沉积学报  2017, Vol. 35 Issue (3): 470−479

扩展功能

文章信息

陈超, 潘志龙, 修迪, 魏文通, 张金龙, 张欢, 王硕, 常致凯, 王仁霞
CHEN Chao, PAN ZhiLong, XIU Di, WEI WenTong, ZHANG JinLong, ZHANG Huan, WANG Shuo, CHANG ZhiKai, WANG RenXia
北山地区红柳园组沉积时代、沉积环境及源区构造背景分析
Analysis on Sedimentary Period, Depositional Environment, and Provenance Tectonic Setting of Hongliuyuan Formation in Beishan Area
沉积学报, 2017, 35(3): 470-479
ACTA SEDIMENTOLOGICA SINCA, 2017, 35(3): 470-479
10.14027/j.cnki.cjxb.2017.03.005

文章历史

收稿日期:2016-06-23
收修改稿日期: 2016-08-08
北山地区红柳园组沉积时代、沉积环境及源区构造背景分析
陈超1, 潘志龙1, 修迪1, 魏文通1, 张金龙1, 张欢1, 王硕1, 常致凯2, 王仁霞3     
1. 河北省区域地质矿产调查研究所 河北廊坊 065000;
2. 中国煤炭地质总局水文地质局, 河北邯郸 056004;
3. 河北省地矿局第一地质大队, 河北邯郸 056800
摘要: 北山地区位于华北板块、塔里木板块和哈萨克斯坦板块交汇带,晚古生代构造演化倍受关注且久有争议,该地区晚古生代地层的研究对探讨大地构造演化具有重要意义。利用同位素定年、沉积相分析、粒度分析和碎屑成分统计分析方法对北山地区早石炭世红柳园组进行研究。在下部火山岩中获得LA-ICP-MS锆石U-Pb年龄为359.9±1.4 Ma,参考区域古生物资料,其形成时代应为早石炭世早期。红柳园组上部碎屑岩中发育大量浊流沉积构造和典型鲍马序列,其中砂岩成熟度较低,并且粒度分析结果显示具有浊流沉积的粒度特征,这些证据共同指示红柳园组为近物源浊流沉积。此外通过碎屑组分统计和Qt-F-L、Qm-F-Lt以及Qp-Lv-Ls图解对沉积构造背景进行了探讨,发现研究区红柳园组物源主要来自火山弧,表明其形成的构造环境应为与岛弧邻近的沉积盆地。
关键词北山地区     晚古生代     红柳园组     锆石U-Pb年龄     浊流沉积     构造背景    
Analysis on Sedimentary Period, Depositional Environment, and Provenance Tectonic Setting of Hongliuyuan Formation in Beishan Area
CHEN Chao1, PAN ZhiLong1, XIU Di1, WEI WenTong1, ZHANG JinLong1, ZHANG Huan1, WANG Shuo1, CHANG ZhiKai2, WANG RenXia3     
1. Institute of Regional Geological and Mineral Resource Survey of Hebei Province, Langfang, Hebei 065000, China;
2. Hydrogeological Exploration Bureau, CNACG, Handan, Hebei 056004, China;
3. Geological group, Hebei Geology and Minerals Bureau, Handan, Hebei 056800, China
Foundation: China Geological Survey Project, No.12120113056500
Abstract: The Beishan orogenic belt is the juncture area of Paleozoic Kazakstan Plate, Tarim Plate and North China Plate. Much remains to be discovered concerning the Late Paleozoic evolution in Beishan area. Therefore, the study on Late Paleozoic stratigraphy is of great importance to reveal the tectonic evolution. Hongliuyuan Formation was studied by isotopic dating, sedimentary facies analysis, grain size analysis and statistical analysis of detrital components in this paper. The LA-ICP-MS zircon U-Pb age of the volcanic rock at the bottom of Hongliuyuan Formation was 359.9±1.4 Ma, refering to regional paleontological data, which belong to the Early Carboniferous. Clastic sediments in the upper developed a large number of turbidite sedimentary structures and typical Bouma sequence, sandstone maturity was much lower, and the results of grain size analysis showed the grain size characteristics of turbidite deposition, which jointly suggest that Hongliuyuan Formation should belong to near provenance turbidite. In addition, statistics of detrital components, Qt-F-L, Qm-F-Lt and Qp-Lv-Ls diagram were used to study sedimentary tectonic background. The results showed that sedimentary provenance of Hongliuyuan Formation in Suanjingzi area are mainly from volcanic arc, and its tectonic setting should be the sedimentary basin adjacent to island arc.
Key words: Beishan area     Late Palaeozoic     Hongliuyuan Formation     zircon U-Pb dating     turbitidy current sediment     tectonic setting    

北山地区位于中亚造山带南缘,地处华北板块、塔里木板块和哈萨克斯坦板块交汇带,衔接了南天山缝合带和索伦缝合带,在其漫长的地质构造演化历程中,经历了多期次、多阶段的板块裂解—俯冲—碰撞—拼合的复杂地质演化过程,具多旋回复合造山的特点[1-3]。该地区的构造单元划分、地壳演化、古亚洲洋开启闭合时限等问题一直备受国内外地质界关注。近年来,许多学者对北山地区进行了大量研究工作,取得了一系列重要认识。一种观点认为古亚洲洋闭合时间在中晚泥盆世之前,石炭纪—二叠纪进入陆内裂谷演化阶段[4-7];另一种观点认为古亚洲洋闭合时间为早石炭世末期,石炭纪—二叠纪之间存在造山事件[8];还有一种观点则认为古亚洲洋的消亡时间为二叠纪,石炭纪—二叠纪为洋陆演化阶段[9-10]。由此可见,国内学者对北山地区的大地构造演化尚存在不同认识,尤其是古亚洲洋的闭合时限仍是其中分歧较大的问题之一。目前北山地区的大地构造演化探讨主要来自侵入岩、蛇绿岩等方面的证据,然而地层学、沉积学方面的依据较少。在北山蒜井子地区1:5万区域矿产地质调查的基础上,以早石炭世红柳园组为研究对象,拟通过年代学、沉积学、岩石学和碎屑成分统计分析等方法,研究其形成时代、沉积环境、物质来源及构造背景,丰富北山地区地层方的研究,并为进一步探讨北山地区晚古生代大地构造背景及古亚洲洋闭合时限提供依据。

1 区域地质概况

研究区位于红柳河—牛圈子—洗肠井蛇绿岩带以南,大地构造位置处于塔里木板块北缘,地层区划隶属于塔里木—南疆地层大区—中、南天山—北天山地层区—红柳园地层小区[11]。区内出露地层有元古代、晚古生代、中生代和新生代地层(图 1)。元古代地层为一套滨浅海相碎屑岩、碳酸盐岩沉积建造,含古藻类化石。晚古生代地层自下而上依次划分为:早石炭世红柳园组和早二叠双堡塘组。红柳园组出露不完整,未见底,顶部被双堡塘组和早白垩世赤金堡组不整合覆盖,下部为火山岩夹少量沉积岩组合,岩性有灰绿色杏仁状玄武岩、细碧岩、玄武安山岩、安山岩、流纹岩夹灰色薄层长石砂岩、粉砂岩等;上部为灰色含砾粗砂岩、砂岩、粉砂岩等组成的韵律性沉积,含腕足类、珊瑚和海百合茎等化石。双堡塘组角度不整合于下伏红柳园组之上,岩性以富含生物化石碎屑的灰岩为主,夹砂岩、粉砂岩等碎屑岩,产腕足类、瓣鳃类、苔藓虫等化石,时代为早二叠世。中生代地层仅见早白垩世赤金堡组,角度不整合于早白垩世之前的地层和侵入岩之上,岩性主要为灰绿色、紫红色泥岩、粉砂岩和灰白色细砂岩等,产淡水动物化石和植物化石。新生代出露地层为上新世苦泉组,岩性为半胶结或松散的红色、褐红色粉砂岩、砂砾岩。研究区出露大面积侵入岩,主要为华力西中期花岗闪长岩和华力西晚期花岗闪长岩、二长花岗岩,岩基状产出,侵入早石炭世红柳园组。区内断裂构造较发育,以北东东向和北西向断层为主,其中北西向断裂规模较大,形成于华力西期之后,燕山期以前(图 1)。

图 1 北山地区蒜井子一带地质简图 (据陈超、潘志龙等改编,大地构造位置据杨合群等) 1.第四系;2.苦泉组;3.赤金堡组;4.双堡塘组;5.红柳园组;6.元古代地层;7.华力西中期花岗岩;8.华力西晚期花岗岩;9.地质界线;10.不整合界线;11.岩相界线;12.逆断层;13.性质不明断层;14.采样位置 Figure 1 Geological sketch map of the Suanjingzi area, Beishan

① 陈超,刘增校,潘志龙,等. 1:5万石板井等四幅区域地质矿产调查图. 2016.

② 潘志龙,陈超,刘增校,等. 1:5万基东等四幅区域地质矿产调查图. 2015.

2 样品采集及岩石学特征

锆石U-Pb测年样品采于下部细碧岩(JDTW2),岩石呈斑状结构(图 2a),斑晶为斜长石(5%)、单斜辉石(5%),大小一般0.1~1.0 mm,零散状分布,斜长石为钠长石,半自形—近半自形板状,轻微高岭土化,单斜辉石主呈半自形柱状、粒状。基质由斜长石(45%~50%)、单斜辉石(35%~40%)、不透明矿物(5%)等构成,直径一般<0.2 mm,斜长石为钠长石,主呈板条状、针柱状等,单斜辉石主呈针柱状、纤状等填隙于斜长石粒间,不透明矿物部分呈板状、粒状,星散分布,与纤柱状斜长石、辉石混杂在一起构成球颗结构(图 2b)。

图 2 红柳园组细碧岩和砂岩样品野外及镜下特征 a,b.细碧岩野外特征和薄片显微特征;c,d.砂岩野外特征和薄片显微特征 Ab.钠长石;Cpx.单斜辉石;Fs.长石;Qz.石英;L.岩屑 Figure 2 Field and microscopic (crossed nicols) characteristics of spilite and sandstone in Hongliuyuan Formation

粒度分析样品和碎屑组分统计分析样品采于红柳园组上部砂岩(图 2c),岩石由陆源砂和填隙物组成,陆源砂包括岩屑(20%~50%)、长石(25%~40%)、石英(20%~50%),呈棱角—次棱角状,岩屑以流纹岩为主,其次为花岗岩、安山岩、粉砂岩、绢云板岩、硅质岩、绿泥石、云母等;长石主为斜长石,具绢云母化;石英粒内多具波状、带状消光,局部见次生加大边。砂粒大小以0.25~0.5 mm的中砂为主,0.1~0.25 mm的细砂及0.5~1.0 mm的粗砂比较少。填隙物包括黏土杂基、硅质胶结物。黏土杂基已重结晶为微细鳞片状绢云母,填隙于砂粒之间。硅质胶结物重结晶为石英砂粒的次生加大边(图 2d)。根据碎屑成分的含量,红柳园组上部砂岩主要为长石岩屑砂岩和岩屑长石砂岩。

3 锆石U-Pb年代学特征及地层时代讨论 3.1 测试方法

锆石的挑选在河北省区域地质矿产调查研究所实验室完成。样品破碎到40~60目,然后在双目镜下人工挑选干净和自形程度较高,包裹体、裂隙少的锆石颗粒与数粒Temora(标样)黏贴在一起制成环氧树脂样品靶。经打磨、抛光后对锆石进行反射光、透射光和阴极发光显微照相,并对锆石外观特征进行研究,选取具有明显震荡环带结构且无裂隙和包裹体的岩浆锆石进行测试。LA-ICP-MS锆石微区U-Pb同位素测定在中国地质调查局天津地质调查中心同位素实验室进行,激光束斑直径为35 μm,频率8~10 Hz,激光器能量密度13~14 J/cm2。实验中采用GJ-1作为外部锆石年龄标准,进行U-Pb同位素分馏校正。数据处理采用中国地质大学刘勇胜博士研发的ICP-MSDataCal程序[12]和Ludwig的Isoplot程序[13]。采用208Pb校正法对普通Pb进行校正[14],利用NIST612玻璃标样作为外标,计算锆石样品的Pb、U、Th含量。

3.2 测试结果

JDTW2样品锆石为透明柱状,晶形较好,锆石震荡环带较宽,共选取30颗锆石分析了30个测点,其中6个数据异常已删除(图 3)。除17号点和20号点,其余锆石Th/U比值匀大于0.4,在0.53~4.99之间(表 1),具有岩浆锆石的特点。在年龄谐和图上,206Pb/238U年龄在355~445 Ma之间,其中9个偏老的年龄沿和谐线分散分布,可能为继承或捕获锆石年龄;2个年龄和谐性差,可能与其放射性铅的丢失有关;比较集中的13个数据的加权平均年龄为359.9±1.4 Ma(N=13,MSWD=0.90)(图 4)。时代为晚泥盆世晚期—早石炭世初期。

图 3 红柳园组细碧岩锆石阴极发光图像及LA-ICP-MS测点位置 Figure 3 CL images and dating spots of some zircons of spilite in Hongliuyuan Formation
表 1 红柳园组细碧岩LA-ICP-MS锆石U-Pb同位素分析结果 Table 1 LA-ICP-MS zircon U-Pb isotopic results of spilite in Hongliuyuan Formation
测点 含量/10-6 同位素比值 年龄/Ma
Pb U 232Th/238U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
1 6 83 1.108 3 0.057 6 0.000 4 0.4296 0.037 6 0.054 1 0.004 8 361 3 363 32 377 199
3 3 50 0.922 6 0.057 7 0.000 6 0.429 6 0.050 7 0.054 0 0.006 3 362 4 363 43 372 265
4 10 153 0.734 6 0.057 2 0.000 4 0.426 6 0.024 8 0.054 1 0.003 1 358 3 361 21 375 129
5 3 44 1.165 3 0.066 2 0.001 0 0.507 9 0.076 3 0.055 6 0.008 2 413 6 417 63 438 327
7 10 147 0.812 2 0.066 3 0.000 4 0.505 9 0.015 9 0.055 3 0.001 7 414 2 416 13 425 70
8 41 576 0.610 7 0.069 7 0.000 4 0.623 3 0.006 9 0.064 9 0.000 7 434 2 492 5 771 22
10 63 943 0.585 5 0.065 9 0.000 4 0.501 6 0.004 6 0.055 2 0.000 5 412 2 413 4 420 21
11 9 147 0.802 7 0.059 4 0.000 4 0.443 0 0.045 4 0.054 1 0.005 6 372 3 372 38 374 233
13 7 109 1.472 0 0.057 3 0.000 4 0.428 0 0.022 9 0.054 1 0.002 9 359 2 362 19 377 121
14 9 129 0.861 1 0.066 3 0.000 4 0.509 0 0.020 5 0.055 7 0.002 2 414 2 418 17 439 89
15 28 366 1.790 1 0.071 4 0.000 4 0.548 5 0.010 5 0.055 7 0.001 1 445 2 444 9 440 43
16 7 102 0.810 3 0.066 6 0.000 4 0.506 7 0.026 3 0.055 2 0.002 9 416 3 416 22 419 116
17 5 101 0.316 9 0.056 7 0.000 4 0.424 5 0.027 6 0.054 3 0.003 5 355 2 359 23 384 146
18 10 149 1.598 4 0.057 5 0.000 4 0.428 3 0.025 3 0.054 1 0.003 2 360 2 362 21 374 134
20 6 87 0.062 8 0.065 3 0.000 6 1.950 5 0.067 4 0.216 7 0.007 7 408 4 1 099 38 2 956 58
21 7 113 0.919 9 0.057 5 0.000 4 0.427 2 0.022 6 0.053 9 0.002 9 360 2 361 19 366 120
22 6 93 1.582 8 0.056 8 0.000 4 0.421 3 0.029 9 0.053 8 0.003 8 356 2 357 25 362 160
23 5 78 1.076 3 0.057 9 0.000 5 0.432 0 0.024 6 0.054 1 0.003 0 363 3 365 21 376 125
24 4 70 0.920 8 0.058 1 0.000 5 0.435 1 0.033 8 0.054 3 0.004 2 364 3 367 28 384 174
25 6 90 1.355 6 0.062 8 0.000 5 0.471 7 0.025 9 0.054 5 0.003 0 393 3 392 22 391 124
26 11 174 1.080 6 0.057 6 0.000 3 0.427 1 0.014 9 0.053 8 0.001 9 361 2 361 13 362 79
27 6 83 1.279 7 0.057 5 0.000 5 0.429 8 0.042 4 0.054 2 0.005 4 360 3 363 36 381 223
29 5 72 1.333 2 0.057 8 0.000 4 0.430 6 0.034 7 0.054 0 0.004 4 362 3 364 29 371 185
30 13 190 1.585 4 0.060 7 0.000 4 0.458 2 0.010 5 0.054 8 0.001 2 380 2 383 9 402 51
图 4 红柳园组细碧岩LA-ICP-MS锆石U-Pb谐和图和206Pb/238U年龄 Figure 4 LA-ICP-MS zircon U-Pb concordia diagrams and 206Pb/238U weight average ages of spilite in Hongliuyuan Formation
3.3 地层时代讨论

北山地区红柳园组由甘肃省第二区测队1965年创名于甘肃省肃北县柳园车站西的红柳园,系指一套正常沉积的碎屑岩,含化石,顶、底关系不清。1969、1970年,甘肃省第二区测队先后在后红泉、红柳大泉等地开展1:20万区域地质调查工作时,将红柳园组改称柳园组,包含了碎屑岩、火山岩、变质岩等岩性段。1990年《甘肃省地质志》恢复使用红柳园组,并将其限定为碎屑岩夹灰岩。《甘肃省岩石地层》、《内蒙古岩石地层》予以引用。现在红柳园组定义为不整合于早古生代石英闪长岩和其他老地层之上的砾岩、砂岩、页岩夹灰岩的浅海相复理石建造,含丰富的珊瑚、腕足类化石,次层型为额济纳旗北山煤矿剖面,含珊瑚:Palaeosmilia cf. cocava, Amplexus mirabilis等,腕足类Spirifer sp., Brachythyrina sp.等,时代为石炭纪[15]。北山地区红柳园组多断续出露,在红柳园一带以碎屑岩为主,向东、西两侧火山岩增多。研究区内红柳园组岩性组合与其定义和次层型基本一致,且1:20万区域地质调查在该组上部发现Spirifer sp.(石燕)、Camarotoechia sp.(穹房贝)、Meekospira sp.(密氏螺)、Straparollus sp(圆脐螺)、Euomphalus sp.(全脐螺)、Yunania sp.?(云南螺?)、Amplexus sp.及珊瑚、海百合茎化石等,这些化石多见于石炭—二叠纪地层中。此次研究在红柳园组下部细碧岩中成功获得的锆石U-Pb年龄为359.9±1.4 Ma,时代为晚泥盆世晚期—早石炭世初期。综合上述古生物化石资料和锆石U-Pb同位素年龄,北山地区蒜井子一带红柳园组地层时代应归属为早石炭世早期。

4 沉积环境分析

红柳园组上部为灰色含砾粗砂岩→长石岩屑砂岩→粉砂岩等组成下粗上细的韵律性沉积,每个沉积韵律厚度一般在0.5~2 m之间(图 5a),平面展布规模较大。砂岩中发育大量的准同生变形构造,在含砾粗砂岩底面可见明显的负载构造(图 5b)、火焰状构造(图 5c),岩层内具正粒序层理(图 5d),长石岩屑砂岩发育块状层理、平行层理(图 5ef)。垂向上具不同沉积构造的岩性叠置构成Tabd、Tab和Tcd三种不完整的鲍马序列类型(图 6)。在a和b段取5件砂岩样品进行粒度分析。结果表明(表 2),平均粒度(Mz)为0.13~1.55 ϕ,属中砂至粗砂级;标准偏差(σ1)为0.32~0.83,分选中等。样品PM21Ld2和PM21Ld3偏度(Sk1)为-0.19和-0.43<-0.1,为负偏态,说明在粗粒一侧有低的尾部,PM21Ld1、PM21Ld4和PM21Ld5偏度(Sk1)为0.03~0.35>0,为正偏态,指示粒度集中在中端至粗端部分,在细粒一侧表现为低的尾部[16]。峰态(Kg)为0.92~1.2,属中等至窄峰态,且中部的分选性略高于尾部,表明沉积物被带入新环境后曾经过改造。萨胡判别公式Y浊流:河流=(4.460 5~8.091 8)<9.843 3,且平均值为6.123 5,接近浊流沉积平均值7.979 1[17]。以上粒度参数整体与浊流沉积物粒度特征相似[18]。砂岩样品粒度概率累积曲线呈三段式或两段式,牵引总体(C)和跳跃总体(A)之间粗截点(T截点)为0~1 ϕ,说明水动力条件中等至强;跳跃总体(A)和悬浮总体(B)之间细截点(S截点)为0.7~2 ϕ;跳跃总体(A)范围为0~2 ϕ,从中砂到粗砂级别均有,其斜率多数为60°~70°,表明分选中等(图 7a)。这些特征与牵引流存在明显区别,而与哈德逊浊积扇和现代深海阿里斯托亚扇的粒度曲线相似[19-20]。在C-M图中(图 7b),样品分布平行于C=M线,说明C值与M值呈线性相关,指示沉积物呈递变悬浮搬运[21]。此外,碎屑颗粒呈棱角状、次棱角状,多为颗粒支撑,分选中等或较差(图 2d),说明分选不充分,距物源较近;碎屑成分长石和岩屑含量较高(56.67%~75.70%),表明成分成熟度较低,不具备再搬运产物的特征。综合以上碎屑岩岩石学特征、沉积构造和粒度分析等,研究区红柳园组为近物源浊流沉积。

图 5 北山地区蒜井子一带红柳园组岩性组合及典型沉积构造特征 a.长石岩屑砂岩和粉砂岩沉积韵律;b.负载构造;c.火焰状构造;d.正粒序层理;e.块状层理;f.平行层理 Figure 5 The lithology and typical sedimentary structure characteristics of the Hongliuyuan Formation in Suanjingzi, Beishan area
图 6 北山地区蒜井子一带红柳园组鲍马序列 Figure 6 The Bouma sequence of the Hongliuyuan Formation in Suanjingzi, Beishan area
表 2 红柳园组砂岩粒度统计表(%) Table 2 Granularity statistics of sandstone grains size in the Hongliuyuan Formation
样品编号 PM21Ld1 PM21Ld2 PM21Ld3 PM21Ld4 PM21Ld5
岩性 粗粒长石岩屑砂岩 中粒长石岩屑砂岩 含砾粗粒长石岩屑砂岩 粗粒长石岩屑砂岩 中粒长石岩屑砂岩
粒度/mm ϕ值区间 频数 频率/% 频数 频率/% 频数 频率/% 频数 频率/% 频数 频率/%
4~2.83 -2~-1.5 0 0 0 0 10 3.0 0 0 0 0
2.83~2 -1.5~-1 0 0 0 0 25 7.5 0 0 0 0
2~1.41 -1~-0.5 8 2.5 0 0 32 9.6 5 1.4 0 0
1.41~1 -0.5~0 40 12.2 0 0 31 9.3 20 5.7 0 0
1~0.71 0~0.5 115 35.2 4 1.2 98 29.5 155 43.9 0 0
0.71~0.5 0.5~1 122 37.3 10 3.0 96 28.9 102 28.9 9 2.8
0.5~0.35 1~1.5 24 7.3 117 34.9 26 7.8 42 11.9 146 44.8
0.35~0.25 1.5~2 12 3.7 182 54.3 10 3.0 22 6.2 120 36.8
0.25~0.18 2~2.5 5 1.5 18 5.4 3 0.9 5 1.4 38 11.7
0.18~0.125 2.5~3 1 0.3 4 1.19 1 0.3 2 0.57 11 3.4
0.125~0.09 3~3.5 0 0 0 0 0 0 0 0 2 0.61
0.09~0.064 3.5~4 0 0 0 0 0 0 0 0 0 0
合计 327 100 335 100 332 100 353 100 326 100
平均粒度Mz(ϕ) 0.43 1.55 0.17 0.57 1.53
标准偏差σ1(ϕ) 0.53 0.32 0.77 0.53 0.40
偏度Sk1 0.03 -0.19 -0.43 0.35 0.19
峰态Kg 1.20 0.92 1.18 1.02 1.04
萨胡判别Y浊流:河流 6.7191 4.6649 3.2829 8.0918 7.8590
图 7 红柳园组砂岩粒度概率累积曲线和C-M图 Figure 7 Grain size of sandstone probability accmulative curves and C-M diagram of Hongliuyuan Formation
5 源区属性和构造背景分析

碎屑岩中的碎屑组分受到沉积物源区特征(包括地形和气候)、搬运机制、沉积环境和成岩作用等多种因素制约,但无疑源区构造背景是其中最重要的控制因素[22]。Dickinson et al.[23-24]根据已知构造背景的现代和古代砂岩样品碎屑组分统计分析,建立了碎屑—物源区—板块构造三位一体的分类方案。目前,该方案被广泛应用于碎屑岩的构造背景分析[25-29]。研究区地处北山造山带,沉积盆地与碎屑物源区之间的传输途径较短,碎屑颗粒本身经受风化和搬运作用的影响很小,因而更能准确、可靠地反映它们形成的构造背景。在红柳园组上部不同层位选取10件砂岩样品进行了碎屑成分分析统计。统计结果表明(表 3),红柳园组砂岩类型主要为长石岩屑砂岩、岩屑长石砂岩。除样品PM14-b2石英含量(80.59%)较高以外,其他砂岩中石英(24.30%~43.33%)、长石(28.48%~ 45.95%)和岩屑(13.82%~44.23%)含量基本相当。石英碎屑以单晶石英(15.95%~33.94%)为主,个别样品(PM14-b2) 含较多燧石等多晶石英,单晶石英类型较单调,主为火山岩型,次为沉积岩型。长石碎屑中斜长石(17.11%~41.23%)含量高于钾长石(0.66%~22.42%)含量。岩屑以火山岩(0~40.67%)为主,其中火山岩岩屑主为流纹岩,其次为花岗岩、安山岩,说明接受了火山岩蚀源区物质的供应。变质岩岩屑和沉积岩岩屑(0~14.43%)含量较少,主为粉砂板岩、绢云板岩、细砂岩、粉砂岩、硅质岩等。将上述砂岩的碎屑组合和及其特征参数与Valloni(1985) 所总结的现代不同物源区砂的相应资料进行对比,可以看出,本区砂岩物源区总体与大洋岛弧非常相近(表 4)。

表 3 红柳园组砂岩碎屑组分统计表 Table 3 Statistics of clasts in sandstone of the Hongliuyuan Formation
样品编号 Qm Qp Qt P K Ft Lv Ls L Lt
PM21-b1 33.94 9.39 43.33 26.97 1.52 28.48 19.09 9.09 28.18 37.57
PM21-b3 26.62 6.82 33.44 41.23 4.55 45.78 16.88 3.90 20.78 27.6
PM21-b6 15.95 13.62 29.57 32.56 3.99 36.54 28.57 5.32 33.89 47.51
PM21-b7 31.27 6.53 37.80 27.49 1.03 28.52 19.24 14.43 33.67 40.2
PM21-b9 16.88 11.15 28.03 27.71 4.14 31.85 37.90 2.23 40.13 51.28
PM21-b10 17.33 7.00 24.33 33.00 2.00 35.00 40.67 0.00 40.67 47.67
PM21-b11 20.25 4.05 24.3 29.91 1.56 31.46 39.56 4.67 44.23 48.28
PM14-b1 22.29 10.22 32.51 39.94 2.79 42.72 18.89 5.88 24.77 34.99
PM14-b2 31.58 49.01 80.59 17.11 0.66 17.76 0.00 1.64 1.64 50.65
PM14-b3 19.52 20.72 40.24 25.53 20.42 45.95 8.11 5.71 13.82 34.54
注:Qm.单晶石英;Qp.多晶石英质岩屑;Qt.石英颗粒总量(Qm+Qp);P.斜长石;K.钾长石;Ft.长石总量(P+K);Lv.火山岩屑;Ls.沉积岩和变质沉积岩岩屑;L.不稳定岩屑(Lv+Ls);Lt.多晶质岩屑(L+Qp);数值单位为%。
表 4 基本物源区碎屑组合及特征参数(据Valloni, 1985资料总结) Table 4 The characteristics of detrital modes from sandstones of different tectonic settings (after Valloni, 1985)
物源区类型 基本碎屑组合 特征参数 特征颗粒
C/Q P/F V/L
1.大陆基底 Q-F 0.05 0.25 以石英为主的碎屑
2.增生基底 Q-F 0.10 0.35 0.15 具石英质、沉积变质、沉积岩屑,有碳酸盐颖粒
3.褶皱冲断前陆 Q-L 0.15 0.40 0.05 沉积岩屑占优势
4板块缝合高地 F-L 0.20 0.60 0.45
5.大陆—岛弧 Lv 0.25 0.80 0.85 火山一变质火山岩屑占优势,伴有沉积一变沉积岩屑
6.大洋—岛弧 Lv 0.30 0.85 0.85 火山岩屑、沉积岩屑发育
7群岛 贫Q富L 0.90 0.95 常见火山玻璃,含拉斑玄武岩和碱性玄武岩残余颗粒
本区 Q-F-L 0.33 0.89 0.71 以火山岩屑为主,次为沉积岩屑,无碳酸盐岩屑
 注:C/Q=(燧石+多晶石英)/石英类总量;P/F=斜长石/长石总量;V/L=火山岩屑/岩屑类总量。

为了更明确地反映红柳园组沉积构造背景,进行了碎屑组分Qt-F-L、Qm-F-Lt以及Qp-Lv-Ls图解判别。在Qt-F-L和Qm-F-Lt图中,绝大部分样品集中落于弧源区(图 8)。再根据岩屑类型来判别,Dickinson et al.[23]认为在与弧造山带背景相关的构造环境中所形成的砂岩往往含有大量的火山岩岩屑和长石,并具有高的燧石含量。红柳园组砂岩样品显然具此特征。在反映快速沉积的砂岩物源区Qp-Lv-Ls图解(图 8)中,可以清楚地区分出岩浆弧、漂移大陆边缘及消减带三个不同的物源区。在该图解中,大部分样品的投影点分布于火山弧造山带物源区及其周围,这与以上的判别结果基本一致,说明其形成的构造环境应为与岛弧邻近的沉积盆地。

图 8 红柳园组砂岩Qt-F-L、Qm-F-Lt和Qp-Lv-Ls构造环境判别图解(据Dickinson, 1983) Figure 8 Qt-F-L, Qm-F-Lt and Qp-Lv-Ls diagrams identifying the tectonic settings of sandstone in the Hongliuyuan Formation (after Dickinson, 1983)

近年来,许多学者对北山地区进行了大量研究工作,取得了一系列重要成果和认识。毛启贵[30]、Mao et al.[31]认为二叠纪发育的浊积岩、基性超基性岩体、辉长岩、枕状玄武岩、硅质岩和块状玄武岩是因洋壳双向俯冲就位的俯冲增生杂岩。李锦轶等[32]指出晚石炭世至二叠纪中期为安第斯型俯冲造山阶段,二叠纪双堡塘组玄武岩形成于弧后盆地。王立社等[33]在北山营毛沱地区中上志留统公婆泉群中发现结晶年龄为早石炭世的玄武岩,据此认为塔里木板块与哈萨克斯坦板块的俯冲效应可能延续到早石炭世。郭谦谦等[34]通过研究柳园等地古生代浊积岩构造环境,认为柳园地区晚古生代洋壳存在双向俯冲。本文研究区位于柳园地区东北部,墩墩山岛弧东侧(图 1),泥盆纪墩墩山岛弧主要由流纹岩、英安岩等组成,与红柳园组砂岩碎屑成分以流纹岩等火山岩岩屑为主相吻合,其碎屑组分特征亦指示其形成于岛弧背景,结合郭谦谦[35]对泥盆纪墩墩山岛弧的研究,红柳园组浊积岩物源可能来自附近的墩墩山岛弧,并沉积于岛弧邻近的沉积盆地。同时表明在早石炭世北山地区古生代洋壳很可能仍在发生俯冲,那么推测古亚洲洋最终封闭时限应在早石炭世之后,支持前人关于北山增生时间持续到早二叠世的观点[30-34]。此外,近年来天山和索伦缝合带均发现了石炭纪到二叠纪的增生事件[36],本次工作对认识北山造山带和天山、索伦缝合带的衔接具有重要的意义。

6 结论

(1) 北山蒜井子地区红柳园组下部火山岩中的细碧岩LA-ICP-MS锆石U-Pb同位素年龄为359.9±1.4 Ma,参考区域古生物资料,红柳园组沉积时代应为早石炭世早期。

(2) 研究区红柳园组上部为灰色含砾粗砂岩、砂岩、粉砂岩等组成的韵律性沉积,发育大量准同生变形构造和典型的鲍马序列,其中砂岩成熟度较低,并且粒度分析显示具有浊流沉积特征,这些证据共同指示红柳园组为近物源浊流沉积。

(3) 岩相学研究表明红柳园组砂岩中岩屑和长石含量较高,且含有较多火山岩岩屑,Qt-F-L、Qm-F-Lt以及Qp-Lv-Ls图解显示物源主要来自周围的火山弧,形成的构造环境应为与岛弧邻近的沉积盆地。

致谢: 审稿专家和编辑为本文的修改和完善提供了诸多有益建议,作者表述由衷感谢!
参考文献
[1] 聂凤军, 江思宏, 白大明, 等. 北山地区金属矿床成矿规律及找矿方向[M]. 北京: 地质出版社, 2002: 1-408. [ Nie Fengjun, Jiang Sihong, Bai Daming, et al. Metallogenic studies and ore prospecting in the conjunction area of Inner Mongolia autonomous region, Gansu province and Xinjiang Uygur autonomous region (Beishan Mt.), Northwest China[M]. Beijing: Geological Publishing House, 2002: 1-408. ]
[2] 龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质, 2002, 35 (3): 28–34. [ Gong Quansheng, Liu Mingqiang, Li Hailin, et al. The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 2002, 35(3): 28–34. ]
[3] 孙新春, 张雨莲, 高永伟. 甘蒙北山北带古生代地壳演化与成矿作用[J]. 甘肃地质, 2011, 20 (2): 45–50. [ Sun Xinchun, Zhang Yulian, Gao Yongwei. Paleozoic crustal evolution and mineralization of the northern Beishan in Gansu[J]. Gansu Geology, 2011, 20(2): 45–50. ]
[4] 左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003, 12 (1): 1–15. [ Zuo Guochao, Liu Yike, Liu Chunyan. Framework and evolution of the tectonic structure in Beishan area across Gansu province, Xinjiang autonomous region and inner Mongolia autonomous region[J]. Acta Geologica Gansu, 2003, 12(1): 1–15. ]
[5] 何世平, 周会武, 任秉琛, 等. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 2005, 38 (3): 6–15. [ He Shiping, Zhou Huiwu, Ren Bingchen, et al. Crustal evolution of Palaeozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology, 2005, 38(3): 6–15. ]
[6] 徐学义, 何世平, 王洪亮, 等. 中国西北部地质概论—秦岭、祁连、天山地区[M]. 北京: 科学出版社, 2008: 1-347. [ Xu Xueyi, He Shiping, Wang Hongliang, et al. Outline of the geology of NW China-Qinling, Qilian and Tianshan areas[M]. Beijing: Science Press, 2008: 1-347. ]
[7] 杨合群, 李英, 李文明, 等. 北山成矿构造背景概论[J]. 西北地质, 2008, 41 (1): 22–28. [ Yang Hequn, Li Ying, Li Wenming, et al. General discussion on metallogenitic tectonic setting of Beishan mountain, northwestern China[J]. northwestern Geology, 2008, 41(1): 22–28. ]
[8] 刘雪亚, 王荃. 中国西部北山造山带的大地构造及其演化[J]. 地学研究, 1995 (28): 37–48. [ Liu Xueya, Wang Quan. Tectonics of orogenic belts in Beishan Mts., western China[J]. Dixue Yanjiu, 1995(28): 37–48. ]
[9] 黄增保, 金霞. 甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J]. 中国地质, 2006, 33 (5): 1030–1037. [ Huang Zengbao, Jin Xia. Tectonic environment of basic volcanic rocks in the Hongshishan ophiolite mélange zone, Beishan Mountains, Gansu[J]. Geology in China, 2006, 33(5): 1030–1037. ]
[10] Xiao Wenjiao, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310(10): 1553–1594. DOI: 10.2475/10.2010.12
[11] 甘肃省地质矿产局. 甘肃省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 34-48. [ Bureau of Geology and Mineral Resources of Gansu Province. Stratigraphy (lithostratic) of Gansu province[M]. Wuhan: China University of Geosciences Press, 1997: 34-48. ]
[12] Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537–571.
[13] Ludwig K R. Isoplot/EX version 2.49: a geochronological toolkit for Microsoft exce[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2001: 1-56.
[14] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]//Saunder A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication. London: Geological Society, Special Publications, 1989, 42: 313-345.
[15] 内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996: 28-45. [ Bureau of Geology and Mineral Resources of Inner Mongol Autonomous Region. Stratigraphy (lithostratic) of Nei Mongol Autonomous Region[M]. Wuhan: China University of Geosciences Press, 1996: 28-45. ]
[16] 赵澄林, 朱筱敏. 沉积岩石学[M]. 3版. 北京: 石油工业出版社, 2001: 57-71. [ Zhao Chenglin, Zhu Xiaomin. Sedimentary petrology[M]. 3rd ed. Beijing: Petroleum Industry Press, 2001: 57-71. ]
[17] Sahn B K. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Research, 1964, 34(1): 73–83.
[18] 洪庆玉, 侯方浩. 桂西中三迭统浊积岩的初步研究[J]. 西南石油学院学报, 1979, 1 (1): 16–30. [ Hong Qingyu, Hou Fanghao. A study on the middle Triassic turbidites in the west of Guangxi province[J]. Journal of Southwest Petroleum Institute, 1979, 1(1): 16–30. ]
[19] 冯曾昭. 沉积岩石学[M]. 北京: 石油工业出版社, 1993: 108-130. [ Feng Zengzhao. Sedimentary petrology[M]. Beijing: Petroleum Industry Press, 1993: 108-130. ]
[20] 郭建秋, 张雄华, 章泽军. 江西修水地区中元古界双桥山群浊流沉积[J]. 地质科技情报, 2004, 23 (1): 27–32. [ Guo Jianqiu, Zhang Xionghua, Zhang Zejun. Turbitidy current sediments of Shuangqiaoshan Group in middle Proterozoic in Xiushui area, Jiangxi province[J]. Geological Science and Technology Information, 2004, 23(1): 27–32. ]
[21] 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003: 350-375. [ Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 350-375. ]
[22] 方爱民, 李继亮, 侯泉林, 等. 新疆西昆仑库地复理石源区性质及构造背景分析[J]. 岩石学报, 2003, 19 (1): 153–166. [ Fang Aimin, Li Jiliang, Hou Quanlin, et al. Tectonic setting and provenance of the Kudi flysch in west Kunlun mountains, Xinjiang province[J]. Acta Petrologica Sinica, 2003, 19(1): 153–166. ]
[23] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164–2182.
[24] Dickinson W R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting[J]. Geological Society of America Bulletin, 1983, 94(2): 222–235. DOI: 10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
[25] 张传恒, 刘耀明, 史晓颖, 等. 下江群沉积地质特征及其对华南新元古代构造演化的约束[J]. 地球学报, 2009, 30 (4): 495–504. [ Zhang Chuanheng, Liu Yaoming, Shi Xiaoying, et al. Sedimentological features of the Xinjiang Group and their constraints on the Neoproterozoic tectonic evolution of South China[J]. Acta Geoscientica Sinica, 2009, 30(4): 495–504. ]
[26] 李忠, 王道轩, 林伟, 等. 库车坳陷中—新生界碎屑组分对物源类型及其构造属性的指示[J]. 岩石学报, 2004, 20 (3): 655–666. [ Li Zhong, Wang Daoxuan, Lin Wei, et al. Mesozoic-Cenozoic clastic composition in Kuqa depression, Northwest China: implication for provenance types and tectonic attributes[J]. Acta Petrologica Sinica, 2004, 20(3): 655–666. ]
[27] 和政军. 辽宁锦西地区中元古代—中生代砂岩构造背景的探讨[J]. 沉积学报, 1989, 7 (2): 21–28. [ He Zhengjun. Appoach of tectonic background for mid Proterozoic-Mesozoic sandstones in Jinxi, Liaoning[J]. Acta Sedimentologica Sinica, 1989, 7(2): 21–28. ]
[28] 卫巍, 庞绪勇, 王宇, 等. 北疆沙尔布尔提山地区早泥盆—早石炭世沉积相、物源演变及其意义[J]. 岩石学报, 2009, 25 (3): 689–698. [ Wei Wei, Pang Xuyong, Wang Yu, et al. Sediment facies, provenance evolution and their implications of the Lower Devonian to Lower Carboniferous in Shaerbuerti mountain in North Xinjiang[J]. Acta Petrologica Sinica, 2009, 25(3): 689–698. ]
[29] 杜涛, 侯明才, 陈琳, 等. 西昆仑造山带中带提热艾力组沉积环境及物源区构造背景[J]. 地质通报, 2013, 32 (5): 751–759. [ Du Tao, Hou Mingcai, Chen Lin, et al. Depositional environment and tectonic setting of source area of Tireaili Formation in the middle west Kunlun orogenic belt[J]. Geological Bulletin of China, 2013, 32(5): 751–759. ]
[30] 毛启贵. 北山及邻区古生代—早中生代增生与碰撞大地构造格局[D]. 北京: 中国科学院地质与地球物理研究所, 2008: 1-227. [ Mao Qigui. Paleozoic to Early Mesozoic accretionary and collisional tectonics of the Beishan and adjacent area, Northwest China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2008: 1-227. ]
[31] Mao Qigui, Xiao Wenjiao, Windley B F, et al. The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids[J]. Geological Magazine, 2012, 149(3): 483–506. DOI: 10.1017/S0016756811000811
[32] 李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报:地球科学版, 2009, 39 (4): 584–605. [ Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(4): 584–605. ]
[33] 王立社, 杨建国, 王育习, 等. 甘肃北山营毛沱地区公婆泉群中玄武岩同位素定年及其地质意义[J]. 地球学报, 2009, 30 (3): 363–368. [ Wang Lishe, Yang Jianguo, Wang Yuxi, et al. Isotopic dating of basalt from Gongpoquan Group in Yingmaotuo area of the Beishan Mountain, Gansu province, and its geological significance[J]. Acta Geoscientica Sinica, 2009, 30(3): 363–368. ]
[34] 郭谦谦, 肖文交, 侯泉林, 等. 北山造山带古生代浊积岩构造环境探讨及其大地构造意义[J]. 地质科学, 2013, 48 (1): 50–70. [ Guo Qianqian, Xiao Wenjiao, Hou Quanlin, et al. Tectonic settings of Paleozoic turbidites in the Beishan orogen and its implications for regional accretionary tectonics[J]. Chinese Journal of Geology, 2013, 48(1): 50–70. ]
[35] 郭谦谦. 北山晚古生代增生构造: 对阿尔泰造山带南部二叠纪最终拼合格局的制约[D]. 北京: 中国科学院地质与地球物理研究所, 2011: 1-132. [ Guo Qianqian. Late Paleozoic accretionary tectonics of the Beishan orogen: implications for Permian termination of the southern Altaids[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2011: 1-132. ]
[36] Xiao W J, Windley B F, Huang B C, et al. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189–1217. DOI: 10.1007/s00531-008-0407-z