板块周缘晚古生代以来的构造演化[J]. 地球科学——中国地质大学学报, 1994, 19(6): 715-725. [ Liu Xun, Graham S, Chang E, et al. Tectonic evolution of Tarim Plate and its surrounding area since Late Paleozoic[J]. Earth Science-Journal of China University of Geosciences, 1994, 19(6): 715-725.]
[36]
庄锡进, 肖立新, 杨军. 塔里木盆地西南沉积相展布特征及演化[J]. 新疆地质, 2002, 20(S1): 78-82. [ Zhuang Xijin, Xiao Lixin, Yang Jun. Sedimentary facies in southwestern region of Tarim Basin[J]. Xinjiang Geology, 2002, 20(S1): 78-82.]
[37]
孙宝生, 刘增仁, 王招明. 塔里木西南喀什凹陷几个地质问题的新认识[J]. 新疆地质, 2003, 21(1): 78-84. [ Sun Baosheng, Liu Zengren, Wang Zhaoming. New knowledge on geology of Kashi Depression in Southwest Tarim[J]. Xinjiang Geology, 2003, 21(1): 78-84. DOI:10.3969/j.issn.1000-8845.2003.01.013]
[38]
方爱民, 侯泉林, 李继亮, 等. 西昆仑库地混杂岩带中深海浊积岩的浊积相划分及其特征[J]. 地质科学, 2003, 38(1): 1-12. [ Fang Aimin, Hou Quanlin, Li Jiliang, et al. Turbiditic facies and their characteristics of abyssal turbidites in the Kuda melange belt in West Kunlun, Xinjiang, China[J]. Chinese Journal of Geology, 2003, 38(1): 1-12.]
[39]
方爱民, 李继亮, 侯泉林, 等. 新疆西昆仑库地复理石源区性质及构造背景分析[J]. 岩石学报, 2003, 19(1): 153-166. [ Fang Aimin, Li Jiliang, Hou Quanlin, et al. Tectonic setting and provenance of the Kudi flysch in west Kunlun mountains, Xingjiang province[J]. Acta Petrologica Sinica, 2003, 19(1): 153-166.]
[40]
Armstrong A K. Carboniferous carbonate depositional models, preliminary lithofacies and paleotectonic maps, Arctic Alaska[J]. AAPG Bulletin, 1974, 58(4): 621-645.
[41]
关士聪, 演怀玉, 丘东洲, 等. 中国晚元古代至三迭纪海域沉积环境模式探讨[J]. 石油与天然气地质, 1980, 1(1): 2-17. [ Guan Shicong, Yan Huaiyu, Qiu Dongzhou, et al. Investigations on the marine sedimentary environmental model of China in Late Proterozoic to Triassic periods[J]. Oil & Gas Geology, 1980, 1(1): 2-17.]
[42]
张锦泉, 叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报, 1989, 16(2): 87-92. [ Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92.]
[43]
冯增昭. 沉积岩石学[M]. 2版. 北京: 石油工业出版社, 1993: 286-316. [ Feng Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1993: 286-316.]
[44]
赵澄林, 朱筱敏. 沉积岩石学[M]. 3版. 北京: 石油工业出版社, 2001: 327-329. [ Zhao Chenglin, Zhu Xiaomin. Sedimentary petrology[M]. 3rd ed. Beijing: Petroleum Industry Press, 2001: 327-329.]
[45]
刘朋远, 孙佳珺. 塔北南坡志留系柯坪塔格组沉积体系分析[J]. 中国矿业, 2015, 24(增刊1): 272-276. [ Liu Pengyuan, Sun Jiajun. Analysis of depositional system of Silurian Kalpintag Formation in Tabei southern slope[J]. China Mining Magazine, 2015, 24(Suppl.1): 272-276.]
[46]
刘洛夫, 朱毅秀, 熊正祥, 等. 滨里海盆地的岩相古地理特征及其演化[J]. 古地理学报, 2003, 5(3): 279-290. [ Liu Luofu, Zhu Yixiu, Xiong Zhengxiang, et al. Characteristics and evolution of lithofacies palaeogeography in pre-Caspian Basin[J]. Journal of Palaeogeography, 2003, 5(3): 279-290. DOI:10.3969/j.issn.1671-1505.2003.03.002]
[47]
葛祥英, 牟传龙, 周恳恳, 等. 湖南地区晚奥陶世桑比期-凯迪期早期沉积特征及沉积模式[J]. 古地理学报, 2013, 15(1): 59-68. [ Ge Xiangying, Mou Chuanlong, Zhou Kenken, et al. Sedimentary characteristics and depositional model in the Sandbian-Early Katian Ages of Late Ordovician in Hunan area[J]. Journal of Palaeogeography, 2013, 15(1): 59-68.]
[48]
牟传龙, 葛祥英, 许效松, 等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报, 2014, 16(4): 427-440. [ Mou Chuanlong, Ge Xiangying, Xu Xiaosong, et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region[J]. Journal of Palaeogeography, 2014, 16(4): 427-440.]
[49]
牟传龙, 王启宇, 王秀平, 等. 造山带岩相古地理研究与实践:以甘肃省奥陶纪为例[J]. 沉积学报, 2016, 34(1): 1-14. [ Mou Chuanlong, Wang Qiyu, Wang Xiuping, et al. The lithofacies-palaeogeographic research and practice of orogenic belt:An example of Ordovician in Gansu province[J]. Acta Sedimentologica Sinica, 2016, 34(1): 1-14.]
[50]
石少华, 唐分配, 罗小亚, 等. 湖南省沉积型锰矿地质环境及成矿作用[J]. 地质与勘探, 2016, 52(2): 209-219. [ Shi Shaohua, Tang Fenpei, Luo Xiaoya, et al. Geological environment and mineralization of sedimentary manganese deposits in Hunan province[J]. Geology and Exploration, 2016, 52(2): 209-219.]
[51]
高华华, 何登发, 童晓光, 等. 塔里木盆地晚奥陶世构造-沉积环境与原型盆地演化[J]. 地学前缘, 2017, 24(5): 350-367. [ Gao Huahua, He Dengfa, Tong Xiaoguang, et al. Tectonic-depositional environment and proto-type basins evolution of the Tarim Basin in the Late Ordovician[J]. Earth Science Frontiers, 2017, 24(5): 350-367.]
[52]
张国仁. 利用沉积地球化学特征分析古环境及海平面变化:以鲁西东部中下寒武统为例[J]. 辽宁地质, 1997(1): 8-13. [ Zhang Guoren. On the paleoenvironment and the change of sea level through the characteristics of sedimentary geochemistry:As an example of mid-lower Cambrian series in the east of West Shandong province[J]. Liaoning Geology, 1997(1): 8-13.]
[53]
田景春, 张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016: 21-158. [ Tian Jingchun, Zhang Xiang. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2016: 21-158.]
[54]
刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 15-110. [ Liu Yingjun, Cao Liming. The introduction of geochemical elements[M]. Beijing: Geological Publishing House, 1987: 15-110.]
[55]
刘刚, 周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质, 2007, 29(3): 307-310, 314. [ Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment:Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314. DOI:10.3969/j.issn.1001-6112.2007.03.016]
[56]
文华国, 郑荣才, 唐飞, 等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石, 2008, 28(1): 114-120. [ Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2008, 28(1): 114-120. DOI:10.3969/j.issn.1001-6872.2008.01.016]
[57]
陈洪德, 李洁, 张成弓, 等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报, 2011, 27(8): 2213-2229. [ Chen Hongde, Li Jie, Zhang Chenggong, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.]
[58]
Xie J C, Yang X Y, Du J G, et al. Geochemical characteristics of sedimentary manganese deposit of Guichi, Anhui province, China[J]. Journal of Rare Earths, 2006, 24(3): 374-380. DOI:10.1016/S1002-0721(06)60127-0
[59]
徐锦龙, 洪天求, 贾志海, 等. 四川江油马角坝地区船山组核形石灰岩稀土元素分布特征及其意义[J]. 高校地质学报, 2012, 18(4): 724-734. [ Xu Jinlong, Hong Tianqiu, Jia Zhihai, et al. REE characteristics and their significance of oncolite carbonates of the Chuanshan Formatiom in Majiaoba, Jiangyou region[J]. Geological Journal of China Universities, 2012, 18(4): 724-734. DOI:10.3969/j.issn.1006-7493.2012.04.013]
[60]
张旭阳, 杨阳, 吕古贤, 等. 湘西李梅铅锌矿区外围地层碳酸盐岩地球化学特征及其意义[J]. 矿物学报, 2017, 37(4): 427-433. [ Zhang Xuyang, Yang Yang, Lü Guxian, et al. Geochemical characteristics of carbonate rocks in the peripheral formation of Limei lead and zinc mine area in Xiangxi area, China[J]. Acta Mineralogica Sinica, 2017, 37(4): 427-433.]
[61]
蒋德和, 杨振强, 赵时久. 湘中地区中奥陶统沉积岩的稀土元素地球化学[J]. 沉积学报, 1994, 12(1): 106-111. [ Jiang Dehe, Yang Zhenqiang, Zhao Shijiu. REE geochemistry of sedimentary rocks Middle Ordivician in central Hunan province[J]. Acta Sedimentologica Sinica, 1994, 12(1): 106-111.]
[62]
陈多福, 陈先沛. 贵州省松桃热水沉积锰矿的地质地球化学特征[J]. 沉积学报, 1992, 10(4): 35-43. [ Chen Duofu, Chen Xianpei. Geological and geochemical characteristices of Songtan hydrothermal sedimentary mangenes deposits, Guizhuo[J]. Acta Sedimentologica Sinica, 1992, 10(4): 35-43.]