沉积学报  2018, Vol. 36 Issue (4): 777−786

扩展功能

文章信息

郭佳佳, 孙国强, 门宏建, 朱文军, 马进业, 朱军, 管斌, 史基安
GUO JiaJia, SUN GuoQiang, MEN HongJian, ZHU WenJun, MA JinYe, ZHU Jun, GUAN Bin, SHI JiAn
柴北缘腹部深层异常高孔—渗储层成因分析
Genetic Analysis of Anomalously High Porosity Zones in Deeply Buried Reservoirs in the West Part of Northern Edge of Qaidam Basin, NW China
沉积学报, 2018, 36(4): 777-786
ACTA SEDIMENTOLOGICA SINCA, 2018, 36(4): 777-786
10.14027/j.issn.1000-0550.2018.112

文章历史

收稿日期:2017-05-26
收修改稿日期: 2018-03-05
柴北缘腹部深层异常高孔—渗储层成因分析
郭佳佳1,2, 孙国强1, 门宏建3, 朱文军4, 马进业4, 朱军4, 管斌5, 史基安1     
1. 甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室, 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 中国石油青海油田分公司开发处, 甘肃敦煌 736202;
4. 中国石油青海油田分公司勘探开发研究院, 甘肃敦煌 736202;
5. 中国石油青海油田分公司勘探事业部, 甘肃敦煌 736202
摘要: 根据钻井岩芯及铸体薄片鉴定结果,结合扫描电镜、物性统计及测、录井资料,探讨了柴北缘腹部埋深大于3 000 m的异常高孔—渗储层的形成原因及主控因素。结果表明深部异常高孔—渗储层主要分布在古近系下干柴沟组,是一套辫状河三角洲到滨—浅湖沉积,粒度较细,以粉砂岩和细砂岩为主,岩性为长石岩屑砂岩和岩屑长石砂岩。孔隙类型以原生粒间孔为主,其次为次生溶蚀孔隙和少量裂隙,孔—喉匹配性好。深部异常高孔—渗带主要受控于沉积环境,后期成岩作用和异常高压系统也促使了优质储层的形成。古近系下干柴沟组发育的辫状河三角洲分流河道砂体和滨—浅湖砂体具有良好的成分成熟度和结构成熟度,泥质杂基含量较低,是形成优良储层的基础条件;早期碳酸盐胶结物和高含量的刚性颗粒在深埋过程中有效抵御了压实作用对孔隙的破坏;储集层上、下部发育大套厚层泥岩,在沉积成岩过程中泥岩层内流体排出受阻而滞留在孔隙空间内,孔隙流体承担了部分负荷从而削弱了正常压实作用对中间砂岩层的影响,保存了大部分原生孔隙,在柴北缘腹部深层形成了优质碎屑岩储层。
关键词沉积环境     成岩作用     异常高压     深部储层     柴达木盆地    
Genetic Analysis of Anomalously High Porosity Zones in Deeply Buried Reservoirs in the West Part of Northern Edge of Qaidam Basin, NW China
GUO JiaJia1,2, SUN GuoQiang1, MEN HongJian3, ZHU WenJun4, MA JinYe4, ZHU Jun4, GUAN Bin5, SHI JiAn1     
1. Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Development Department of PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China;
4. Exploration and Development Institute of PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China;
5. Petroleum Exploration Division, PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China
Foundation: CAS "Light of West China" Program, No. Y304RC1SGQ; Nature Science Foundation of Gansu Province, No.1308RJZA310;The Key Laboratory Project of Gansu Province, No.1309RTSA041
Abstract: According to drilling data, core samples and casting thin-sections, and combined with data from scanning electron microscopy, X-diffraction, physical property statistics and well logging, the physical properties and main controlling factors are discussed in this paper for the anomalously high porosity zones in the deeply buried reservoirs in west part of northern edge of the Qiadam Basin, northwetern China. The reservoirs buried over 3 000 m in the study area were mainly formed in the Paleogene, and there were a suite of detrital deposits of braided river delta-shallow shore. The grain sizes are small, mainly in a range of silt-fine sand. The lithologies are mainly feldspar lithic sandstone and lithic feldspathic sandstone. The pore types are dominated by intergranular pore, followed by secondary pore, and a few cracks. The pores and throat paths are well matched. The sandstone formed in the distributary channel of braided river delta front and shore-shallow lake have less argillaceous matrix with better compositional and structural maturity, which are the fundamental conditions for the high quality reservoirs formation. The carbonate cements formed in the early digenetic stage play a supporting role among particles, which effectively resist to the compaction. The thick layers of under-compacted mudstone on and below the reservoirs are key factors for the preservation of primary pores, the discharge of fluids in the pore was hampered. So the fluids bear parts of the loads and lead to the preservation of the pores.
Key words: sedimentary environment     pore type     diagenesis     abnormal high pressure     deeply buried reservoir     Qaidam Basin    
0 引言

随着我国浅层油气勘探开发难度的日益加大,将勘探开发目标由浅层转向深层已经是一种必然趋势[1-2]。Schmidt et al.[3]研究认为,埋深超过3 000 m的储层中,原生孔隙因为强烈的压实作用、胶结作用等几乎损失殆尽,孔隙类型主要以次生孔隙为主。但最新研究成果表明[4-7],在特定的地质条件下碎屑岩储层中的原生孔隙能被有效保存到3 500~4 500 m左右,并形成优质储层。

柴达木盆地北缘构造带腹部地区是一个以侏罗系为烃源岩,古近系和新近系碎屑岩为储集层的含油气系统[8]。主要包括冷湖Ⅵ号构造,冷湖Ⅶ号构造,鄂博梁Ⅲ号构造及马海—南八仙构造带等(图 1)[9-10]。继冷湖Ⅳ号和冷湖Ⅴ号构造油气勘探突破之后,马海、南八仙及鄂博梁等地也相继发现油气藏[11-14],但由于油气藏埋藏较深,储集岩成因复杂,前人对其主控因素研究较少,因此,弄清深部优质碎屑岩储层的形成机理及主控因素成为本区油气勘探的关键问题。本文以钻井岩芯及铸体薄片为基础,结合扫描电镜、镜质体反射率、储层物性、X衍射及测井等分析化验资料探讨了柴北缘腹部深层优质碎屑岩储层的物性特征及主控因素,以期为该区下一步的油气勘探提供依据。

图 1 柴达木盆地北缘西段构造分区图 Figure 1 Characteristics of Structures in northwest Qaidam Basin
1 深部储集岩岩石学特征

柴北缘腹部深层储集岩主要位于古近系下干柴沟组(E3)和新近系上干柴沟组(N1),岩石粒度较细,以细砂岩、粉砂岩和泥质粉砂岩为主。碎屑岩储层的主要成分依次为:石英、长石和岩屑,平均含量分别为:40.4%、30.6%和29%。根据赵澄林等[15]划分碎屑岩的模板,岩性主要为长石岩屑砂岩和岩屑长石砂岩,少量为长石岩屑质石英砂岩(图 2)。胶结物以碳酸盐胶结物和泥质胶结物为主,含少量硅质胶结物和硬石膏。镜下显示颗粒间以点—线接触为主,分选中等—较好,磨圆以次棱角—次圆状为主,具有较好的结构成熟度。

图 2 柴北缘腹部深层储集岩岩石类型及储层物性特征 Figure 2 The rock types and physical property characteristics of deeply buried reservoirs
2 深部储层物性特征 2.1 物性纵向分布特征

通过2 000多块岩芯样品的实测数据分析发现,柴北缘腹部深部储层孔隙度及渗透率整体上具有随埋深加大而逐渐减小的趋势(图 2)。但是,变化趋势又可以划分为两个阶段:第一阶段在0~2 000 m,孔隙度和渗透率随深度急剧减小;第二阶段为2 000 m以后,孔隙度和渗透率的衰减速率较为缓慢。前人研究认为[16],把未受异常超压影响且溶蚀孔发育较弱的储层的最大孔隙作为正常压实孔隙,并以此绘制出孔隙度与渗透率的正常压实趋势,而高于正常压实孔隙的孔隙带被定义为异常孔—渗带。柴北缘腹部深部储层中存在两个异常高孔—渗带(图 2):A段位于2 900~3 100 m,B段位于4 000~4 200 m。A段的物性条件明显优于B段,其平均孔隙度可达25.3%,平均渗透率为826.36×10-3 μm2;而B段的平均孔隙度为9.8%,平均渗透率为4.81×10-3 μm2

2.2 储层孔隙类型

根据岩芯样品铸体薄片及扫描电镜分析,发现深部储层主要发育原生孔隙,以压实—胶结剩余粒间孔为主;其次为次生孔隙,以粒间溶蚀孔和粒内溶蚀孔为主;另外还发育少量压裂缝。根据储集空间类型的不同可将异常高孔—渗带分为原生孔隙型和原生+次生孔隙型两种类型。异常高孔—渗带A段储层中原生孔隙占86.0%,次生孔隙占13.2%,裂隙占0.8%(图 2图 3a),属于典型的高原生孔隙异常高孔—渗带;异常高孔—渗带B段储层中原生孔隙占65.5%,次生孔隙占32.5%,以及少量混合扩大孔,压裂隙占2%(图 2图 3b~e),此异常高孔带属于高原生+次生孔隙型异常高孔—渗带。

图 3 柴北缘腹部深层储集岩成岩作用特征 a.仙东1井,3 087.06 m,E31,中—细粒岩屑长石砂岩,分选中等,次圆状,颗粒间以点接触为主,粒间孔发育,少量粒内溶孔,孔隙连通性好(-)×100;b.仙西1井,4 211.72 m,E32,中—粗粒长石岩屑砂岩,分选中等—差,次棱角状,颗粒间以点—线接触为主,粒间孔发育,其次为粒间溶孔和粒内溶孔,孔隙连通性好(-)×100;c.仙西1井,4 210.77 m,E32,中—粗粒岩屑长石砂岩,分选中等,次棱角状,颗粒间以点接触为主,粒间孔发育,其次为粒间溶孔和粒内溶孔(-)×100;d.仙西1井,4 111.84 m,E32,细砂岩,方解石充填裂隙,可见微裂隙;e.鄂深1井,3 989.74 m,N1,粉砂岩,颗粒内溶孔中发育针叶状绿泥石及丝状伊利石;f.仙西1井,4 853.83 m,E32,中—细粒岩屑长石砂岩,泥晶方解石呈基底式胶结,无可见孔(+)×100;g.冷七2井,5 276.00 m,E32,中—细粒岩屑长石砂岩,呈连生式充填,孔隙式胶结的含铁方解石,无可见孔(+)×100;h.仙西1井,4 212.57 m,E32,中—粗粒长石岩屑砂岩,粒间杂基溶蚀形成粒间溶孔,部分颗粒被溶蚀形成粒内溶孔(-)×100;i.仙东1井,3 084.44 m,E31,中—细粒岩屑长石砂岩,颗粒溶蚀形成粒内溶孔,孔隙连通性好(-)×100 Figure 3 The diagenesis characteristics of deeply buried reservoirs
3 异常高孔—渗带控制因素

储层物性的控制因素主要包括沉积环境和成岩作用两个方面[17-19]。对于储层而言,即使在同一物源,相同的沉积环境内不同的砂体类型也会产生储集性能的差异[20]。成岩过程中埋深速率及外部的温压环境也会对储集性能产生较大的影响[6]

3.1 沉积环境

柴北缘腹部深层储集岩主要发育在辫状河三角洲—滨浅湖沉积体系中[21],粒度较细。通过岩芯样品实测孔隙度和渗透率的分析(图 4),结果显示孔隙度集中分布在4%~16%,渗透率分布在(0.01~10 000)×10-3 μm2之间,在对数坐标中孔隙度和渗透率具有较好的正相关关系。说明孔隙类型主要是原生粒间孔隙,渗透率的高低受控于孔隙度发育程度[22-23],渗滤通道主要是与孔隙有关的粒间孔隙而非粒内溶孔或裂缝等其他通道,属于孔隙型储层[24-25],物性条件受沉积环境的影响较大。辫状河三角洲前缘水下分流河道砂体具有较强的水动力条件,泥质杂基含量少,分选和磨圆较好,是典型的以原生孔隙为主的储层,孔—渗相关性也最好;辫状河三角洲平原分流河道砂体孔—渗相关性较好,但物性条件差异较大;滨—浅湖砂体粒度较细,孔—渗相关性中等。这说明柴北缘地区深部储层受沉积环境的影响明显,沉积环境是形成深部优质碎屑岩储层的基础条件。

图 4 柴北缘腹部深层物性直方图及孔隙度—渗透率相关图 Figure 4 Histogram and relevance graph of porosity and permeability in deeply buried reservoirs
3.2 成岩作用 3.2.1 压实作用

前人研究认为[26],碎屑岩中的碎屑成分和粒度特征对物性影响最大。石英、长石及刚性岩屑(花岗岩、石英岩等)含量越高,其抵御压实作用的能力就越强。统计发现深部异常高孔—渗带石英+长石+刚性岩屑的含量超过了71%,有效抵御了压实作用对物性的破坏。利用Housekencht[27]的判别方法,定量评价异常高孔—渗带内的压实与胶结作用对孔隙度的影响(图 5a),结果显示异常高孔—渗带A段样品压实作用平均仅减少25%的原始空隙,样品保留了大量的原始孔隙,孔隙度在20%~32%之间,孔隙连通性好。B段样品由于埋藏较深,经历了缓慢压实作用的影响,压实作用平均减少了60%左右的原始孔隙,压实减孔作用明显。因此,对于深部储层来说压实作用具有明显的分异性,A段受压实作用影响较小,而B段的压实减孔作用较为明显,损耗了大量的原始孔隙。

图 5 柴北缘深部储层中成岩作用与孔隙度关系 Figure 5 Influences on porosity in deeply buried reservoirs from diagenesis
3.2.2 胶结作用

柴北缘腹部深层储集岩中胶结物以碳酸盐胶结物为主,硫酸盐胶结物仅在局部地区发育,另外还发育少量的黄铁矿和硅质胶结物。碳酸盐胶结物可分为早、晚两期,早期碳酸盐胶结物主要为泥微晶、连晶方解石(图 3f),形成于同生—早成岩阶段,呈基底式胶结,与矿物颗粒接触面平直;晚期碳酸盐胶结物以含铁方解石为主,染色后呈紫红色,往往呈孔隙式胶结,或者交代早期方解石胶结物与其他碎屑颗粒,充填孔隙(图 3g)。异常高孔—渗带主要发育早期碳酸盐岩胶结物,早期胶结物对储层的影响具有双面性[28-29],一方面是抗压实作用,且为后期溶蚀作用提供了物质基础;另一方面,如果早期胶结物含量过高,完全堵塞孔隙(图 3f),会导致后期酸性流体没有活动空间[21],不利于形成次生孔隙。而柴北缘腹部深层异常高孔渗带的早期碳酸盐胶结物含量大都不超过15%,有利于形成高孔—高渗的优质储层(图 5b)。因此,早期胶结物较为发育(< 15%)也是形成优质碎屑岩储层的主要因素之一。

3.2.3 溶蚀作用

一般情况下,溶蚀作用是深部储层物性改善的重要因素,碎屑颗粒、胶结物和杂基等组分特征,以及颗粒裂纹和成岩缝都是影响形成次生溶蚀孔隙的关键因素[30-31]。通过分析柴北缘腹部深层异常孔隙带储层的溶蚀作用发现:A段储集岩溶蚀作用较弱,次生溶蚀孔隙不发育,仅占13.16%(图 3ai);B段储集岩溶蚀作用较为明显,碎屑组分和胶结物都发生了不同程度的溶蚀,并形成了一定量的粒间溶孔和粒内溶孔,次生孔隙占32.5%(图 3bch),有效的改善了储层的物性条件。

3.3 异常高压

柴北缘腹部在埋深3 000 m和4 100 m左右形成两段优质碎屑岩储层,A段以压实和溶蚀作用较弱,胶结物少,原生孔隙非常发育,孔隙连通性好为特征;B段以压实和溶蚀作用较强,胶结物少,原生孔隙为主,次生孔隙为辅,孔隙连通性较好为特征。前人通过对深部碎屑岩储层的主控因素研究认为[32-34],成岩作用后期的溶蚀作用形成的次生孔隙是储集性能改善的主要因素。但对于柴北缘腹部深层储层的异常高孔—渗带(A段和B段储层)来讲,主要的储集空间是以原生孔隙为主,并非后期溶蚀作用改善储集性能的结果。通过综合分析,认为柴北缘腹部异常高孔—渗带(A段和B段储层)是由于砂岩储层的欠压实作用形成的,这类欠压实砂岩储层发育于厚层欠压实泥岩带中。

欠压实现象是由于在泥岩被压实过程中,岩体中孔隙流体排出受阻而滞留在孔隙空间,孔隙流体承担了部分负荷而消弱了正常压实作用对储层的影响,保存了大部分原生孔隙,从而在相应砂岩层段出现异常高孔隙带[35-36]。柴北缘腹部地区古近系—新近系异常高压明显,压力系数基本在1.7~2.0之间,最高达2.16;剩余压力大都在21~24 MPa之间,个别可达37 MPa[37-39]。正是异常高压系统的存在,才使得大量原生孔隙得以保存[40-42]。研究表明,欠压实带具有较低的密度,在测井曲线中表现为高声波时差的特征[43-44]。前人已经对南八仙构造带的异常高压做了相关研究,认为南八仙构造带有两套压力体系,浅层的正常温压体系和深层异常高压体系,且异常高压来源于伊北凹陷巨厚层浅湖相泥岩的迅速埋深[39]。柴北缘腹部南八仙的仙东1井,仙6井,仙3井,冷湖七号的仙西1井和冷七1井,鄂博梁三号的鄂深1井等多口探井中声波时差数据出现异常段(图 6),表明异常超压在柴北缘腹部是一个普遍现象,是形成深层优质碎屑岩储层的关键因素之一。

图 6 柴北缘腹部声波时差与深度的关系 Figure 6 Cross plots of depth and interval transit time of wells
4 优质储层分布规律

柴北缘腹部下干柴沟组(E3)主要发育辫状河三角洲—滨浅湖沉积,其中仙东1井下干柴沟组下段(E31)的优质储层主要发育在分流河道沉积微相内,上部发育厚层泥岩段。根据图 6中声波时差反应特征,该段正好位于欠压实泥岩段内,受欠压实泥岩的保护,大量的原始孔隙得以保存,形成优质碎屑岩储层(图 3ai)。同样,仙西1井下干柴沟组上段(E32)中发现的有效储层埋深在4 110~4 236 m之间的水下分流河道沉积微相内,岩芯样品的面孔率接近12%(图 3bc),和图 6中声波时差反应的欠压实泥岩段相吻合。这都证实了在柴北缘腹部地区部深层优质碎屑岩的形成与欠压实泥岩的发育密切相关。

欠压实泥岩主要分布于古近系下干柴沟组中,主要是因为下干柴沟组广泛发育辫状河三角洲和滨—浅湖沉积,细粒沉积物发育,泥地比均大于2/3,多为3/4~4/5。欠压实砂岩储层多位于厚层泥岩段中,受到欠压实泥岩段的保护而形成高孔—渗储层(图 7)。而路乐河组多发育砂、泥岩互层,多为厚层砂岩夹薄层泥岩段组成,泥地比小于1/2。这种组合不利于高压系统的形成,导致砂岩随埋深发生强烈压实,原生孔隙消耗殆尽。

图 7 柴北缘腹部深层优质储层分布规律 Figure 7 The distribution patterns of high quality reservoirs
5 结论

(1) 柴北缘腹部深层发育的优质碎屑岩储层粒度较细,在粉砂—细砂之间,岩性为长石岩屑砂岩和岩屑长石砂岩,泥质杂基含量较低,成分成熟度和结构成熟度较高。根据孔隙类型可将储层类型划分为原生孔隙型和原生孔隙+次生孔隙型两种类型。

(2) 深部储层物性主要受控于沉积相、成岩作用以及异常高压等因素。辫状河三角洲分流河道砂具有良好的成分成熟度和结构成熟度,泥质含量低,是形成优良储层的基础条件;异常高压带的存在对原生孔隙起到了很好的保护作用,使得原生孔隙得以较好的保存下来,有利于形成优质储层。

(3) 柴北缘腹部深层优质碎屑岩储层具有明显的欠压实特征,属于欠压实砂岩储层。欠压实砂岩储层的分布具有明显的规律性,即主要分布于古近系下干柴沟组上段和下干柴沟组下段辫状河三角洲分流河道沉积相带,发育于大套泥质岩层段内,具有较高的泥地比值,砂岩储层整体较薄,分布不均。

参考文献
[1]
钟大康, 朱筱敏, 王红军. 中国深层优质碎屑岩储层特征与形成机理分析[J]. 中国科学(D辑):地球科学, 2008, 38(增刊1): 11-18. [ Zhong Dakang, Zhu Xiaomin, Wang Hongjun. Analysis on the characteristics and formation mechanism of high quality clastic reservoirs in China[J]. Science China (Seri. D):Earth Sciences, 2008, 38(Suppl.1): 11-18.]
[2]
冯佳睿, 高志勇, 崔京钢, 等. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016, 31(7): 718-736. [ Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. The exploration status and research advances of deep and ultra-deep clastic reservoirs[J]. Advances in Earth Science, 2016, 31(7): 718-736.]
[3]
Schmidt V, McDonald D A. The role of secondary porosity in the course of sandstone diagenesis[M]//Schole P A, Schluger P R. Aspects of diagenesis: based on symposia sponsored by the eastern and by the rocky mountain sections, the society of economic paleontologists and mineralogists. Tulsa, Okla: SEPM Special Publication, 1979, 26: 178-207.
[4]
Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction:models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132. DOI:10.1306/04211009123
[5]
Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins:constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2193-2214. DOI:10.1306/04301211139
[6]
金振奎, 苏奎, 苏妮娜. 准噶尔盆地腹部侏罗系深部优质储层成因[J]. 石油学报, 2011, 32(1): 25-31. [ Jin Zhenkui, Su Kui, Su Ni'na. Origin of Jurassic deep burial high-quality reservoirs in the central Junggar Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 25-31. DOI:10.7623/syxb201101004]
[7]
高崇龙, 纪友亮, 高志勇, 等. 准噶尔盆地腹部深层储层物性保存过程多因素耦合分析[J]. 沉积学报, 2017, 35(3): 577-591. [ Gao Chonglong, Ji Youliang, Gao Zhiyong, et al. Multi-factor coupling analysis on property preservation process of deep buried favorable reservoir in hinterland of Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 577-591.]
[8]
汪立群, 徐凤银, 庞雄奇, 等. 马海-大红沟凸起油气勘探成果与柴达木盆地北缘的勘探方向[J]. 石油学报, 2005, 26(3): 21-25, 32. [ Wang Liqun, Xu Fengyin, Pang Xiongqi, et al. Potential exploration targets of the northern margin of Qaidam Basin suggested from the breakthrough of Mahai-Dahonggou Uplift[J]. Acta Petrolei Sinica, 2005, 26(3): 21-25, 32. DOI:10.7623/syxb200503004]
[9]
李凤杰, 刘琪, 刘殿鹤, 等. 柴达木盆地北缘下干柴沟组储层特征及影响因素分析[J]. 天然气地球科学, 2009, 20(1): 44-49. [ Li Fengjie, Liu Qi, Liu Dianhe, et al. Characteristics and influential factors of Low-Ganchaigou Formation reservoir in north edge of Qaidam Basin[J]. Natural Gas Geoscience, 2009, 20(1): 44-49.]
[10]
孙国强, 陈波, 郑永仙, 等. 柴北缘冷湖五号构造中新统成岩作用及沉积环境[J]. 天然气地球科学, 2015, 26(4): 679-688. [ Sun Guoqiang, Chen Bo, Zheng Yongxian, et al. Diagenesis and sedimentary environment of Miocene in Lenghu Ⅴ tectonic belt[J]. Natural Gas Geoscience, 2015, 26(4): 679-688.]
[11]
陈吉, 谢梅, 史基安, 等. 柴北缘马北地区下干柴沟组储层特征[J]. 天然气地球科学, 2011, 22(5): 821-826. [ Chen Ji, Xie Mei, Shi Ji'an, et al. Reservoir characteristics of Xiaganchaigou Formation in Mabei area of northern Qaidam Basin[J]. Natural Gas Geoscience, 2011, 22(5): 821-826.]
[12]
孙国强, 马进业, 司丹, 等. 地震属性在马仙地区下干柴沟组下段沉积环境分析中的应用[J]. 天然气地球科学, 2013, 24(6): 1246-1252. [ Sun Guoqiang, Ma Jinye, Si Dan, et al. Application of seismic attributes to analysis of depositional environment:Taking lower member of Xiaganchaigou Formation of the Paleogene system of Maxian region as an example[J]. Natural Gas Geoscience, 2013, 24(6): 1246-1252.]
[13]
孙国强, 刘伟明, 王波, 等. 柴北缘平台地区路乐河组砂岩储层特征[J]. 沉积学报, 2016, 34(2): 356-363. [ Sun Guoqiang, Liu Weiming, Wang Bo, et al. Reservoir characteristics of the Lulehe Formation in the Pingtai area of northern Qaidam Basin[J]. Acta Sedimentologica Sinica, 2016, 34(2): 356-363.]
[14]
孙国强, 吕婧文, 赵明君, 等. 柴达木盆地鄂博梁Ⅲ号中新统成岩作用及沉积环境[J]. 沉积学报, 2015, 33(2): 337-347. [ Sun Guoqiang, Lü Jingwen, Zhao Mingjun, et al. Diagenesis and sedimentary environment of Miocene series in Eboliang Ⅲ area[J]. Acta Sedimentologica Sinica, 2015, 33(2): 337-347.]
[15]
赵澄林, 朱筱敏. 沉积岩石学[M]. 3版. 北京: 石油工业出版社, 2001: 102. [ Zhao Chenglin, Zhu Xiaomin. Sedimentary petrology[M]. 3rd ed. Beijing: Petroleum Industry Press, 2001: 102.]
[16]
操应长, 远光辉, 李晓艳, 等. 东营凹陷北带古近系中深层异常高孔带类型及特征[J]. 石油学报, 2013, 34(4): 683-691. [ Cao Yingchang, Yuan Guanghui, Li Xiaoyan, et al. Types and characteristics of anomalously high porosity zones in Paleogene mid-deep buried reservoirs in the northern slope, Dongying sag[J]. Acta Petrolei Sinica, 2013, 34(4): 683-691. DOI:10.7623/syxb201304008]
[17]
禚喜准, 王琪, 陈国俊, 等. 恩平凹陷恩平组下段成岩过程分析与储层动态评价[J]. 沉积学报, 2008, 26(2): 257-264. [ Zhuo Xizhun, Wang Qi, Chen Guojun, et al. Analysis of diagenetic process and dynamic reservoir assessment on the lower part of Enping Fm., Enping sag[J]. Acta Sedimentologica Sinica, 2008, 26(2): 257-264.]
[18]
吕成福, 陈国俊, 杜贵超, 等. 酒东坳陷营尔凹陷下白垩统储层孔隙特征及其影响因素研究[J]. 沉积学报, 2010, 28(3): 556-562. [ Lü Chengfu, Chen Guojun, Du Guichao, et al. Characteristics of pore evolution and its controls of Lower Cretaceous reservoir in Ying'er depression, Jiudong Basin[J]. Acta Sedimentologica Sinica, 2010, 28(3): 556-562.]
[19]
王金鹏, 彭仕宓, 赵艳杰, 等. 鄂尔多斯盆地合水地区长6-8段储层成岩作用及孔隙演化[J]. 石油天然气学报(江汉石油学院学报), 2008, 30(2): 170-174. [ Wang Jinpeng, Peng Shimi, Zhao Yanjie, et al. Reservoir diagenesis and porosity evolution of Chang 6-8 Heshui area in Ordos Basin[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2008, 30(2): 170-174.]
[20]
高志勇, 朱如凯, 郭宏莉, 等. 准噶尔南缘前陆盆地第三系"不同段、不同排构造"储集性之差异及其控制因素[J]. 沉积学报, 2010, 28(3): 534-546. [ Gao Zhiyong, Zhu Rukai, Guo Hongli, et al. Different segmentations and zones during Tertiary in the southern margin of Junggar Basin:correlation of reservoir property and controlling factors[J]. Acta Sedimentologica Sinica, 2010, 28(3): 534-546.]
[21]
禚喜准, 王琪, 张瑞, 等. 柴达木盆地北缘下干柴沟组下段湖相混合沉积发育特征及其对储层的影响[J]. 沉积学报, 2013, 31(4): 724-729. [ Zhuo Xizhun, Wang Qi, Zhang Rui, et al. The characteristics of lacustrine mixed deposit in lower Xiaganchaigou Formation and its effect on reservoir property:A case in the central areas of northern Qaidam Basin[J]. Acta Sedimentologica Sinica, 2013, 31(4): 724-729.]
[22]
陈国俊, 吕成福, 王琪, 等. 珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J]. 石油学报, 2010, 31(4): 566-572. [ Chen Guojun, Lü Chengfu, Wang Qi, et al. Characteristics of pore evolution and its controlling factors of Baiyun sag in deepwater area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2010, 31(4): 566-572. DOI:10.7623/syxb201004008]
[23]
王国仓, 孙敏卓, 王鹏, 等. 柴北缘马北8号构造下干柴沟组下段砂岩储层特征[J]. 石油学报, 2012, 33(2): 241-248. [ Wang Guocang, Sun Minzhuo, Wang Peng, et al. Characteristics of the lower part of the Xiaganchaigou Formation in the Mabei-Ⅷ structure in the northern margin, Qaidam Basin[J]. Acta Petrolei Sinica, 2012, 33(2): 241-248. DOI:10.7623/syxb201202008]
[24]
张满郎, 李熙喆, 谢武仁. 鄂尔多斯盆地山2段砂岩储层的孔隙类型与孔隙结构[J]. 天然气地球科学, 2008, 19(4): 480-486. [ Zhang Manlang, Li Xizhe, Xie Wuren. Pore types and pore texture of sandstone reservoir of 2nd Member of Shanxi Formation, Ordos Basin[J]. Natural Gas Geoscience, 2008, 19(4): 480-486. DOI:10.11764/j.issn.1672-1926.2008.04.480]
[25]
胡明毅, 沈娇, 胡蝶. 西湖凹陷平湖构造带平湖组砂岩储层特征及其主控因素[J]. 石油与天然气地质, 2013, 34(2): 185-191. [ Hu Mingyi, Shen Jiao, Hu Die. Reservoir characteristics and its main controlling factors of the Pinghu Formation in Pinghu structural belt, Xihu depression[J]. Oil & Gas Geology, 2013, 34(2): 185-191. DOI:10.11743/ogg20130207]
[26]
钟大康, 周立建, 孙海涛, 等. 储层岩石学特征对成岩作用及孔隙发育的影响:以鄂尔多斯盆地陇东地区三叠系延长组为例[J]. 石油与天然气地质, 2012, 33(6): 890-899. [ Zhong Dakang, Zhou Lijian, Sun Haitao, et al. Influences of petrologic features on diagenesis and pore development:An example from the Triassic Yanchang Formation in Longdong area, Ordos Basin[J]. Oil & Gas Geology, 2012, 33(6): 890-899. DOI:10.11743/ogg20120610]
[27]
Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6): 633-642.
[28]
孙国强, 马进业, 王海峰, 等. 柴达木盆地北缘马北地区碳酸盐胶结物特征及意义[J]. 石油实验地质, 2012, 34(2): 134-139. [ Sun Guoqiang, Ma Jinye, Wang Haifeng, et al. Characteristics and significances of carbonate cements in northern Mahai region, northern margin of Qaidam Basin[J]. Petroleum Geology & Experiment, 2012, 34(2): 134-139. DOI:10.11781/sysydz201202134]
[29]
钟大康, 朱筱敏, 李树静, 等. 早期碳酸盐胶结作用对砂岩孔隙演化的影响:以塔里木盆地满加尔凹陷志留系砂岩为例[J]. 沉积学报, 2007, 25(6): 885-889. [ Zhong Dakang, Zhu Xiaomin, Li Shujing, et al. Influence of early carbonate cementation on the evolution of sandstones:A case study from Silurian sandstones of Manjiaer depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2007, 25(6): 885-889.]
[30]
Paxton S T, Szabo J O, Ajdukiewicz J M, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J]. AAPG Bulletin, 2002, 86(12): 2047-2067.
[31]
高志勇, 崔京钢, 冯佳睿, 等. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制[J]. 石油学报, 2013, 34(5): 867-876. [ Gao Zhiyong, Cui Jinggang, Feng Jiarui, et al. An effect of burial compaction on deep reservoirs of foreland basins and its reworking mechanism[J]. Acta Petrolei Sinica, 2013, 34(5): 867-876. DOI:10.7623/syxb201305007]
[32]
金振奎, 刘春慧. 黄骅坳陷北大港构造带储集层成岩作用定量研究[J]. 石油勘探与开发, 2008, 35(5): 581-587. [ Jin Zhenkui, Liu Chunhui. Quantitative study on reservoir diagenesis in northern Dagang Structural Belt, Huanghua depression[J]. Petroleum Exploration and Development, 2008, 35(5): 581-587.]
[33]
苏妮娜, 金振奎, 宋璠. 黄骅坳陷北大港构造带沙河街组碎屑岩储层特征及其控制因素[J]. 中国石油大学学报(自然科学版), 2009, 33(6): 27-31. [ Su Ni'na, Jin Zhenkui, Song Fan. Clastic reservoir characteristics of Shahejie Formation in Beidagang structural belt of Huanghua depression and its controlling factors[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(6): 27-31.]
[34]
苏妮娜, 金振奎, 宋璠. 黄骅坳陷北大港油田古近系碎屑岩储层成岩作用及其对储层质量的影响[J]. 科技导报, 2009, 27(9): 57-64. [ Su Ni'na, Jin Zhenkui, Song Fan. Diagenesis of the Paleogene clastic reservoir and their relation with reservoir quality of Beidagang oilfield in Huanghua depression[J]. Science & Technology Review, 2009, 27(9): 57-64.]
[35]
胡海燕. 超压的成因及其对油气成藏的影响[J]. 天然气地球科学, 2004, 15(1): 99-102. [ Hu Haiyan. Overpressure cause and it affects the reserve formation[J]. Natural Gas Geoscience, 2004, 15(1): 99-102.]
[36]
张启明, 董伟良. 中国含油气盆地中的超压体系[J]. 石油学报, 2000, 21(6): 1-11. [ Zhang Qiming, Dong Weiliang. Overpressure system of hydrocarbon-bearing basins in China[J]. Acta Petrolei Sinica, 2000, 21(6): 1-11. DOI:10.7623/syxb200006001]
[37]
范昌育, 王震亮, 王爱国, 等. 柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因[J]. 石油学报, 2015, 36(6): 699-706, 714. [ Fan Changyu, Wang Zhenliang, Wang Aiguo, et al. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers, Eboliang structure belt, northern Qaidam Basin[J]. Acta Petrolei Sinica, 2015, 36(6): 699-706, 714. DOI:10.7623/syxb201506006]
[38]
李海, 王鹏, 许浩, 等. 柴达木盆地与莺歌海盆地超压体系、油气成藏特征对比分析[J]. 天然气地球科学, 2012, 23(4): 736-741. [ Li Hai, Wang Peng, Xu Hao, et al. Comparison of overpressure system and hydrocarbon accumulation between Qaidam Basin and Yinggehai Basin[J]. Nature Gas Geoscience, 2012, 23(4): 736-741.]
[39]
禚喜准, 谢秀祥, 马练军, 等. 南八仙构造带水文地质演化与异常高压形成机理[J]. 断块油气田, 2011, 18(4): 413-417. [ Zhuo Xizhun, Xie Xiuxiang, Ma Lianjun, et al. Hydrogeological evolution and formation mechanism of abnormal pressure in Nanbaxian structure zone[J]. Fault-Block Oil & Gas Field, 2011, 18(4): 413-417.]
[40]
蔡希源, 刘传虎. 准噶尔盆地腹部地区油气成藏的主控因素[J]. 石油学报, 2005, 26(5): 1-4, 9. [ Cai Xiyuan, Liu Chuanhu. Main factors for controlling formation of oil-gas reservoir in central part of Junggar Basin[J]. Acta Petrolei Sinica, 2005, 26(5): 1-4, 9. DOI:10.7623/syxb200505001]
[41]
何登发, 陈新发, 张义杰, 等. 准噶尔盆地油气富集规律[J]. 石油学报, 2004, 25(3): 1-10. [ He Dengfa, Chen Xinfa, Zhang Yijie, et al. Enrichment characteristics of oil and gas in Junggar Basin[J]. Acta Petrolei Sinica, 2004, 25(3): 1-10. DOI:10.7623/syxb200403001]
[42]
李丕龙. 准噶尔盆地石油地质特征与大油气田勘探方向[J]. 石油学报, 2005, 26(6): 7-9. [ Li Pilong. Petroleum geological characteristics and exploration orientation of large oilfields in Junggar Basin[J]. Acta Petrolei Sinica, 2005, 26(6): 7-9. DOI:10.7623/syxb200506002]
[43]
赵新民, 李国平, 王树寅, 等. 欠压实带与超压带的测井识别[J]. 石油与天然气地质, 2002, 23(1): 63-65. [ Zhao Xinmin, Li Guoping, Wang Shuyin, et al. Logging identification of uncompacted and superpressure belts[J]. Oil & Gas Geology, 2002, 23(1): 63-65. DOI:10.11743/ogg20020113]
[44]
杨智, 何生, 何治亮, 等. 准噶尔盆地腹部超压层分布与油气成藏[J]. 石油学报, 2008, 29(2): 199-205, 212. [ Yang Zhi, He Sheng, He Zhiliang, et al. Distribution of overpressure stratum and its relationship with hydrocarbon accumulation in the central part of Junggar Basin[J]. Acta Petrolei Sinica, 2008, 29(2): 199-205, 212. DOI:10.7623/syxb200802008]