沉积学报  2017, Vol. 35 Issue (3): 621−636

扩展功能

文章信息

雷开宇, 刘池洋, 张龙, 吴柏林, 寸小妮, 孙莉
LEI KaiYu, LIU ChiYang, ZHANG Long, WU BoLin, CUN XiaoNi, SUN Li
鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复
Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration
沉积学报, 2017, 35(3): 621-636
ACTA SEDIMENTOLOGICA SINCA, 2017, 35(3): 621-636
10.14027/j.cnki.cjxb.2017.03.019

文章历史

收稿日期:2016-04-14
收修改稿日期: 2016-07-05
鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复
雷开宇1,2, 刘池洋1, 张龙1, 吴柏林1, 寸小妮1, 孙莉1     
1. 大陆动力学国家重点实验室(西北大学), 西北大学地质学系, 西安 710069;
2. 陕西延长石油(集团)油气勘探公司延长气田采气一厂, 陕西延安 716000
摘要: 鄂尔多斯盆地北部侏罗系泥岩地球化学特征记录了当时重要的地质信息。通过对该区中侏罗统直罗组及延安组泥岩的X射线荧光常量元素分析以及ICP-MS微量、稀土元素分析对其源区构造背景、源岩属性进行了综合研究。与此同时,根据泥岩典型地球化学参数的垂向变化对其古沉积环境进行了恢复。研究结果表明:盆地北部侏罗系沉积岩与北邻阴山—大青山—乌拉山地区前寒武纪古老基底的片麻岩、麻粒岩、孔兹岩等变质岩系以及各时代侵入岩具有较大的亲缘性,是其主要物源。源区构造背景主要是与大陆岛弧相关的活动大陆边缘。Sr/Cu、Rb/Sr、CIA、Sr/Ba、V/(V+Ni)、Ceanom等泥岩地球化学指标的垂向变化特征对古沉积环境的反演表明,从延安期→直罗组沉积早期→直罗组沉积晚期,古气候由温湿气候逐渐变得越来越干旱,水体古盐度整体上由微咸水相的淡水环境逐渐向半咸水相的淡水环境转变,古氧化还原环境为水体分层不强的还原环境。
关键词鄂尔多斯盆地北部     侏罗系     元素地球化学     物源分析     古沉积环境    
Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration
LEI KaiYu1,2, LIU ChiYang1, ZHANG Long1, WU BoLin1, CUN XiaoNi1, SUN Li1     
1. State Key Laboratory of Continental Dynamics(Northwest University), Geology Department of Northwest University, Xi'an 710069, China;
2. The 1st Factory of Yanchang Gas Wells, Oil and Gas Exploration Company of Shaanxi Yanchang Petroleum(Group) Co.LTD, Yan'an, Shaanxi 716000, China
Foundation: National Natural Science Foundation of China, No.41330315; China Geological Survey Project, No. 12120114009201;Special Grant of Ministry of Science and Technology of China for State Key Laboratory of Continental Dynamics, Northwest University
Abstract: The geochemical characteristics of Jurassic mudstones in the Northern Ordos Basin Hangjinqi Area recorded important geological information at that time. Based on the method of X-ray fluorescence spectrometry of the major element analysis and ICP-MS trace element and rare earth element analysis, the tectonic setting and provenance attribute of Zhiluo Formation and Yan'an Formation have been comprehensively analyzed. Meanwhile, we restored the evolution of sedimentary setting by the vertical variation characteristics of geochemical parameters.The main conclusions can be drawn as follows:The Jurassic sedimentary rocks in the Northern Ordos Basin have affinities to the Precambrian metamorphotic rocks from old basement, such as gneiss, granulite, khondalite and the intrusive rock which formed in different geological time, so the provenance of the study area mainly came from it.The tectonic setting of source area is the active continental margin associated with the continental island arc. The result of paleoenvironment reconstruction is based on the vertical variation characteristics of mudstone geochemical indexes such as Sr/Cu, Rb/Sr, CIA, Sr/Ba, V/(V+Ni)and Ceanom shows that from Yan' an period to early Zhiluo period and then to late Zhiluo period, the paleoclimate was warm and humid at the beginning and tended to become increasingly dry and hot, the palaeosalinity transformed from the brackish water phase of the fresh water environment to the brackish-water phase of the fresh water environment, the redox condition belong to the reducing environment and the water column stratification is not obvious.
Key words: Northern Ordos Basin     Jurassic     element geochemistry     provenance analysis     paleoenvironment    
0 引言

鄂尔多斯盆地位于多个构造域的复合叠加部位,盆地演化过程与地球动力学环境极为复杂,油气、煤、铀等资源极为丰富[1]。多年来,依托油气及煤资源勘探开发力度的不断加大,盆地沉积地层物源方面的研究亦主要集中于石炭系—二叠系等产气层系以及上三叠统延长组及中侏罗统延安组等产油产煤层系,相比之下,对中侏罗统直罗组等上覆地层的物源研究有限。近年来,随着盆地北部杭锦旗—东胜大型砂岩型铀矿带的发现,赋矿层位中侏罗统直罗组地层受到普遍关注。关于盆地北部侏罗系沉积物源,相关学者从岩石学[2-3]、地球化学[4-8]、沉积构造背景[9-10]及锆石定年[11-13]等不同角度进行了研究。上述研究既有定性方法,也不乏精确的同位素定年物源示踪予以支持,取得了一些广泛认识:1) 盆地北部物源主要来自北邻阴山地块、孔兹岩带等地;2) 盆地北部侏罗系沉积体系的空间配置及古水流向均表明其物源来自北邻造山带。值得指出的是,目前为数不多的利用全岩的主微量、稀土元素参数对盆地北部铀矿赋矿层位直罗组沉积期物源的研究均集中于砂岩的相关地球化学分析[4-5, 8]。通常情况下,基于砂岩的Dickinson碎屑骨架三角图[14]投值、主微量地球化学图解及稀土元素配分曲线对比分析可有效判断物源区构造背景及源岩属性[15-16]。盆地北部地区前人直罗组砂岩碎屑研究结果表明源区主要为再旋回造山带物源区[4],砂岩主微量系列判别图解分析表明源岩形成于大陆弧—活动大陆边缘环境[5, 8],砂岩稀土元素配分曲线对比分析表明母岩主要为花岗片麻岩、斜长角闪岩等变质岩[4]或闪长岩、花岗闪长岩等侵入岩[8]。然而截止目前为止,尚未见利用研究区直罗组细碎屑岩的相关物源研究。与此同时,也未见通过侏罗系钻井剖面细粒沉积物地球化学参数的垂向演化特征对盆地北部侏罗纪古沉积环境进行系统恢复的研究工作。

岩石地球化学元素示踪的精确性及高分辨率性使之成为物源示踪、构造背景判别及重建古沉积环境的重要手段[17]。在前人研究基础上,通过对盆地北部杭锦旗地区侏罗系钻井剖面泥岩的系统采样,结合其常量、微量及稀土元素分析结果,对该区直罗组的源区构造背景、源岩属性进行了研究。在物源分析的基础上,根据侏罗系钻井剖面泥岩典型地球化学参数的垂向演化特征,对赋矿层位直罗组沉积期的古沉积环境进行了恢复。选择泥岩一方面是因为地球化学元素在泥岩中分布的均一性更强[18],可能更能反映混合物源的综合结果,一方面也是对利用粗碎屑岩判断物源的有益补充和验证。

1 区域地质背景 1.1 区域构造演化特征

鄂尔多斯地块位于华北克拉通西部(图 1),与其北部的阴山地块以及东部地块大致在早元古宙先后发生碰撞[19-20],华北克拉通由此形成。鄂尔多斯盆地的形成始于中晚三叠世,盆地叠加于早古生代及晚古生代大型盆地之上,属于多重叠合盆地[1]

图 1 研究区及周缘地质图与采样位置 a.华北克拉通位置简图;b.华北克拉通基底构造单元及研究区(据文献[27]修改);c.鄂尔多斯盆地北缘地层分布图(据1:1 500 000内蒙古及邻区地质图修编);d.杭锦旗地区ZKB39-0井柱状图及泥岩样品位置 Figure 1 Geological sketch map of the study and adjacent areas and sampling location a. location sketch map of the North China Craton; b.tectonic subdivision of the North China Craton and study area(modified after reference[27]); c.distribution map of strata in the northern margin of Ordos Basin(modified after 1:1 500 000 geological map of the Inner Mongolia and adjacent areas); d.columnar diagram of Well ZKB39-0 in Hangjinqi area and location of mudstone samples

在鄂尔多斯盆地侏罗系沉积之前,经过印支运动的不均匀构造抬升,延长组顶部遭受较强剥蚀并造就了高低起伏的侵蚀地貌,进而奠定了早侏罗世富县—延安期的古地貌格局以及沉积相的分布[21]。在延安组地层沉积末期,盆地抬升、沉积间断,使延安组与上覆直罗组之间形成侵蚀不整合面[1],不整合面之上的直罗组在盆地北部常发育一套可对比的直罗组底砾岩,而在不整合面之下的延安组顶部则发育一套白色砂岩(图 2),两者均为盆地北部重要的地层划分对比标志层[22]。在中侏罗世直罗—安定期,盆地构造环境总体较为稳定[1]。进入晚侏罗世,受该时期燕山运动的影响,盆地北部普遍存在侏罗系与上覆白垩系的不整合接触[1, 23-24]

图 2 鄂尔多斯盆地北部杭锦旗地区ZKB39-0井岩性及沉积相综合柱状图(红色圆点为泥岩取样位置) Figure 2 Generalized column of the lithologic section and sedimentary facies of Well ZKB39-0 in Hangjinqi area in the northern Ordos Basin(locations of mudstone samples are indicated by red circles)
1.2 盆地北缘地层沉积特征

鄂尔多斯盆地北缘古老结晶基底主要为太古代—元古代多套变火山—沉积岩构成的古老变质岩系[25],该基底地层主要出露于大青山—乌拉山、色尔腾山、阴山以及狼山等地区,其岩性主要由太古代集宁群的麻粒岩、片麻岩及角闪岩,乌拉山群的片麻岩、角闪岩及深变质岩系,元古代色尔腾山群的片麻岩、混合岩,二道凹群的大理岩及绿片岩,渣尔泰山群的石英岩及变质砂砾岩等组成(表 1)。

表 1 鄂尔多斯盆地北缘基岩岩性简表(据文献[26]修改) Table 1 Simple table of basement rock lithology in northern margin of Ordos Basin(modified after reference[26])
地层 盆地北缘
集宁群(Ar1-2) 下岩组为麻粒岩系,主要为麻粒岩、片麻岩、角闪岩,上部岩系为含石榴石二长片麻岩等, >9 700 m。
乌拉山群(Ar3) 片麻岩、角闪岩、变粒岩、大理岩组合,深变质岩系,>4 158 m。
色尔腾山群(Pt1) 下部片麻岩,混合岩,上部片岩,角闪片岩夹磁铁石英岩,>10 000 m。
二道凹群(Pt2) 下部绿片岩为主,上部绿片岩夹大理岩,>1 972 m。
渣尔泰山群(Pt2) 由变质砂砾岩、石英砂岩、石英岩、片岩、千枚岩、板岩、灰岩组成,夹火山岩。东部、北部的白云鄂博群和温都尔庙群与其相当,8 453 m。

大营铀矿床位于鄂尔多斯盆地北部伊盟隆起中部的杭锦旗地区(图 1c),其北部与河套断陷盆地接壤,东侧与东胜铀矿床毗邻。区内地层整体为一向西南缓倾的单斜构造。中侏罗统直罗组是区内重要的砂岩型铀矿赋矿层位,根据直罗组内部岩性变化特征,可将其分为上段(J2z2)和下段(J2z1)两段,下段(J2z1)进一步可细分为上、下两个亚段,铀矿化主要集中分布在下亚段(J2z1-1)。直罗组沉积时期水体较浅,岩性整体较为单调,早期以辫状河沉积为主,中晚期以曲流河沉积为主[1],该组岩性以中粗粒砂岩及少量细砂岩为主,局部夹有煤线。直罗组以其底部的含砾砂岩与下伏延安组煤系地层平行不整合接触,安定组在盆地大部分地区属湖相沉积,但在盆地北部则以一套气候干旱条件下的河流沉积为主,整合覆盖于直罗组之上。野外露头及钻井研究表明盆地北部东胜等地缺失安定组,即直罗组直接与白垩系接触[22]。本次研究对杭锦旗地区大营铀矿岩芯的编录结果亦显示该区可能缺失安定组(图 2)。

2 样品采集与分析方法

用于主量、微量及稀土元素分析的29个直罗组及延安组泥岩样品采集于鄂尔多斯盆地北部杭锦旗地区大营铀矿区ZKB39-0井钻井岩芯,岩性柱状图及泥岩采样位置见图 2。本次研究进行地球化学分析的样品均为新鲜的、受后期成岩作用影响小的泥岩或粉砂质泥岩,这样可以更好的去挖掘物源信息,也更有助于反演古沉积环境。

所有泥岩样品的主量、微量和稀土元素测试均在西北大学大陆动力学国家重点实验室完成。主量元素采用X射线荧光光谱仪分析,分析误差<5%。微量和稀土元素测试采用Elan6100DRC等离子体质谱仪(ICP-MS)进行,测试的样品均采用国际标样BH-VO-1,BSR-1及AGV-1作为标准,质谱仪对Co、Ni、Zn、Ga、Rb、Zr、Nb、Hf、La、Ce、Pr、Nd、Sm、Eu等元素测试误差<5%,其他元素测试误差介于5%~10%。

3 泥岩地球化学特征与源区构造背景 3.1 常量元素特征与源区构造背景

杭锦旗地区侏罗系直罗组及延安组泥岩常量元素与澳大利亚太古代平均页岩PAAS[28]相比,SiO2、Al2O3、MgO含量基本一致(表 2),常量元素特征反映沉积物源岩有酸性岩存在。Roser et al.[29]基于砂、泥岩的K2O/Na2O-SiO2关系图解常被用于判断源区构造背景。研究区侏罗系泥岩样品在K2O/Na2O-SiO2图解上的投点总体主要落在活动大陆边缘区域内,个别点落在被动大陆边缘区域(图 3)。上述泥岩样品的常量元素判别图解投点结果表明,盆地北部源区构造背景主要为活动大陆边缘。

表 2 杭锦旗地区侏罗系泥岩主量元素含量(%)、CIA校正计算及ICV值 Table 2 The major element concentrations (%) of Jurassic mudstones from Hangjinqi area and CIA correction calculation and the value of ICV
层位 样品号 Al2O3 CaO Fe2O3 MgO SiO2 Na2O K2O P2O5 TiO2 MnO 烧失量 总量 C N P C* A K Kcorr. CIA CIAcorr. ICV




1 16.13 1.44 7.42 2.80 56.64 1.16 2.71 0.10 0.83 0.09 10.25 99.7 0.026 0.019 0.001 0.019 0.158 0.029 0.022 70.48 72.78 1.18
2 15.15 1.41 13.84 3.07 50.41 1.20 2.50 0.23 0.84 0.09 10.90 99.8 0.025 0.019 0.002 0.019 0.149 0.027 0.021 69.46 71.39 1.58
3 15.47 1.75 9.85 3.12 53.83 1.42 2.54 0.21 0.83 0.06 10.65 99.9 0.031 0.023 0.002 0.023 0.152 0.027 0.022 67.56 69.12 1.44
4 15.96 1.49 8.39 1.98 56.32 1.28 2.70 0.15 0.81 0.08 10.15 99.5 0.027 0.021 0.001 0.021 0.156 0.029 0.022 69.09 71.21 1.13
5 17.47 1.14 6.04 2.37 57.37 0.85 2.82 0.14 0.79 0.08 10.15 99.3 0.020 0.014 0.001 0.014 0.171 0.030 0.022 74.89 77.58 0.92
6 16.76 1.01 6.69 2.47 56.55 0.96 3.14 0.06 0.80 0.04 10.35 99.0 0.018 0.015 0.000 0.015 0.164 0.033 0.022 71.85 75.73 1.02
7 15.27 1.37 5.98 2.17 59.31 1.20 2.74 0.11 0.68 0.04 10.05 99.1 0.024 0.019 0.001 0.019 0.150 0.029 0.021 68.81 71.51 1.07
8 16.39 1.22 9.39 2.24 54.01 1.18 2.57 0.05 0.81 0.09 11.10 99.2 0.022 0.019 0.000 0.019 0.161 0.027 0.022 71.07 72.76 1.16
9 17.92 0.93 7.61 2.36 56.05 1.19 2.84 0.17 0.81 0.04 9.03 99.1 0.017 0.019 0.001 0.015 0.176 0.030 0.023 73.05 75.19 1.00
10 15.90 1.34 7.25 2.49 56.61 1.41 2.73 0.05 0.79 0.09 10.25 99.0 0.024 0.023 0.000 0.023 0.156 0.029 0.022 67.65 69.67 1.20
11 15.92 1.34 6.09 2.29 58.53 1.27 2.72 0.18 0.78 0.04 9.84 99.2 0.024 0.020 0.001 0.020 0.156 0.029 0.022 69.07 71.29 1.08
12 14.39 1.57 6.16 2.33 59.85 1.58 2.81 0.13 0.66 0.09 9.37 99.1 0.028 0.025 0.001 0.025 0.141 0.030 0.021 63.57 66.11 1.27
平均值 16.06 1.33 7.89 2.47 56.29 1.23 2.74 0.13 0.79 0.07 10.17 99.3 0.024 0.020 0.001 0.020 0.157 0.029 0.022 69.65 71.94 1.16




13 17.32 1.25 8.34 2.77 54.93 1.33 2.74 0.20 0.84 0.06 9.18 99.1 0.022 0.021 0.001 0.021 0.170 0.029 0.024 70.36 72.03 1.17
14 19.55 1.14 5.08 2.40 56.37 1.52 2.88 0.12 0.85 0.03 9.80 99.9 0.020 0.025 0.001 0.020 0.192 0.031 0.026 71.96 73.19 0.90
15 18.91 1.05 4.86 2.64 57.92 1.72 3.08 0.15 0.76 0.04 8.75 100.0 0.019 0.028 0.001 0.018 0.185 0.033 0.026 70.34 72.29 0.96
16 19.11 0.81 4.75 2.06 53.53 0.93 2.77 0.13 0.77 0.03 14.15 99.2 0.014 0.015 0.001 0.014 0.187 0.029 0.024 76.36 78.11 0.77
17 17.15 1.20 9.01 3.03 53.67 1.29 2.86 0.18 0.78 0.05 9.65 99.0 0.021 0.021 0.001 0.020 0.168 0.030 0.023 70.19 72.36 1.23
18 17.08 0.99 5.36 2.29 59.45 1.56 3.05 0.19 0.83 0.04 8.02 99.0 0.018 0.025 0.001 0.016 0.167 0.032 0.023 69.37 72.13 0.99
19 17.99 0.94 5.46 2.70 57.39 1.37 3.02 0.14 0.81 0.05 9.36 99.4 0.017 0.022 0.001 0.016 0.176 0.032 0.024 71.59 74.09 0.99
20 18.21 1.22 7.16 3.15 55.23 1.52 2.90 0.17 0.87 0.06 8.98 99.6 0.022 0.025 0.001 0.021 0.179 0.031 0.025 70.15 71.85 1.15
21 18.48 0.82 3.70 2.38 59.59 1.11 2.92 0.02 0.75 0.04 9.91 99.8 0.015 0.018 0.000 0.014 0.181 0.031 0.024 74.06 76.35 0.82
22 18.43 1.02 5.76 2.91 55.85 1.39 2.91 0.12 0.82 0.05 9.39 98.8 0.018 0.022 0.001 0.017 0.181 0.031 0.024 71.87 73.76 1.02
23 18.69 0.93 5.99 3.15 56.26 1.62 2.93 0.10 0.80 0.05 8.79 99.5 0.017 0.026 0.001 0.016 0.183 0.031 0.025 71.45 73.20 1.06
24 17.27 0.75 7.45 3.30 57.01 1.67 2.79 0.12 0.69 0.05 8.28 99.5 0.013 0.027 0.001 0.013 0.169 0.030 0.023 71.01 72.99 1.19
25 21.70 0.65 4.85 2.35 55.52 0.45 2.63 0.02 0.90 0.03 11.00 100.2 0.012 0.007 0.000 0.007 0.213 0.028 0.025 83.35 84.25 0.66
26 24.21 0.73 2.21 1.73 53.86 0.58 1.67 0.02 0.70 0.01 14.20 100.0 0.013 0.009 0.000 0.009 0.237 0.018 0.028 86.68 83.42 0.48
27 10.92 0.40 0.80 0.37 74.00 0.24 0.58 0.04 3.07 0.01 8.53 99.0 0.007 0.004 0.000 0.004 0.107 0.006 0.013 88.50 83.93 0.68
28 18.95 0.75 4.47 1.93 57.80 0.56 2.34 0.03 0.80 0.02 11.15 98.9 0.013 0.009 0.000 0.009 0.186 0.025 0.023 81.22 82.02 0.68
平均值 18.37 0.92 5.33 2.45 57.40 1.18 2.63 0.11 0.94 0.04 9.95 99.4 0.016 0.019 0.001 0.016 0.180 0.028 0.024 74.22 75.50 0.92


29 19.86 0.45 5.11 2.19 59.35 1.02 2.74 0.17 0.89 0.04 7.91 99.8 0.008 0.016 0.001 0.007 0.195 0.029 0.024 78.78 79.68 0.75
PAAS 18.88 1.29 7.18 2.19 62.8 1.19 3.68 0.16
   注:PAAS为澳大利亚太古代平均页岩(Taylor et al.[28]);CIA为化学蚀变指数;ICV为成分变异指数。
图 3 杭锦旗地区侏罗系泥岩K2O/Na2O-SiO2判别图解 (本图的数据已经过烧失量校正,底图据文献[29]) Figure 3 K2O/Na2O-SiO2 discrimination diagram of the Jurassic mudstones in Hangjinqi area(data have been rectified by LOI, after reference[29])
3.2 微量—稀土元素特征与源区构造背景

微量—稀土元素在沉积成岩过程中比较稳定,在水中溶解度低且滞留时间短,因而能快速进入细粒沉积物,使细粒沉积物可以较好的反映物源区地球化学信息[28, 30]。Bhatia[30]总结的4种不同构造环境(大洋岛弧、大陆岛弧、活动大陆边缘、被动大陆边缘)下的杂砂岩稀土元素特征可以归纳为:构造背景为大洋岛弧的杂砂岩,其源区是未切割的岩浆弧,稀土元素特征为低稀土总量、弱的轻稀土富集以及基本无Eu的负异常;构造背景为大陆岛弧的杂砂岩,其源区是切割的岩浆弧,稀土元素特征为较高稀土总量、中等轻稀土富集以及弱的Eu负异常;来自活动大陆边缘和被动大陆边缘的杂砂岩,其源区分别为上隆的基底及克拉通内部构造高地,且具有高稀土总量、高轻稀土富集以及较为明显的Eu负异常。对于相同构造背景之下的泥岩和杂砂岩,泥岩的∑REE含量要高出杂砂岩的20%左右,因此将泥岩稀土元素特征参数除以1.2则为同沉积期杂砂岩的对应参数值,该校正后的稀土元素参数值可直接与Bhatia总结的4种构造环境下的杂砂岩稀土元素特征参数进行对比[17]。通过稀土元素特征参数的综合对比分析发现(表 3),直罗组及延安组泥岩稀土元素特征值均与活动大陆边缘背景下的稀土元素特征值最为相似,并且物源来自上隆的基底。

表 3 不同构造背景稀土元素参数特征 Table 3 The characteristics of REE parameters in different tectonic settings
构造背景 源区类型 La Ce ∑REE LREE/HREE La/Yb (La/Yb)N δEu
大洋岛弧* 未切割的岩浆弧 8(1.7) 19(3.7) 58(10) 3.8(0.9) 4.2(1.3) 2.8(0.9) 1.04(0.11)
大陆岛弧* 切割的岩浆弧 27(4.5) 59(8.2) 146(20) 7.7(1.7) 11(3.6) 7.5(2.5) 0.79(0.13)
活动大陆边缘* 上隆的基底 37 78 186 9.1 12.5 8.5 0.6
被动大陆边缘* 克拉通内部构造高地 39 85 210 8.5 15.9 8.5 0.56
直罗组上段平均值 45.88 92.05 217.15 10.14 16.69 11.25 0.58
校正后REE及比值 38.23 76.71 180.96 8.45 13.91 9.38 0.49
直罗组下段平均值 46.73 98.54 220.26 12.30 21.35 14.40 0.58
校正后REE及比值 38.94 82.12 183.55 10.25 17.80 12.00 0.49
延安组平均值 45.70 101.50 231.72 11.14 17.58 11.85 0.63
校正后REE及比值 38.08 84.58 193.10 9.28 14.65 9.88 0.52
  注:带*数据来自文献[30];括号内数据为对应标准偏差;稀土元素含量单位为×10-6;(La/Yb)N采用Boynton[32]推荐的球粒陨石标准化参数值计算;δEu=EuN/(SmN×GdN)1/2,其中EuN、SmN、GdN分别为对应元素球粒陨石标准化值。

Bhatia et al.[31]根据La、Th、Sc、Co、Zr等更具稳定性的微量—稀土元素总结出了适用于砂岩及泥岩样品的Ti/Zr-La/Sc、La-Th-Sc及Th-Co-Zr/10构造环境判别图解,利用这些判别图解的综合分析,可以对前述常量元素判别图解及稀土元素特征参数对比结果做进一步的补充和论证。本次研究泥岩微量—稀土元素判别图解如图 4所示(投图测试数据见表 45),在Ti/Zr-La/Sc图解中(图 4a),直罗组及延安组泥岩样品大多数落在大陆岛弧和活动大陆边缘区域上方,并且总体更接近活动大陆边缘;部分泥岩样品落在活动大陆边缘区域内,个别泥岩样品基本处于大陆岛弧与活动陆缘界线处。在La-Th-Sc图解中(图 4b),除直罗组下段1块样品落点偏离4个区域之外,大多数直罗组及延安组泥岩样品比较一致的落在大陆岛弧区域内,还有少量直罗组上下段的样品落在活动陆缘、被动陆缘混合区域与大陆岛弧区域之间。在Th-Co-Zr/10图解中(图 4c),各组样品落点位置较为分散,绝大多数样品落在大陆岛弧和活动大陆边缘区域内及其周围,仅1块直罗组下段样品落入被动大陆边缘,另外有1块直罗组下段样品远离各区域。以上3个构造判别图解的分析表明,源区构造背景除主要与活动大陆边缘相关外,与大陆岛弧也有较多联系。

表 4 杭锦旗地区侏罗系泥岩稀土元素含量(×10-6) Table 4 The contents of REE for Jurassic mudstones from Hangjinqi area(×10-6)
层位 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE Ceanom
1 45.9 97.0 10.65 37.6 6.08 1.15 5.43 0.70 4.51 0.87 3.26 0.40 2.50 0.42 216.47 0.01
2 43.9 98.0 10.55 42.7 8.51 1.86 8.45 1.32 6.91 1.43 4.63 0.49 3.55 0.51 232.81 0.01
3 50.9 105.0 12.05 44.7 8.06 1.92 6.87 0.83 6.38 1.01 3.07 0.37 3.14 0.53 244.83 -0.01
4 40.8 82.2 10.15 40.1 7.61 1.55 6.55 0.91 5.57 1.25 3.02 0.46 2.87 0.40 203.44 -0.04
5 43.9 95.1 10.90 37.3 6.80 1.36 5.22 0.81 4.84 0.98 2.73 0.45 2.81 0.34 213.54 0.01
直罗组上段 6 46.1 98.9 9.51 34.4 5.87 1.36 5.20 1.07 6.61 1.14 4.27 0.43 3.66 0.64 219.16 0.03
7 44.6 87.5 10.65 36.6 6.71 1.20 5.78 0.89 4.87 0.79 2.65 0.30 2.27 0.33 205.14 -0.03
8 58.2 107.5 14.10 48.6 8.55 1.55 6.15 0.96 5.74 1.14 3.06 0.40 3.14 0.53 259.62 -0.05
9 51.1 107.0 11.90 43.9 7.90 1.48 5.70 0.82 4.62 0.89 2.47 0.34 2.27 0.30 240.69 0.00
10 50.1 83.4 11.85 41.1 7.65 1.48 5.03 0.69 5.02 0.73 2.77 0.34 2.45 0.34 212.95 -0.10
11 43.4 87.7 12.00 45.2 7.18 1.25 5.95 0.84 4.49 0.96 2.57 0.40 2.43 0.34 214.71 -0.05
12 31.6 55.3 7.61 27.2 4.74 0.87 4.24 0.71 3.94 0.74 2.18 0.30 2.65 0.38 142.46 -0.08
13 41.6 122.0 10.00 37.8 6.36 1.24 5.44 0.86 3.91 0.87 2.64 0.48 2.43 0.34 235.97 0.13
14 52.6 113.5 13.25 48.1 7.88 1.98 6.94 1.06 5.45 1.16 2.77 0.44 2.63 0.36 258.12 0.00
15 51.6 115.0 12.50 45.0 7.56 1.54 6.27 0.92 4.98 0.84 2.39 0.39 1.92 0.33 251.24 0.02
16 61.0 127.0 13.50 50.3 8.44 1.73 6.01 1.01 4.34 0.79 2.56 0.47 2.14 0.31 279.6 0.00
17 50.3 112.5 12.20 45.5 7.59 1.47 5.66 0.91 4.55 0.88 2.43 0.28 2.02 0.35 246.64 0.02
18 52.1 113.0 13.85 50.6 7.93 1.89 7.69 0.99 6.03 1.09 2.84 0.45 3.15 0.53 262.14 -0.01
19 60.3 117.5 12.25 42.4 7.01 1.41 4.69 0.69 3.55 0.84 2.13 0.26 2.28 0.34 255.65 -0.01
直罗组下段 20 49.6 105.0 12.05 43.0 8.23 1.39 6.40 0.93 4.65 0.90 2.65 0.25 2.46 0.36 237.87 0.00
21 45.3 85.8 10.15 37.1 6.67 0.91 5.14 0.79 3.38 0.70 1.94 0.33 1.83 0.26 200.3 -0.04
22 44.4 92.9 10.10 39.4 6.38 1.23 5.23 0.96 4.36 0.73 2.06 0.33 2.31 0.32 210.71 -0.01
23 42.4 86.3 10.50 38.2 6.42 1.46 5.20 0.69 3.62 0.85 2.21 0.34 1.97 0.29 200.45 -0.02
24 59.6 124.5 13.95 51.3 8.65 0.88 6.36 0.96 5.09 1.09 3.37 0.56 3.11 0.66 280.08 -0.01
25 36.7 72.0 8.53 27.0 4.25 0.76 3.88 0.55 2.78 0.65 1.40 0.23 1.56 0.31 160.6 -0.01
26 36.3 69.2 7.95 26.2 4.06 0.88 3.10 0.51 3.12 0.64 1.78 0.18 1.27 0.21 155.4 -0.02
27 34.3 65.2 7.64 26.4 3.75 0.93 4.46 0.67 4.97 1.28 3.98 0.63 4.39 0.61 159.21 -0.03
28 29.6 55.3 6.27 22.4 4.11 0.94 3.29 0.43 2.96 0.57 1.90 0.33 1.79 0.26 130.15 -0.04
延安组 29 45.7 101.5 11.45 44.4 7.91 1.67 6.30 0.83 4.48 1.05 2.99 0.42 2.60 0.42 231.72 0.00
球粒陨石(Boynton[32]) 0.3 0.8 0.12 0.6 0.17 0.07 0.26 0.05 0.32 0.07 0.21 0.03 0.21 0.03
表 5 杭锦旗地区侏罗系泥岩微量元素含量(×10-6)及特征参数 Table 5 The trace element concentrations (%) of Jurassic mudstones from Hangjinqi area and geochemical parameters
层位 样品号 Zr Sc Co Th Hf Sr Ba Cu Rb V Ni Sr/Ba Sr/Cu Rb/Sr V/(V+Ni)
1 194 17.4 22.7 10.45 5.3 429 630 25.3 111.0 108 50.3 0.68 16.96 0.26 0.68
2 145 17.9 29.4 8.68 4.5 412 610 30.3 117.0 211 56.8 0.68 13.60 0.28 0.79
3 188 17.1 24.0 10.20 5.4 476 620 25.2 102.5 89 49.0 0.77 18.89 0.22 0.64
4 235 16.2 18.7 9.41 5.9 446 670 26.7 116.5 108 39.9 0.67 16.70 0.26 0.73
5 174 17.7 24.5 13.10 4.1 339 590 38.7 128.0 105 48.0 0.57 8.76 0.38 0.69
6 133 16.2 45.3 13.75 3.3 361 570 32.2 122.0 127 57.2 0.63 11.21 0.34 0.69
直罗组上段 7 217 14.4 17.8 7.78 6.2 432 680 23.6 109.5 64 31.3 0.64 18.31 0.25 0.67
8 188 17.6 24.7 11.70 5.3 420 600 40.4 107.5 133 48.2 0.70 10.40 0.26 0.73
9 193 17.0 15.9 13.95 5.1 301 710 24.0 76.3 158 39.4 0.42 12.54 0.25 0.80
10 198 16.4 22.1 10.35 4.7 438 660 42.2 120.0 85 43.7 0.66 10.38 0.27 0.66
11 237 17.1 19.9 10.70 6.4 398 920 19.6 108.0 90 41.9 0.43 20.31 0.27 0.68
12 205 12.8 19.2 7.48 5.4 452 710 28.1 108.0 96 35.2 0.64 16.09 0.24 0.73
平均值 192.25 16.48 23.68 10.63 5.13 408.67 664.17 29.69 110.53 114.50 45.08 0.62 14.51 0.27 0.71
13 180 17.5 21.3 11.60 4.3 365 690 32.2 102.0 85 46.8 0.53 11.34 0.28 0.64
14 153 19.2 18.3 16.60 4.2 291 670 109.0 103.5 144 44.4 0.43 2.67 0.36 0.76
15 161 18.0 10.8 13.55 4.7 274 690 46.2 113.0 84 29.4 0.40 5.93 0.41 0.74
16 135 15.1 22.4 14.45 4.1 216 640 46.3 94.1 100 42.1 0.34 4.67 0.44 0.70
17 168 16.8 14.3 12.60 4.0 382 720 24.3 89.8 108 43.3 0.53 15.72 0.24 0.71
18 199 18.1 17.5 13.05 5.1 267 710 52.4 108.0 131 37.9 0.38 5.10 0.40 0.78
19 172 19.1 38.8 15.35 4.4 293 740 37.4 108.0 136 54.3 0.40 7.83 0.37 0.71
20 165 19.6 15.7 13.95 4.0 341 720 45.1 94.9 130 34.9 0.47 7.56 0.28 0.79
直罗组下段 21 143 17.8 8.9 12.75 4.5 309 720 25.5 104.5 105 27.2 0.43 12.12 0.34 0.79
22 153 17.9 16.4 12.85 3.9 315 730 35.1 94.3 124 33.2 0.43 8.97 0.30 0.79
23 144 18.2 27.9 13.45 3.5 280 730 31.8 107.5 130 55.3 0.38 8.81 0.38 0.70
24 243 15.2 11.4 13.95 4.5 249 640 36.1 89.2 95 29.5 0.39 6.90 0.36 0.76
25 172 15.7 11.3 15.85 4.2 264 670 26.2 91.0 105 33.7 0.39 10.08 0.34 0.76
26 130 13.3 7.0 13.90 3.8 335 340 17.1 70.7 100 22.8 0.99 19.59 0.21 0.81
27 541 12.1 1.4 12.85 13.7 208 210 8.2 28.3 142 6.0 0.99 25.37 0.14 0.96
28 227 13.2 11.0 10.20 6.2 341 720 21.5 69.3 99 30.2 0.47 15.86 0.20 0.77
平均值 192.88 16.68 15.90 13.56 4.94 295.63 646.25 37.15 91.76 113.63 35.69 0.50 10.53 0.32 0.76
延安组 29 183 20.7 14.4 15.00 5.0 126.0 620 38.2 105.5 130 36.1 0.20 3.30 0.84 0.78
图 4 杭锦旗地区侏罗系泥岩Ti/Zr-La/Sc、La-Th-Sc及Th-Co-Zr/10判别图解(底图据文献[31]) Figure 4 Ti/Zr-La/Sc, La-Th-Sc and Th-Co-Zr/10 diagrams of the Jurassic mudstones in Hangjinqi area(after reference[31])

综合上述常量、微量和稀土元素构造背景判别结果的分析,可以认为鄂尔多斯盆地北部杭锦旗地区侏罗系沉积岩源区的构造背景主要是与大陆岛弧相关的活动大陆边缘。本研究结论与该区前人直罗组砂岩主微量元素判别图解分析结果[5, 8]基本吻合。

4 泥岩地球化学特征与源岩属性

前文已通过常量、微量及稀土元素综合分析了杭锦旗地区直罗组及延安组的源区构造背景,下面通过稀土元素配分模式及各种源岩判别图解进一步完善并确定源岩属性。

沉积岩稀土元素特征主要受控于相应物源区的岩石组成,因而能够反映源岩的稀土特征[33]。相同来源的沉积岩具有非常相似的稀土元素配分模式,所以在物源研究中,稀土元素配分曲线总体形态特征、倾斜程度以及Ce异常和Eu异常等特征的相互对比成为重要的判别指标[16, 34]

为了通过稀土元素配分曲线特征的对比进一步确定物源。笔者统计了近年来前人在盆地北部已经发表的不同时期、不同岩体的稀土元素数据,并将本次研究数据(表 4)及前人研究数据统一采用Boynton[32]推荐的球粒陨石平均值进行标准化,绘制出相应地区的稀土元素配分模式曲线(图 5b, c, d)与研究区(图 5a)进行对比。在空间分布上,数据主要来自研究区周缘的方山地区[35]、阴山—大青山—乌拉山[36-59]

图 5 杭锦旗地区侏罗系泥岩与邻区不同岩体稀土元素配分模式(球粒陨石标准化值均采用文献[32]推荐值) Figure 5 The REE distribution patterns of Jurassic mudstones in Hangjinqi area and various rocks in adjacent areas(chondrite values after reference[32])

鄂尔多斯盆地北部杭锦旗地区侏罗系直罗组及延安组泥岩样品的稀土元素配分模式相似,均属轻稀土富集、重稀土亏损的右倾型,曲线中La-Eu段较陡而Eu-Lu段较平缓,存在明显的Eu负异常,并显示出配分曲线相互平行的特征,表明研究区直罗组及延安组泥岩样品稀土含量大致呈同步变化(图 5a)。盆地北邻阴山—大青山—乌拉山地区的前寒武纪变质岩、侵入岩和海西—印支期侵入岩的稀土元素配分模式均显示出与杭锦旗地区泥岩样品高度相似的特征,即具有轻稀土富集、重稀土亏损的特点(图 5c, d),表明盆地北部侏罗系沉积岩与阴山—大青山—乌拉山地区前寒武纪古老基底的片麻岩、麻粒岩、孔兹岩等变质岩系以及各时代花岗岩、闪长岩等侵入岩具有亲缘性,换言之,盆地北部侏罗系沉积岩物源主要为集宁群(Ar1-2)、乌拉山群(Ar3)、色尔腾山群(Pt1)、二道凹群(Pt2)、渣尔泰山群(Pt2)等古老变质岩系以及各时期侵入岩。与此同时,盆地东北缘方山地区前寒武纪混合花岗岩及北邻阴山等地前寒武纪混合花岗岩与杭锦旗地区样品稀土元素配分模式差别较大,其中方山地区前寒武纪混合花岗岩稀土元素配分特征为轻稀土亏损、重稀土富集的左倾型,配分曲线La-Eu段平坦(图 5b);阴山等地前寒武纪混合花岗岩稀土配分特征为轻稀土富集、重稀土亏损的右倾型,但出现Eu的正异常且Eu-Lu段曲线整体形态与研究区样品差别明显(图 5c),这表明两者不是研究区侏罗系沉积岩的母岩。前人对该区直罗组砂岩的稀土元素配分曲线对比分析结果表明,母岩主要为花岗片麻岩、斜长角闪岩等变质岩[4]或闪长岩、花岗闪长岩等侵入岩[8]。本项研究通过大量统计周邻造山带岩体的稀土元素数据,与研究区侏罗系泥岩稀土元素配分曲线进行对比,在前人研究基础上进一步明确和丰富了源岩类型。

杭锦旗地区侏罗系泥岩的稀土元素配分曲线形态总体较为相似,说明其具有同源性,可以利用稀土元素特征更进一步判断物源区性质。根据Allegre et al.[60]提出的La/Yb-∑REE源岩判别图解进行泥岩样品的投点,绝大多数研究区侏罗系泥岩样品落在沉积岩、花岗岩及碱性玄武岩的交汇区(图 6),这与上述稀土元素配分曲线的分析结果相一致。

图 6 杭锦旗地区侏罗系泥岩La/Yb-∑REE源岩判别图解 (底图据文献[60]) Figure 6 La/Yb-∑REE source rock discrimination diagram of Jurassic mudstones in Hangjinqi area(after reference[60])

利用Co/Th-La/Sc及La/Th-Hf源岩判别图解对杭锦旗地区侏罗系泥岩样品进行投点(图 7)。在Co/Th-La/Sc图解中(图 7a),所有直罗组及延安组泥岩样品的La/Sc比值均高于长英质火山岩,而Co/Th比值大多介于长英质火山岩与安山岩之间。以上落点特征反映源岩主要为长英质岩石并且有安山质岩石的混入。在La/Th-Hf图解中(图 7b),大多数泥岩样品比较集中的分布在长英质源区,部分泥岩样品落在长英质、基性岩混合物源区,并且直罗组下段泥岩中有1块落在长英质物源区域的右侧,显示存在古老沉积物的混入,这与Co/Th-La/Sc图解的分析结论一致,表明杭锦旗地区侏罗系沉积地层源岩以长英质岩石为主,同时存在一定量的中—基性岩浆岩以及古老沉积物。

图 7 杭锦旗地区侏罗系泥岩Co/Th-La/Sc及La/Th-Hf源岩判别图解 (a底图据文献[61];b底图据文献[62]) Figure 7 Co/Th-La/Sc and La/Th-Hf source rock discrimination diagram of Jurassic mudstones in Hangjinqi area (a. after reference[61]; b. after reference[62])

综上所述,杭锦旗地区侏罗系泥岩的稀土元素配分曲线、La/Yb-∑REE、Co/Th-La/Sc及La/Th-Hf源岩判别图解分析结果共同表明了研究区侏罗系沉积地层源岩主要来自盆地北邻阴山—大青山—乌拉山前寒武纪基底的片麻岩、麻粒岩、孔兹岩等变质岩系以及各时代侵入岩。

5 泥岩垂向地球化学特征与古沉积环境演化

为了对盆地北部侏罗系时期的古沉积环境进行恢复,笔者通过对杭锦旗地区直罗组及延安组钻井泥岩的系统采样与分析,从古气候、古盐度、古氧化还原环境三个方面对古沉积环境演化过程进行了相关探讨。

5.1 古气候演化

化学蚀变指数(CIA)最早由Nesbitt et al.[63]提出,用于反映源区化学风化程度。其计算公式为:CIA={n(Al2O3)/[n(Al2O3)+n(CaO*)+n(Na2O)+n(K2O)]}×100。式中各主成分均以摩尔分数表示,CaO*指硅酸盐矿物中的CaO(不包括碳酸盐以及磷酸盐矿物中的CaO),本文采用Mclennan[64]提出的假定硅酸盐Ca与Na比值一定的方法计算CaO*值,具体方法如下:n(CaO剩余)=n(CaO)-n(P2O5),若此n(CaO剩余)<n(Na2O),则取n(CaO剩余)为n(CaO*);若此n(CaO剩余)>n(Na2O),则取n(Na2O)为n(CaO*)。由于CIA=50~60时指示初级风化强度,反映气候干燥;CIA=60~80时指示中等风化强度,反映气候温暖湿润;CIA=80~100时指示强烈风化强度,反映气候炎热潮湿。因此,CIA变化趋势可以大致反演沉积时期古气候特征[63, 65-66]。由于碎屑岩成岩过程中的钾交代作用以及搬运、沉积过程可以导致钾的富集,使岩石成分发生改变,所以样品的CIA需要首先进行钾的校正[65]。钾交代作用的校正可根据A-CN-K三角图解[63, 67]以及Panahi et al.[68]提出的计算公式进行校正,其公式为:K2Ocorr.={m·n(Al2O3)+m·[n(CaO*)+n(Na2O)]}/(1-m),其中m=n(K2O)/[n(Al2O3)+n(CaO*)+n(Na2O)+n(K2O)],式中各主成分均以摩尔分数表示。在研究区侏罗系泥岩A-CN-K三角图解(图 8)可以看出,平行于A-CN边的线T'为岩石预测风化趋势线(剔除了钾交代作用的影响)[67],除直罗组底部个别异常点(图 8线T'左侧点)外,本次研究的绝大多数泥岩样品的风化趋势线T整体偏向含K2O端元,说明大多数泥岩样品存在一定程度的钾交代作用。从K顶点出发穿过实测数据投点与预测风化趋势线T′相交点的值,即代表样品钾交代作用前真实的CIA值[67, 69]。A-CN-K三角图解校正结果显示,更正后的CIA值范围有所升高。进一步利用上述校正公式,计算获得了校正后的CIAcorr.值为66.11~84.25(校正前CIA值为63.57~83.35)。

图 8 杭锦旗地区侏罗系泥岩A-CN-K三角图(底图据文献[70]) A.Al2O3;CN.(CaO*+Na2O);K·K2O;CIA.化学蚀变指数;UCC.上大陆壳;PAAS.澳大利亚后太古代页岩 Figure 8 A-CN-K ternary diagram of Jurassic mudstones samples in Hangjinqi area(after reference[70])

除成岩过程中的钾交代作用外,碎屑岩的再循环沉积作用也会导致其成分发生改变,因此有必要对样品进行再沉积作用的判别。Cox et al.[71]提出的成分变异指数ICV被广泛用来判断细屑岩是否为再循环沉积物,其定义为:ICV=[n(Fe2O3)+n(K2O*)+n(Na2O)+n(CaO*)+n(MgO)+n(MnO)+n(TiO2)]/n(Al2O3),式中各主成分均以摩尔分数表示,n(CaO*)为硅酸盐矿物中的CaO,n(K2O*)为校正后的值。当ICV>1时,说明该样品含少量黏土矿物,指示其为活动构造带的首次沉积;当ICV<1时,说明该样品存在大量黏土矿物,代表可能经历了再循环沉积[72]。从本次研究所有泥岩样品的ICV值(表 2)可知,大多数样品的ICV值均接近1或>1,显示其基本为活动构造带的首次沉积;少数直罗组底部样品的ICV值在0.48~0.68之间,明显小于1,结合区域地质背景,这些样品经历了再循环沉积作用,从而导致其A-CN-K图解投点结果的异常。由于上述少量直罗组底部样品(图 9黄色圆点)受再循环沉积作用影响较为明显,其岩石成分存在不同程度的变化,不适宜进行下文的古沉积环境分析,因此对这些样品的相关地球化学参数的变化不做讨论。

图 9 杭锦旗地区ZKB39-0井侏罗系泥岩地球化学参数垂向演化图(数据来自表 2表 4表 5) Figure 9 The vertical variation of geochemical parameters in Jurassic mudstones of Well ZKB39-0 in Hangjinqi area(data from Table 2 and Table 4 and Table 5)

杭锦旗地区延安组泥岩CIAcorr.=79.68,指示中等风化强度且气候温暖湿润;直罗组下段泥岩CIAcorr.平均值为75.50,指示中等风化程度且该时期古气候相对于延安期变的干燥;直罗组上段泥岩CIAcorr.平均值为71.94(图 9绿色区域),显示直罗组上段相对于下段的风化程度有所减弱,指示直罗组沉积晚期相对于直罗组沉积早期古气候变得更加干旱。

Sr/Cu和Rb/Sr比值均被广泛用于恢复古气候。通常Sr/Cu>5指示干热气候,Sr/Cu<5则指示温湿气候[73]。Sr/Cu垂向演化曲线显示(图 9),杭锦旗地区延安组泥岩Sr/Cu值为3.3,为所有泥岩样品的最低值,指示延安期处于温暖潮湿的气候;直罗组下段的Sr/Cu平均值为8.3,指示古气候相对延安期变为干热气候;直罗组上段泥岩样品(图 9绿色区域)Sr/Cu平均值为13.4,指示直罗组沉积晚期与沉积早期相比变的更加干热。

Rb在风化作用中相对稳定,而Sr则较易发生淋失[74]。在气候湿润时,由于降水较多、风化较强烈,导致Sr部分淋失,从而使Rb/Sr比值升高;在气候干旱时,降水较少、风化强度相对降低,母岩中残留更多的Sr,进而使Rb/Sr比值相对降低[75]。换言之,Rb/Sr高值指示湿润气候,Rb/Sr低值指示干旱气候。对比Rb/Sr和Sr/Cu垂向演化曲线(图 9)可以看出,两者大致呈镜像变化趋势,这与上文所述Sr/Cu与温湿气候反相关、与干热气候正相关,而Rb/Sr则恰好相反的规律相一致。因此,Rb/Sr比值进一步揭示了从延安期→直罗组沉积早期→直罗组沉积晚期由温湿气候逐渐向干热气候转变的整个古气候演变过程。

综上所述,无论是化学蚀变指数CIA,还是微量元素比值Sr/Cu、Rb/Sr对古气候的反演均得出较为一致的结论,即从延安期→直罗组沉积早期→直罗组沉积晚期,古气候由温湿气候逐渐变得越来越干旱。

5.2 古盐度演化

古盐度是恢复古沉积环境及其演化的重要内容。Sr/Ba比值是判别古盐度的灵敏标志,该比值与古盐度呈正相关,当Sr/Ba<1时,指示淡水沉积(其中小于0.5为微咸水相,0.5~1为半咸水相);Sr/Ba>1时,指示盐湖或海相沉积[76-77]。杭锦旗地区侏罗系泥岩Sr/Ba变化曲线显示(图 9),直罗组及延安组所有泥岩样品的Sr/Ba比值均小于1,表明整体为淡水沉积环境。其中,延安组泥岩Sr/Ba值为0.2,指示延安组沉积期处于微咸水相的淡水环境;直罗组下段泥岩整体Sr/Ba平均值为0.49,指示直罗组下段沉积期的水体古盐度较延安组沉积期有所增加,但整体仍为微咸水相的淡水环境;直罗组上段泥岩Sr/Ba平均值为0.62(图中绿色区域),指示直罗组沉积晚期古盐度相对沉积早期进一步增大,整体变为半咸水相的淡水环境。古盐度的变化在一定程度上反映了古气候的变化,古气候条件通过蒸发/降雨量的变化直接控制了水体古盐度的高低[78]。因此,上述古盐度变化特征进一步印证了前文关于从延安期→直罗组沉积早期→直罗组沉积晚期,古气候由温湿气候不断向干旱气候演变的分析结果。

5.3 古氧化还原环境

微量元素V/(V+Ni)比值越来越多的被用于沉积水体古氧化还原环境的研究。当V/(V+Ni)比值>0.84时,指示水体分层且底层水体出现H2S的厌氧环境;当V/(V+Ni)=0.6~0.84时,指示水体分层不强的厌氧环境;而当V/(V+Ni)=0.46~0.6时则指示水体分层弱的贫氧环境[79]。从杭锦旗地区侏罗系泥岩V/(V+Ni)值垂向变化曲线可以看出(图 9),延安组泥岩V/(V+Ni)值为0.78,直罗组下段泥岩V/(V+Ni)平均值为0.76,直罗组上段泥岩V/(V+Ni)平均值为0.71,即研究区侏罗系泥岩V/(V+Ni)比值基本保持在0.6~0.84之间,换言之,研究区侏罗系直罗组及延安组泥岩沉积时期的古氧化还原环境为水体分层不强的厌氧环境。与此同时,Elderfield et al.[80]提出的Ce异常参数Ceanom也是目前应用较为广泛的古氧化还原条件判别参数,其计算公式为Ceanom=lg{3CeN/(2LaN+NdN)}。当以北美页岩作为标准化参数的前提下,Ceanom>-0.1时,指示缺氧的还原环境;Ceanom<-0.1时,指示氧化环境。杭锦旗地区直罗组及延安组所有泥岩样品的Ceanom均大于-0.1,亦指示了其处于缺氧的还原环境。

6 结论

(1) 鄂尔多斯盆地北部杭锦旗地区侏罗系直罗组及延安组泥岩的常量、微量及稀土元素构造判别结果综合分析认为,其源区构造背景主要是与大陆岛弧相关的活动大陆边缘。

(2) 稀土元素配分曲线特征及各种源岩判别图解的分析表明,盆地北部侏罗系沉积岩与北邻阴山—大青山—乌拉山地区前寒武纪古老基底的片麻岩、麻粒岩、孔兹岩等变质岩系以及各时代侵入岩具有亲缘性,即为研究区侏罗系沉积岩的主要物源。

(3) 研究区侏罗系泥岩Sr/Cu、Rb/Sr比值及化学蚀变指数CIA对古气候的反演均得出较为一致的结论,即从延安期→直罗组沉积早期→直罗组沉积晚期,古气候由温湿气候逐渐变得越来越干旱。泥岩微量元素Sr/Ba比值表明,从延安期→直罗组沉积早期→直罗组沉积晚期,水体古盐度整体上由微咸水相的淡水环境逐渐向半咸水相的淡水环境转变。泥岩微量元素V/(V+Ni)比值及Ce异常参数Ceanom表明,研究区侏罗系直罗组及延安组泥岩沉积时期的古氧化还原环境为水体分层不强的还原环境。

致谢: 本论文撰写过程中得到西北大学地质学系罗金海教授、张龙博士的热忱指导和帮助;另外,还要感谢审稿专家提出的宝贵意见和有益建议,以及编辑们认真细致的工作,在此一并表示由衷感谢。
参考文献
[1] 刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 80 (5): 617–638. [ Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617–638. ]
[2] Li R X, Li Y Z. The geologic features of mineralization at the Dongsheng uranium deposit in the northern Ordos Basin (Central China)[J]. Russian Geology and Geophysics, 2011, 52(6): 593–602. DOI: 10.1016/j.rgg.2011.05.003
[3] 易超, 韩效忠, 李西得, 等. 鄂尔多斯盆地东北部直罗组砂岩岩石学特征与铀矿化关系研究[J]. 高校地质学报, 2014, 20 (2): 185–197. [ Yi Chao, Han Xiaozhong, Li Xide, et al. Study on sandstone petrologic feature of the Zhiluo Formation and its controls on uranium mineralization in northeastern Ordos Basin[J]. Geological Journal of China Universities, 2014, 20(2): 185–197. ]
[4] 李宏涛, 蔡春芳, 罗晓容, 等. 内蒙古东胜地区中侏罗统砂岩沉积物源的地球化学证据[J]. 地质科学, 2007, 42 (2): 353–361. [ Li Hongtao, Cai Chunfang, Luo Xiaorong, et al. Geochemical evidence for sedimentary provenance of Middle Jurassic sandstones in Dongsheng area, Inner Mongolia[J]. Chinese Journal of Geology, 2007, 42(2): 353–361. ]
[5] 赵俊峰. 鄂尔多斯盆地直罗—安定期原盆恢复[D]. 西安: 西北大学, 2007. [ Zhao Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding period[D]. Xi'an: Northwest University, 2007. ]
[6] 杨晓勇, 罗贤冬, 凌明星, 等. 鄂尔多斯盆地砂岩型铀矿床地球化学特征及其地质意义[J]. 地质论评, 2008, 54 (4): 539–549. [ Yang Xiaoyong, Luo Xiandong, Ling Mingxing, et al. Geochemical features of sandstone-type uranium deposits in the Ordos Basin and their geological significances[J]. Geological Review, 2008, 54(4): 539–549. ]
[7] 刘汉彬, 李子颖, 秦明宽, 等. 鄂尔多斯盆地北部砂岩型铀矿地球化学研究进展[J]. 地学前缘, 2012, 19 (3): 139–146. [ Liu Hanbin, Li Ziying, Qin Mingkuan, et al. Progress in geochemistry of sandstone-type uranium deposit in North Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3): 139–146. ]
[8] 吴兆剑, 韩效忠, 易超, 等. 鄂尔多斯盆地东胜地区直罗组砂岩的地球化学特征与物源分析[J]. 现代地质, 2013, 27 (3): 557–567. [ Wu Zhaojian, Han Xiaozhong, Yi Chao, et al. Geochemistry of sandstones from the Middle Jurassic Zhiluo Formation, Dongsheng area, northeastern Ordos Basin: implications for provenance and tectonic setting[J]. Geoscience, 2013, 27(3): 557–567. ]
[9] 刘池洋, 邱欣卫, 吴柏林, 等. 中—东亚能源矿产成矿域基本特征及其形成的动力学环境[J]. 中国科学(D辑):地球科学, 2007, 37 (Suppl.1): 1–15. [ Liu Chiyang, Qiu Xinwei, Wu Bolin, et al. Characteristics and dynamic settings of the central-east Asia multi-energy minerals metallogenetic domain[J]. Science China(Seri.D): Earth Sciences, 2007, 37(Suppl.1): 1–15. ]
[10] 焦养泉, 吴立群, 彭云彪, 等. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积—构造背景综合分析[J]. 地学前缘, 2015, 22 (1): 189–205. [ Jiao Yangquan, Wu Liqun, Peng Yunbiao, et al. Sedimentary-tectonic setting of the deposition-type uranium deposits forming in the Paleo-Asian tectonic domain, North China[J]. Earth Science Frontiers, 2015, 22(1): 189–205. ]
[11] Chen Y L, Li D P, Zhou J, et al. U-Pb ages of zircons in western Qinling Shan, China, and their tectonic implications[J]. Earth Science Frontiers, 2008, 15(4): 88–107. DOI: 10.1016/S1872-5791(08)60042-1
[12] 王盟, 罗静兰, 李杪, 等. 鄂尔多斯盆地东胜地区砂岩型铀矿源区及其构造背景分析——来自碎屑锆石U-Pb年龄及Hf同位素的证据[J]. 岩石学报, 2013, 29 (8): 2746–2758. [ Wang Meng, Luo Jinglan, Li Miao, et al. Provenance and tectonic setting of sandstone-type uranium deposit in Dongsheng area, Ordos Basin: evidence from U-Pb age and Hf isotopes of detrital zircons[J]. Acta Petrologica Sinica, 2013, 29(8): 2746–2758. ]
[13] Bao C, Chen Y L, Li D P, et al. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC)[J]. Journal of Asian Earth Sciences, 2014, 96: 296–307. DOI: 10.1016/j.jseaes.2014.09.006
[14] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of Arenites: NATO ASI Series. Netherlands: Springer, 1985, 148: 333-361.
[15] 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21 (3): 409–415. [ Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409–415. ]
[16] 毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33 (4): 337–348. [ Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337–348. ]
[17] 许中杰, 程日辉, 王嘹亮, 等. 闽西南地区晚三叠—中侏罗世沉积岩矿物和元素地球化学特征:对盆地构造背景转变的约束[J]. 岩石学报, 2013, 29 (8): 2913–2924. [ Xu Zhongjie, Cheng Rihui, Wang Liaoliang, et al. Mineralogical and element geochemical characteristics of the Late Triassic-Middle Jurassic sedimentary rocks in southwestern Fujian province: constraints on changes of basin tectonic settings[J]. Acta Petrologica Sinica, 2013, 29(8): 2913–2924. ]
[18] Cullers R L. The controls on the major-and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A[J]. Chemical Geology, 1995, 123(1/2/3/4): 107–131.
[19] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 2000, 103(1/2): 55–88.
[20] Wan Y S, Song B, Liu D Y, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 2006, 149(3/4): 249–271.
[21] 赵俊兴, 陈洪德. 鄂尔多斯盆地侏罗纪早中期甘陕古河的演化变迁[J]. 石油与天然气地质, 2006, 27 (2): 152–158. [ Zhao Junxing, Chen Hongde. Evolution of Gan-Shaan paleochannel during early and Middle Jurassic in Ordos Basin[J]. Oil & Gas Geology, 2006, 27(2): 152–158. DOI: 10.11743/ogg20060203 ]
[22] 焦养泉, 吴立群, 杨生科, 等. 铀储层沉积学[M]. 北京: 地质出版社, 2006: 233. [ Jiao Yangquan, Wu Liqun, Yang Shengke, et al. Sedimentology of uranium reservoir[M]. Beijing: Geological Publishing House, 2006: 233. ]
[23] 张岳桥, 廖昌珍, 施炜, 等. 论鄂尔多斯盆地及其周缘侏罗纪变形[J]. 地学前缘, 2007, 14 (2): 182–196. [ Zhang Yueqiao, Liao Changzhen, Shi Wei, et al. On the Jurassic deformation in and around the Ordos Basin, North China[J]. Earth Science Frontiers, 2007, 14(2): 182–196. ]
[24] 李振宏, 董树文, 冯胜斌, 等. 鄂尔多斯盆地中—晚侏罗世构造事件的沉积响应[J]. 地球学报, 2015, 36 (1): 22–30. [ Li Zhenhong, Dong Shuwen, Feng Shengbin, et al. Sedimentary response to middle-late Jurassic tectonic events in the Ordos Basin[J]. Acta Geoscientica Sinica, 2015, 36(1): 22–30. DOI: 10.3975/cagsb.2015.01.03 ]
[25] 何自新. 鄂尔多斯盆地演化与油气[M]. 北京: 石油工业出版社, 2003: 1-390. [ He Zixin. Ordos Basin evolution and oil and gas[M]. Beijing: Petroleum Industry Press, 2003: 1-390. ]
[26] 陈全红, 李文厚, 胡孝林, 等. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J]. 地质学报, 2012, 86 (7): 1150–1162. [ Chen Quanhong, Li Wenhou, Hu Xiaolin, et al. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica, 2012, 86(7): 1150–1162. ]
[27] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177–202. DOI: 10.1016/j.precamres.2004.10.002
[28] Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. Palo Alto, CA: Blackwell Scientific Publications, 1985: 321.
[29] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635–650. DOI: 10.1086/629071
[30] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97–113.
[31] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181–193. DOI: 10.1007/BF00375292
[32] Boynton W V. Cosmochemistry of rare earth elements: meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry: Developments in Geochemistry. Amsterdam: Elsevier, 1984, 2: 63-114.
[33] McLennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Papers, 1993, 284: 21–40. DOI: 10.1130/SPE284
[34] 张金亮, 张鑫. 塔中地区志留系砂岩元素地球化学特征与物源判别意义[J]. 岩石学报, 2007, 23 (11): 2990–3002. [ Zhang Jinliang, Zhang Xin. Element geochemistry of sandstones in the Silurian of central Tarim Basin and the significance in provenance discrimination[J]. Acta Petrologica Sinica, 2007, 23(11): 2990–3002. DOI: 10.3969/j.issn.1000-0569.2007.11.029 ]
[35] 宋凯, 吕剑文, 杜金良, 等. 鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系[J]. 古地理学报, 2002, 4 (3): 59–66. [ Song Kai, Lü Jianwen, Du Jinliang, et al. Source direction analysis and delta depositional systems of Yanchang Formation of the Upper Triassic in the central Ordos Basin[J]. Journal of Palaeogeography, 2002, 4(3): 59–66. ]
[36] Li Q L, Chen F K, Guo J H, et al. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): evidence for early Proterozoic evolution of the northern North China Craton[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 573–590.
[37] 钟长汀, 邓晋福, 万渝生, 等. 华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄[J]. 地球化学, 2007, 36 (6): 585–600. [ Zhong Changting, Deng Jinfu, Wan Yusheng, et al. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: geochemical characteristics and zircon SHRIMP dating of S-type granitoids[J]. Geochimica, 2007, 36(6): 585–600. ]
[38] 张臣, 韩宝福, 刘树文, 等. 内蒙大青山地区黑云母花岗岩SHRIMP U-Pb定年及其构造意义[J]. 岩石学报, 2009, 25 (3): 561–567. [ Zhang Chen, Han Baofu, Liu Shuwen, et al. SHRIMP U-Pb dating of biotite granites in Daqingshan, Inner Mongolia, and its significance[J]. Acta Petrologica Sinica, 2009, 25(3): 561–567. ]
[39] 张玉清, 王弢, 贾和义, 等. 内蒙古中部大青山北西乌兰不浪紫苏斜长麻粒岩锆石U-Pb年龄[J]. 中国地质, 2003, 30 (4): 394–399. [ Zhang Yuqing, Wang Tao, Jia Heyi, et al. U-Pb Ages of zircons from the Xi Ulanbulang hypersthene-plagioclase granulite in the North Daqing Mountains, Central Inner Mongolia[J]. Geology in China, 2003, 30(4): 394–399. ]
[40] 张维杰, 李龙, 耿明山. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代[J]. 地球科学, 2000, 25 (3): 221–226. [ Zhang Weijie, Li Long, Geng Mingshan. Petrology and dating of Neo-Archaean intrusive rocks from Guyang area, Inner Mongolia[J]. Earth Science, 2000, 25(3): 221–226. ]
[41] 刘建辉, 刘福来, 丁正江, 等. 乌拉山地区早古元古代花岗质片麻岩的锆石U-Pb年代学、地球化学及成因[J]. 岩石学报, 2013, 29 (2): 485–500. [ Liu Jianhui, Liu Fulai, Ding Zhengjiang, et al. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 485–500. ]
[42] 刘平华, 刘福来, 蔡佳, 等. 华北克拉通孔兹岩带中段大青山—乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究[J]. 岩石学报, 2013, 29 (2): 462–484. [ Liu Pinghua, Liu Fulai, Cai Jia, et al. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 462–484. ]
[43] 马铭株, 董春艳, 徐仲元, 等. 内蒙古大青山地区古元古代早期榴云片麻岩(大青山表壳岩)深熔作用:地质、锆石年代学和地球化学研究[J]. 岩石学报, 2015, 31 (6): 1535–1548. [ Ma Mingzhu, Dong Chunyan, Xu Zhongyuan, et al. Anatexis of Early Paleoproterozoic garnet-biotite gneisses (Daqingshan supracrustal rocks) in Daqingshan, Inner Mongolia: geology, zircon geochronology and geochemistry[J]. Acta Petrologica Sinica, 2015, 31(6): 1535–1548. ]
[44] 赵庆英, 刘正宏, 吴新伟, 等. 内蒙古大青山地区哈拉合少岩体特征及成因[J]. 矿物岩石, 2007, 27 (1): 46–51. [ Zhao Qingying, Liu Zhenghong, Wu Xinwei, et al. Characteristics and origin of Halaheshao pluton in Daqingshan region, Inner-Mongolia[J]. Journal of Mineralogy and Petrology, 2007, 27(1): 46–51. ]
[45] 赵庆英, 李刚, 刘正宏, 等. 内蒙古大青山地区沙德盖岩体特征及成因[J]. 吉林大学学报:地球科学版, 2009, 39 (6): 1073–1079. [ Zhao Qingying, Li Gang, Liu Zhenghong, et al. Characteristics and origin of the Shadegai Pluton in the Daqingshan area, Inner-Mongolia[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(6): 1073–1079. ]
[46] 莫南, 郭磊, 童英, 等. 华北北缘大青山小井沟岩体年代学、地球化学和Hf同位素特征及其地质意义[J]. 北京大学学报:自然科学版, 2014, 50 (6): 1021–1034. [ Mo Nan, Guo Lei, Tong Ying, et al. Geochronology, geochemistry, Hf isotope of Xiaojinggou pluton in the northern margin of North China craton and its tectonic implications[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1021–1034. ]
[47] 张青伟, 刘正宏, 柴社立, 等. 内蒙古乌拉特中旗乌兰地区含石榴石花岗岩锆石U-Pb年龄及地质意义[J]. 吉林大学学报:地球科学版, 2011, 41 (3): 745–752. [ Zhang Qingwei, Liu Zhenghong, Chai Sheli, et al. Zircon U-Pb dating of the garnet-bearing granite from Wulan area of Urad Zhongqi in Inner Monglia and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 745–752. ]
[48] 孟庆鹏, 贺元凯, 张文, 等. 华北板块北缘古大洋闭合时间的限定——来自四子王旗西后壕子同碰撞花岗岩的证据[J]. 地质通报, 2013, 32 (11): 1749–1759. [ Meng Qingpeng, He Yuankai, Zhang Wen, et al. Time constraints on the closure of the Paleo-Asian Ocean on the northern margin of North China Craton: evidence from Xihouhaozisyn-collisional granites in Siziwang Qi area[J]. Geological Bulletin of China, 2013, 32(11): 1749–1759. DOI: 10.3969/j.issn.1671-2552.2013.11.007 ]
[49] 罗红玲, 吴泰然, 李毅. 乌拉特中旗克布岩体的地球化学特征及SHRIMP定年:早二叠世华北克拉通底侵作用的证据[J]. 岩石学报, 2007, 23 (4): 755–766. [ Luo Hongling, Wu Tairan, Li Yi, et al. Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia: evidence for the Early Permian underplating beneath the North China Craton[J]. Acta Petrologica Sinica, 2007, 23(4): 755–766. ]
[50] 罗红玲, 吴泰然, 赵磊. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J]. 岩石学报, 2009, 25 (3): 515–526. [ Luo Hongling, Wu Tairan, Zhao Lei, et al. Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance[J]. Acta Petrologica Sinica, 2009, 25(3): 515–526. ]
[51] 柳长峰, 杨帅师, 武将伟, 等. 内蒙古中部四子王旗地区晚二叠—早三叠世过铝花岗岩定年及成因[J]. 地质学报, 2010, 84 (7): 1002–1016. [ Liu Changfeng, Yang Shuaishi, Wu Jiangwei, et al. Dating and petrogenesis of Late Permian-Early Triassic Peraluminous granites in the Siziwangqi area, Inner Mongolia[J]. Acta Geologica Sinica, 2010, 84(7): 1002–1016. ]
[52] 侯万荣, 聂凤军, 胡建民, 等. 内蒙古乌拉山地区沙德盖岩体年代学、地球化学特征及成因探讨[J]. 吉林大学学报:地球科学版, 2011, 41 (6): 1914–1927. [ Hou Wanrong, Nie Fengjun, Hu Jianmin, et al. Geochronology and geochemistry of Shadegai Granites in Wulashan area, Inner Mongolia and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(6): 1914–1927. ]
[53] 曾俊杰, 郑有业, 齐建宏, 等. 内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J]. 地球科学, 2008, 33 (6): 755–763. [ Zeng Junjie, Zheng Youye, Qi Jianhong, et al. Foundation and geological significance of Adakitic Granite at Guyang of Inner Mongolia[J]. Earth Science, 2008, 33(6): 755–763. ]
[54] 周志广, 张华锋, 刘还林, 等. 内蒙中部四子王旗地区基性侵入岩锆石定年及其意义[J]. 岩石学报, 2009, 25 (6): 1519–1528. [ Zhou Zhiguang, Zhang Huafeng, Liu Huanlin, et al. Zircon U-Pb dating of basic intrusions in Siziwangqi area of middle Inner Mongolia, China[J]. Acta Petrologica Sinica, 2009, 25(6): 1519–1528. ]
[55] 张维, 简平. 内蒙古达茂旗北部早古生代花岗岩类SHRIMP U-Pb年代学[J]. 地质学报, 2008, 82 (6): 778–787. [ Zhang Wei, Jian Ping. SHRIMP dating of Early Paleozoic granites from North Damaoqi, Inner Mongolia[J]. Acta Geologica Sinica, 2008, 82(6): 778–787. ]
[56] 张维, 简平. 华北北缘固阳二叠纪闪长岩—石英闪长岩—英云闪长岩套SHRIMP年代学[J]. 中国地质, 2012, 39 (6): 1593–1603. [ Zhang Wei, Jian Ping. SHRIMP dating of the Permian Guyang diorite-quartz diorite-tonalite suite in the northern margin of the North China Craton[J]. Geology in China, 2012, 39(6): 1593–1603. ]
[57] 章永梅, 张华锋, 刘文灿, 等. 内蒙古中部四子王旗大庙岩体时代及成因[J]. 岩石学报, 2009, 25 (12): 3165–3181. [ Zhang Yongmei, Zhang Huafeng, Liu Wencan, et al. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia[J]. Acta Petrologica Sinica, 2009, 25(12): 3165–3181. ]
[58] 王挽琼, 徐仲元, 刘正宏, 等. 华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约[J]. 岩石学报, 2013, 29 (9): 2987–3003. [ Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, et al. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids[J]. Acta Petrologica Sinica, 2013, 29(9): 2987–3003. ]
[59] 许立权, 贾和义, 张玉清, 等. 白云鄂博地区碱性正长岩特征及其意义[J]. 地质调查与研究, 2004, 27 (1): 43–47. [ Xu Liquan, Jia Heyi, Zhang Yuqing, et al. The characters and significance of alkali syenites in Bayan Obo area, Inner Mongolia[J]. Geological Survey and Research, 2004, 27(1): 43–47. ]
[60] Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1–25. DOI: 10.1016/0012-821X(78)90123-1
[61] Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393–407. DOI: 10.1306/081601720393
[62] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531–542. DOI: 10.1144/gsjgs.144.4.0531
[63] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715–717. DOI: 10.1038/299715a0
[64] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295–303. DOI: 10.1086/648222
[65] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921–924. DOI: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
[66] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10 (4): 539–544. [ Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539–544. ]
[67] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129–147. DOI: 10.1086/629290
[68] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199–2220. DOI: 10.1016/S0016-7037(99)00420-2
[69] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523–1534. DOI: 10.1016/0016-7037(84)90408-3
[70] 李双应, 杨栋栋, 王松, 等. 南天山中段上石炭统碎屑岩岩石学、地球化学、重矿物和锆石年代学特征及其对物源区、构造演化的约束[J]. 地质学报, 2014, 88 (2): 167–184. [ Li Shuangying, Yang Dongdong, Wang Song, et al. Characteristics of petrology, geochemistry, heavy minerals and isotope chronology of upper Carboniferous detrital rocks in the middle segment of south Tianshan and constraints to the provenance and tectonic evolution[J]. Acta Geologica Sinica, 2014, 88(2): 167–184. ]
[71] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919–2940. DOI: 10.1016/0016-7037(95)00185-9
[72] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77–93.
[73] 王随继, 黄杏珍, 妥进才, 等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报, 1997, 15 (1): 65–70. [ Wang Suiji, Huang Xingzhen, Tuo Jincai, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65–70. ]
[74] 陈骏, 汪永进, 陈旸, 等. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报, 2001, 75 (2): 259–266. [ Chen Jun, Wang Yongjin, Chen Yang, et al. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate[J]. Acta Geologica Sinica, 2001, 75(2): 259–266. ]
[75] 叶荷, 张克信, 季军良, 等. 青海循化盆地23.1~5.0Ma沉积地层中常量、微量元素组成特征及其古气候演变[J]. 地球科学, 2010, 35 (5): 811–820. [ Ye He, Zhang Kexin, Ji Junliang, et al. Major and trace element characters of the sediments and paleoclimatic evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai[J]. Earth Science, 2010, 35(5): 811–820. ]
[76] 郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999, 20 (1): 20–25. [ Zheng Rongcai, Liu Meiqing. Study on palaeosalinity of Chang-6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 1999, 20(1): 20–25. DOI: 10.11743/ogg19990105 ]
[77] 刘刚, 周东升. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J]. 石油实验地质, 2007, 29 (3): 307–310. [ Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment—Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307–310. DOI: 10.11781/sysydz200703307 ]
[78] 赵俊青, 纪友亮, 张世奇, 等. 陆相高分辨率层序界面识别的地球化学方法[J]. 沉积学报, 2004, 22 (1): 79–86. [ Zhao Junqing, Ji Youliang, Zhang Shiqi, et al. Geochemical methods of boundary identification in terrigenous high-resolution sequence[J]. Acta Sedimentologica Sinica, 2004, 22(1): 79–86. ]
[79] Davis C, Pratt L M, Sliter W V, et al. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela[M]. .
[80] Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175–197. DOI: 10.1016/0048-9697(86)90239-1