沉积学报  2017, Vol. 35 Issue (1): 46−56

扩展功能

文章信息

郭佩, 刘池洋, 王建强, 李长志
GUO Pei, LIU ChiYang, WANG JianQiang, LI ChangZhi
碎屑锆石年代学在沉积物源研究中的应用及存在问题
Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis
沉积学报, 2017, 35(1): 46-56
ACTA SEDIMENTOLOGICA SINCA, 2017, 35(1): 46-56
10.14027/j.cnki.cjxb.2017.01.005

文章历史

收稿日期:2016-01-18
收修改稿日期: 2016-03-04
碎屑锆石年代学在沉积物源研究中的应用及存在问题
郭佩1, 刘池洋1, 王建强1, 李长志2     
1. 西北大学大陆动力学国家重点实验室/西北大学地质学系, 西安 710069;
2. 中国石化胜利油田东胜精攻石油开发集团股份有限公司, 山东东营 257000
摘要: 近年来,碎屑锆石U-Pb定年技术的不断突破极大地促进了沉积盆地物源分析的发展,该方法被进一步应用于分析古地理环境、沉积盆地演化以及物源区剥蚀速率等。在广泛应用的同时,国际学者逐渐意识到诸多不确定因素可影响分析结果、导致偏差。在系统总结碎屑锆石年代学在沉积物源研究中值得关注的几个问题的基础上,分析结果认为:①采样过程中要注意采样间隔和水动力对锆石的分选作用;②实验过程中合理地选择U-Pb定年方法,根据特定科学问题选定待测锆石和确定分析数量;③物源对比过程中不应简单地将沉积岩的碎屑锆石年龄谱与周缘造山带结晶岩体(包括岩浆岩和变质岩)的年龄进行对比,还应关注较老沉积岩提供的再旋回锆石、不同源岩的锆石产出能力、剥蚀区适当的隆升时间及碎屑锆石的“滞后时间”等因素。
关键词物源分析     碎屑锆石     U-Pb定年     偏差     再旋回锆石    
Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis
GUO Pei1, LIU ChiYang1, WANG JianQiang1, LI ChangZhi2     
1. State Key Laboratory of Continental Dynamics/Department of Geology, Northwest University, Xi'an 710069, China;
2. Shengli Oilfield Dongsheng Jinggong Petroleum Development Group, Dongying, Shandong 257000, China
Foundation: National Natural Science Fund Project, No.41330315; Independent Innovation Project of Northwest University, No.YZZ15018; China Geological Survey Project, No.12120113039900, 12120114009201
Abstract: In recent years, the growing breakthroughs in detrital-zircon U-Pb dating technology have fueled the development of provenance analysis of sedimentary basin, and this approach is further used to analyze paleogeographic environment, basin evolution and unroofing rate of provenance areas. Simultaneously, a number of potential problems that will lead to bias in applying detrital-zircon U-Pb geochronology to provenance analysis have increasingly attracted international attentions. On the basis of summarizing international relevant discussions, this paper concludes such considerations as sample intervals and hydrodynamic fractionation during sampling; reasonable choices of U-Pb dating methods, specific zircons and analytical numbers according to specific science issues during experiments; multi-recycling zircons, zircon-fertility ability, appropriate uplifting time and lag time during provenance comparison, and so on. The last of which is traditionally and simply conducted by matching detrital-zircon age spectrum of sediment units with crystallization age of source rocks in adjacent orogenic belts.
Key words: provenance analysis     detrital zircon     U-Pb dating     bias     multi-recycling zircons    
0 引言

U-Th-Pb地质年代学的研究已进入新时代,测试方法达到前所未有的精度、空间分辨率和灵活性,应用范围日益广泛。锆石是应用最广泛的矿物,在岩浆岩、变质岩和沉积岩中均普遍存在,对风化及磨损具有相对强的抵抗力,可通过较多的同位素方法进行定年[1-2]。碎屑锆石U-Pb年代学的技术突破(尤其是近十多年LA-ICP-MS U-Pb定年技术),极大地推动了沉积盆地物源分析的发展[3-6]。碎屑锆石U-Pb定年技术进一步的衍生应用包括:①识别现代水系中各已知物源的贡献率[7]及未知物源信息[8-11];②重建古地理环境,恢复大型古水流系统[12-16];③限定地层单元的绝对年龄,提供地层最大沉积年龄[6, 17-20];④进行地层对比[21-24];⑤恢复沉积盆地演化历史[25-26];⑥重现物源区构造环境及演化[27-32];⑦确定区域剥蚀速率[33-35]

碎屑锆石U-Pb年代学应用的有效性是建立在“碎屑信息可以真实地复制并代表母岩的性质”的假设基础之上,任何潜在的偏差(bias)都可能导致该假设不成立。碎屑矿物经过蚀源区的物理-化学风化作用、河流或风的搬运作用,最后于沉积区沉淀下来,遭受埋藏和后期成岩作用,漫长而复杂的地质历史过程存在诸多不确定的因素,使碎屑锆石展现的年龄信息有所偏差。这些不确定因素包括[6-7, 36-38]:①各物源贡献率不均一;②排水系统的存储、缓冲及再循环作用;③因盆地内水动力或沉积环境的变化导致沉积物的潜在封存。因此,全面了解碎屑锆石年代学在物源分析过程中存在的问题至关重要[2]

国际上相关讨论较多,涉及广泛,总体偏向对单因素的深入研究[1-2, 37, 39-48]。国内相关研究起步较晚,近五年来有增多趋势,总体偏应用,多限于沉积岩碎屑锆石年龄谱与潜在物源区结晶岩体年龄的对比研究[49-52],对其机理及应用时应注意的问题鲜有讨论。本文旨在总结国际期刊在此方面的讨论,综述采样过程、分析方法及物源对比过程中值得注意的问题,为国内的相关研究提供借鉴。

1 采样过程 1.1 采样间隔及数量

碎屑锆石U-Pb年代学的物源分析主要包括:剖面上,同一地区不同层位的样品用于分析不同地质历史时期物源的联系和变化,重现盆地演化历史及造山带剥蚀历史;平面上,不同地区同一层位的样品可分析不同地区物源的联系和变化,再造古地理环境和恢复古水流方向。

目前多数研究,在平面上采样间隔达千米甚至是上百千米,剖面上往往一个组仅一个或少量样品,这意味着单个样品将代表所采区域或所采层段的的整体情况。若分析结果显示各样品的碎屑锆石年龄谱不同,则往往被解释成沉积物源的重大转变、地层的渐变或板块范围内动力学的转变。单个样品能否代表一个地区或一个层位的整体物源情况?

Hietpas et al.[44]采集美国东南部阿巴拉契亚山脉(Appalachian Orogen)的佛兰西布罗德河及其支流中的不同河段的现代沉积物(可代表不同地区同一时期的沉积物),进行碎屑锆石U-Pb定年,发现沿着河流方向样品的年龄谱发生了很大的变化(图 1)。Zimmermann et al.[53]对西班牙北部坎塔布连山寒武系上、下层段分别采样,两层段均属浅海相沉积,且岩相可进行对比,但碎屑锆石年龄谱差异较大,反映寒武系沉积时物源已发生较大变化。

图 1 美国东南部阿巴拉契亚造山带南部简化地质图及所采样品位置和对应的碎屑锆石年龄概率分布图[44] Figure 1 Simplified geological map of Southern Appalachian Orogen in Southeastern USA and the location and detrital zircon probability density plots of collected samples[44]

上述两个典型例子说明,平面上或剖面上单个样品代表整个地区或整个层段的物源情况可能导致结果有所偏差,具有局限性,尤其对横向上分区明显、纵向上构造演化复杂的地区,应采集多个样品。

1.2 沉积微环境

碎屑锆石最初主要来源于岩浆岩或变质岩,不同结晶岩产生的锆石大小、形状不同,从粗粉砂(>30 μm)到中砂( < 500 μm)级别均有。在沉积物搬运过程中锆石的大小与水动力的分选作用有关,如果不同粒径的锆石代表不同的结晶年龄,则在搬运-沉积过程中可能使锆石的年龄谱存在偏差。这种差异分选作用的影响一般是局部的,如因不同的流速和河床剪切应力,沙丘向流面颗粒的分离;或冲刷坑内重颗粒聚集,所以仅仅一个同粒度的样品,不能代表一种沉积环境的整体情况。

Lawrence et al.[37]在单个沙丘中采集了5个代表不同水动力沉积微环境的样品,砂岩粒度不同(图 2a),进行碎屑锆石U-Pb定年,结果发现,这5个样品碎屑锆石展现明显不同的年龄谱,不仅主年龄峰值不匹配,而且部分年龄组仅在部分样品中出现(图 2b)。该作者认为水动力分选作用确实对碎屑锆石年龄谱存在影响,采样时应考虑沉积岩粒度。解决的办法之一即采样时可挑选粒度分选最差的沉积体;若无分选差的岩体,则可对不同沉积微环境的岩石分别采样(小样),并分开挑选锆石,最后按等比例将其年龄组合起来成一个样品进行分析。

图 2 a.同一大型沙丘不同沉积微相(A~E)的粒度分析图;b.对应碎屑锆石年龄概率密度分布图和饼状图[37] Figure 2 a.Grain-size distributions for different sedimentary microfacies (A~E) in the same large sand dune; b.Detrital zircon probability density diagrams and pie charts for the five dune samples [37]
2 分析方法及实验过程

碎屑锆石U-Pb定年技术一般分三种,以下是简单介绍各种方法的特征及优缺点,并进行对比。

2.1 同位素稀释-热电离质谱法(ID-TIMS)

ID-TIMS (Isotope dilution-thermal ionization mass spectrometry)分析要求对整个或大部分锆石晶体进行溶解,通过TIMS进行同位素跟踪(一般是205Pb和238U)、U和Pb的化学分离及同位素分析[54]。分析过程中化学溶解和分离过程需要耗费大量的时间,并要求环境绝对干净,以减少对Pb和U的污染。该种方法得出的结果具有很高的精度(0.1%,2σ),在三种方法中具有最高的准确度(accuracy)和精确度(precision)(表 1)。该方法需要加入205Pb、233U (或235U、238U)同位素稀释剂,技术难度高,中国目前还没有达到相应水平的实验室。在大多数情况下,碎屑锆石物源分析时并不需要如此高的精度。

表 1 三种U-Pb定年方法的优、缺点对比[62] Table 1 The advantages and disadvantages of three U-Pb dating methods[62]
方法 ID-TIMS SIMS LA-ICP-MS
绝对年龄精度 高-很高:≤0.1%的精度和准确度 U-Th和U-Pb:1%~2%;U-Pb
定年很高: < 300 ka
U-Pb:约2%;Th-Pb:约3%
空间分辨率 低(单颗晶体的混合年龄) 极好(深度在次微米),几乎无损害 好(直径20~30 μm,深度10~20 μm,
取决于分析系统)
U的有效量 < 1.0%(UO+) 1%~2%(UO+),取决于光束种类和氧气流 变化很大,取决于质谱仪的种类
Pb的有效量 高(约5%),取决于Si-gel源 高(约1%) 中等(0.2%~0.4%)至高(2%),
取决于质谱仪的种类
样品准备及分析时间 慢(溶解和化学分离) 快(CL图像,单位体积剥
蚀速率约0.1 μm3/s/nA)
很快(CL图像,单位体积剥蚀速率
约0.125 μm 3/s/nA)
优先地质应用 火山岩及侵入岩体系的年龄 年轻火山系统;变质岩系统;
微晶原位分析
碎屑物源分析;年轻火山和侵入岩体系;
变质岩体系;原位分析
2.2 二次离子质谱法(SIMS)

SIMS (Secondary ion mass spectrometry)分析,又称离子探针,是在环氧基树脂内晶体抛光表面进行,无法添加同位素追踪器,所以年龄校正需用标样。低温和高度真空的环境,Pb和U的背景值低,典型的剥蚀坑直径在10~30 μm,深度1 μm,近似于无损表面分析;精确度和准确度一般在1%~2%(2σ),分析时间一般约15分钟(表 1)。在测定U-Pb年龄的同时,离子探针也可用于分析其他元素,比如碎屑矿物的Ti和Zr浓度,氧同位素等[55]。国内目前不断引进大型二次离子质谱仪器,如北京离子探针中心的SHRIMP Ⅱ和SHRIMP Ⅱe-MC、中国科学院地质与地球物理研究所Cameca IMS 1280、Cameca IMS 1280HR和NanoSIMS 50L,大大提高了国内原位微区研究分析的能力[56-57]

2.3 激光剥蚀-等离子体质谱法(LA-ICP-MS)

LA-ICP-MS (Laser-ablation inductively coupled plasma mass spectrometry)方法与SIMS在以下三方面是相似的:年龄通过标样确定,均在一个抛光的晶体表面进行,年龄精确度和准确度偏差约在1%~2%(2σ)。LA-ICP-MS优势在于分析时间更短(一个点分析时间约2分钟),若有足够的分散器和接收器则可同时测定U和Pb同位素值;劣势在于等离子体电离产生很高的氩气流速,并在常规大气压和高温环境下,这些环境导致较高的Pb和Hg的背景值。为提高信号的质量,LA-ICPMS测试过程中需要高速地剥蚀晶体,消耗较大量的样品(典型的剥蚀坑直径为30 μm,深度10~20 μm)(表 1)。LA-ICP-MS仪器也很适合分析Hf-Lu-Yb等其他元素[58-61]

2.4 方法的选择

U-Th-Pb定年方法的选择取决于特定的科学问题,应考虑:①地质过程的持续时间;②原始材料的大小和丰富程度;③样品和地质事件的复杂程度;④所需数据量[62]。方法的选择还在于理解每种方法的优点及局限,不可过度地解释数据、量化不确定因素。对于侧重时间尺度的研究,需要高精度和准确度,推荐ID-TIMS。ID-TIMS可解决相对老的岩浆侵入事件的年龄问题,对于晚更新世及更晚事件的时间确定,可选SIMS及LA-ICP-MS。对于需要最少的材料消耗、分析具细小生长环带的矿物,要求最高空间分辨率的研究,SIMS分析方法是最好的选择[63]。对于需要统计大量的有效数据、偏差范围在1%~2%左右、深度剖析更大的研究,LA-ICP-MS分析方法更好,该方法是碎屑物源分析和基础调查研究的最好选择[62]

2.5 实验过程

实验过程中面临两个最基本的问题:分析数据量和锆石颗粒的选择。可分以下2种情况考虑:

(1)若为了限制最大沉积年龄,则合理的策略是集中分析颜色最浅和磨圆最差的晶体,因为颜色最浅的晶体最有可能是最年轻的[63],晶体的磨圆度则随搬运距离和再旋回次数的增加而增加。颗粒数量的选择取决于样品中最年轻锆石所占的比例及确定最大沉积年龄需要的锆石数量。

(2)若为了物源分析或地层对比,则得出的结果需反映碎屑锆石真实年龄分布情况。样品制作过程(如磁力分离、大小分选、或手工挑选)中尽量避免产生偏差;在分析过程中,需根据现有的锆石晶体随机挑选,不管大小、颜色、形状、磨圆度等。遗憾的是,太小的颗粒无法分析;具裂缝的锆石通常产生不可靠的年龄,因为其间可能充填次生矿物、裂缝表面Pb容易丢失、或入射的激光或原离子束在裂缝处可能产生异常行为[63]。含包裹体的部分和混合年龄区域亦应尽量避免。

理论上,物源分析的数据量取决于各年龄段的数量和所占的比例、晶体是否受Pb丢失的影响、分析方法的精确度及数量的可信度等。Anderson[64]使用标准二项概率公式,认为若要使占颗粒数5%的年龄成分得到识别的概率达到95%,则至少需要60个分析数据。若要确保识别每一个5%的年龄成分,则至少需要117个分析数据[65]。实际上,上述学者仍低估了最低分析量,因为这是建立在每个数据都可靠的前提下,但实际情况并非如此。若使每个年龄集(age clustering)均可靠,数量最少的年龄集也均可以被识别,则需要更多的数据。Pullen et al.[66]分析和对比了4组均接近1 000个数据的碎屑锆石,认为以大量分析数据为基础的实验具更高的可信度,可增加识别较少年龄成分的概率。一个合理的做法是:每个样品均测试大约100个数据,过程中用一个不协和过滤器软件保证“老年龄”不至于过少,并且分析解释数据时主要关注年龄集[63]

3 数据处理及解释过程

碎屑锆石U-Pb年龄数据分布有多种展示方法:①直方图(Histograms):展示落入一定年龄范围的锆石个数,较为直观,但图的面貌受如起始点和柱宽(bin width)等因素的影响较大;②概率密度分布函数(Probability Density Function,PDF):通过每颗锆石的年龄及偏差展示的正态曲线,这是较为常见的展示方法,形态受锆石颗粒数及绝对年龄的影响;③累计分布函数(Cumulative Distribution Function,CDF):是在PDF基础上发展起来,随年龄的增加概率累积曲线,较明显地展示了锆石小于某特定年龄的概率。PDF和CDF展示的信息相同,PDF表现“某一特定年龄的出现或缺失”方面更直观;CDF展现“一系列年龄分布的相似或差别”方面更直观(图 3)。

图 3 碎屑锆石U-Pb年龄分布两种展示方式(左:概率密度分布函数;右:累计分布函数)[63] Figure 3 Two presentation ways of U-Pb age distribution (left: PDF; right: CDP)[63]

在对比年龄谱相似性方面,如不同地区同一组砂岩、同一地区不同组或不同层段、沉积岩与潜在物源区结晶岩体等之间的年龄谱对比,可用国际上较为流行的对比公式Kolmogorov-Smirnoff statistical test (柯尔莫哥洛夫-斯米洛夫试验),简称K-S test[40, 48, 67-69]。K-S test是基于CDF的运算公式,对比两个CDF曲线的最大垂直差异D (图 4),若观察的差异值Dobs大于某一临界值Dcrit,则这两个样品具有显著性差异;临界值Dcrit取决于样本数量和理想置信度,一般情况下,一个样品至少需要20个分析点才具有统计学意义。地质学家将K-S test应用于地质分析,将其算法镶嵌于excel表格中(具体软件可于www.geo.arizona.edu/alc下载),通过对比Dobs和Dcrit,返回P值。若P值大于0.05,则两组年龄谱可能来自同一物源,P值越大,相似程度越大;若P值小于0.05,则两组样品不可能来自同一物源。P值与每个样品分析点数、每个年龄段所占比例有关。在利用K-S test时,需同时输入年龄值及相应的偏差。这一方法排除了肉眼观察的偏差,使结果更加量化,更加令人信服。

图 4 K-S test分析原理:对比不同CDF曲线间的最大差异值 Figure 4 The principle of K-S test: comparison of the maximum difference-D between several CDFs

数据的快速获取导致忽视了对单颗碎屑晶体的特征分析,最明显的例子是锆石年龄往往比高倍阴极发光图像应用更广泛。CL图像展示的内容丰富,尤其是锆石的岩相学,可确定复杂多期的锆石增生事件。若缺乏对CL图像的认真研究,激光剥蚀点或离子束可能跨多期生长的环带,产生无意义的“混合年龄”。同时锆石的Th/U比值,亦有助于识别锆石增生的岩浆或变质事件[48],应同样受到重视。

4 物源分析过程

利用碎屑锆石U-Pb年代学分析物源的传统做法是:将沉积岩的碎屑锆石年龄谱与周缘造山带结晶岩体(包括岩浆岩和变质岩)的年龄进行对比,若年龄匹配,则该造山带可解释成潜在物源之一。但是,物源分析远比上述做法复杂,因为:①同一个造山带可能经历多期岩浆活动;②构造作用可导致不同时代岩体碰撞成一个物源区;③来自不同物源区的河流系统在沉积区汇合;④沉积物再旋回造成与年轻岩体的混合[46]。因此,物源分析时还需考虑以下问题:

4.1 再旋回锆石

锆石的耐久性(durability)一方面能使其在沉积环境中经历了风化、搬运、埋藏后仍能保持晶体内部U-Pb系统的稳定,从而能记录最初形成时的年龄[43];另一方面,也暗示其在经历多次沉积旋回后仍能留于沉积物中,即较老沉积物中的碎屑锆石可再次出现在年轻的沉积物中[9, 70]

Dickinson et al.[43]在分析美国亚利桑那州东南部的下白垩统河流相石英砂岩物源时,发现碎屑锆石年龄谱与科罗拉多高原东部中-上侏罗统的风成石英砂岩的碎屑锆石年龄谱几乎一致,认为下白垩统直接物源可能为北部隆起裂谷肩出露的侏罗系风成石英砂岩;Dickinson et al.[19]证明了科罗拉多高原上侏罗统的海相Curtis砂岩物源直接来自于下伏侏罗系的Entrada风成砂岩;Pereira et al.[48]研究伊伯利亚半岛西部Lusitanian盆地三叠系砂岩的沉积物源,碎屑锆石年龄谱分析结果表明,沉积物最终来源于伊伯利亚半岛中部的结晶基底,但之间的Buçaco盆地沉积岩作为“中间沉积物仓库”(intermediate sediment repository),是其直接物源(图 5);即石炭纪时Buçaco盆地接受来自伊伯利亚半岛中部结晶基底的物源,于三叠纪期间该盆地隆起为Lusitanian盆地提供物源。

图 5 a.伊伯利亚半岛西部简化层序地层图;b.Lusitanian盆地三叠系沉积时古地理环境示意图[48] Figure 5 a.Simplified stratigraphy of western Iberia strata; b.Paleogeographic context of the Triassic deposition within the Lusitanian Basin[48]

上述实例表明,物源对比时,不仅应调查周缘造山带结晶岩体的年龄分布,还应调查早期沉积岩(尤其是下伏沉积岩)的碎屑锆石年龄谱,否则可能导致错误的结果[46, 67]

4.2 锆石产出能力

在利用碎屑锆石U-Pb年龄谱对比物源时,应了解有些地质事件是无法恢复的。不同类型岩浆岩产出锆石能力不同,锆石一般在SiO2含量大于60%的岩浆岩中结晶,在低硅质含量的岩浆岩中仅发现少量例子[1],因此有些岩浆岩可能只产生有限的锆石,或在有些热化学条件下不足以形成新的锆石。Dickinson[42]对北美72套花岗岩类岩石的1 386个全岩Zr分析,得出不同种类的花岗岩的平均锆石发育能力不同,且随年龄变化而变化。变质岩的变质程度只有达到角闪岩相到麻粒岩相,才能改变锆石的惰性,产生新的变质锆石[71-73]。从岩体碰撞、地壳增生、加热和负载、熔融及最后遭受剥蚀的一整个地壳循环过程中,可能均没有碎屑锆石记录[41]。而碎屑锆石年龄谱可能主要受异常发育锆石的热事件的影响。

沉积物中碎屑锆石的丰富程度还与源区锆石的保存能力有关。受构造环境的影响,不同岩浆岩的产量及保存几率不同[74]:汇聚板块边缘构造环境可产生大量的岩浆岩,但岩石保存的潜力相对较小;碰撞背景下岩浆岩产量较少,主体以前期地壳的局部熔融为主[74],但由于周围超大陆的包围,形成的岩浆岩被保存的潜力很大;伸展环境下岩浆岩的产量变化很大,但该阶段形成的岩浆岩以镁铁质为主,不可能产生大量锆石[41]。所以,岩浆岩的年龄主体记录超大陆的聚集事件,不是因为这是地壳产生的主要阶段,而是因为其提供了保存岩浆岩的场所[74]

岩体发育锆石和被保存的能力导致在利用碎屑锆石分析物源时结果存在偏差,偏向于更富锆石的岩体(Zr-rich lithologies),而无锆石记录或锆石保存条件差的岩体虽也提供沉积物源,但碎屑锆石无法记录[41]

4.3 适当隆升时间

无论是原始结晶岩还是再旋回沉积岩,若要提供物源,均需在合适的时间内隆起遭受剥蚀。劳伦克拉通结晶基底在晚古生代时被古生代早、中期的沉积物覆盖,不可能为上古生界提供物源[46],鄂尔多斯盆地内部的结晶基底自显生宙以来均被沉积物广泛覆盖,鄂尔多斯地块虽遭受数次抬升隆起剥蚀,但由于上覆巨厚沉积物的保护,并未使结晶基底露出地表,因此在分析鄂尔多斯盆地内显生宙沉积岩的物源时,无需考虑盆地内部结晶基底。

在识别古物源区时,不能受现今地形隆坳格局的影响[46, 67]。鄂尔多斯西北缘贺兰山地区现今隆出地表,其主体隆升时间是晚侏罗世[75],该区出露的孔兹岩系年龄(元古代晚期(1 850 Ma左右),与西缘上三叠统、下-中侏罗统砂岩中50%~60%碎屑锆石的年龄很吻合[76],但考虑贺兰山的隆升时间,前晚侏罗世的沉积岩的物源不可能来自于贺兰山地区。

剥露的最终结果可能导致物源区某些岩体完全消失,从而造成某些年龄段的碎屑锆石在现今地形条件下无法找到合适的物源。北美西部1 100 Ma的碎屑锆石物源推测可能是一个元古代的硅质火山岩区域,该区域随后几乎被剥蚀殆尽,仅残留很少的花岗侵入岩体[77]。在一个造山带,早期的碎屑锆石可能来源于浅层的侵入岩体,现今剥露地表的可能仅是深部的结晶岩系。因此,在物源分析时,应调查周缘造山带的构造演化历史。

4.4 滞后时间

滞后时间(即锆石出现于沉积物中的时间与晶体形成时间的间隔),是控制碎屑锆石年龄谱的关键因素之一[46],这一点在利用碎屑锆石分析沉积物最大沉积年龄方面表现尤为明显。同期岩浆岩分为两种,火山岩滞后时间短,但火山岩发育锆石能力低[42];侵入岩滞后时间较同期火山岩长,主要取决于岩体侵入的深度和上覆围岩剥蚀的速率。美国Appalachian前陆盆地上石炭统中普遍缺失Alleghanian年龄的锆石,说明造山带内的Alleghanian侵入岩较晚出露于地表[67]。鄂尔多斯西缘南侧秦岭造山带内广泛发育印支期岩浆岩体,西缘上三叠统延长组砂岩中普遍缺失印支期的碎屑锆石[76, 78-79],直至中侏罗统延安组砂岩中才出现少量该期锆石[76],说明秦岭造山带印支期花岗岩滞后时间较长。

不同构造背景下形成的岩体滞后时间差异较大,据统计[1](图 6):汇聚边缘盆地一般50%以上的碎屑锆石结晶年龄接近地层沉积年龄,一些弧前盆地和海沟盆地碎屑锆石年龄谱存在一个与沉积年龄接近的年龄单峰,而弧后盆地随与相邻克拉通的距离而展现不同的年龄谱;碰撞背景形成的盆地一般含少量(50%~10%)结晶年龄与沉积年龄接近的碎屑锆石(100 Ma < 滞后时间 < 150 Ma);伸展背景下形成的沉积盆地碎屑锆石滞后时间最大,仅少于5%的颗粒滞后时间小于150 Ma,因为伸展背景下形成的岩浆岩主体以镁铁质为主[1]

图 6 不同构造环境下锆石的结晶年龄与沉积年龄差异模式图[1] Figure 6 Models of differences between crystallization and depositional ages of zircons in different tectonic settings[1]

由于沉积岩碎屑锆石存在滞后性,在物源分析时,不可因剥蚀区的岩体的年龄(尤其是年龄稍大于沉积年龄的岩体)在碎屑锆石年龄谱中并未表现,而否定该潜在物源,应结合构造背景共同讨论。

5 结语

物源分析(无论是现代还是古代沉积物)是一项挑战性的工作,尤其是对构造演化历史复杂、后期改造强烈的地区更是如此。尽管现代技术手段的飞速发展,改变了传统方法定性分析的趋势,使物源分析趋于量化,但锆石U-Pb定年技术成本高、样品少,测试过程本身存在诸多不确定因素,加之地质过程的时空不均一性,导致所采的少量样品不具代表性,或无法全面反映整体情况。因此,在利用碎屑锆石U-Pb定年分析沉积物源时,应结合传统物源分析手段,尽量避免采样、制样和实验过程中存在的不确定因素,综合考虑碎屑矿物在剥蚀、搬运、埋藏、成岩或变质过程中可能导致年龄偏差的各种因素。

参考文献
[1] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875–878. DOI: 10.1130/G32945.1
[2] Malusà M G, Carter A, Limoncelli M, et al. Bias in detrital zircon geochronology and thermochronometry[J]. Chemical Geology, 2013, 359: 90–107. DOI: 10.1016/j.chemgeo.2013.09.016
[3] Dickinson W R, Gehrels G E. Sediment delivery to the Cordilleran foreland basin:insights from U-Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau[J]. American Journal of Science, 2008, 308(10): 1041–1082.
[4] Nie Junsheng, Horton B K, Saylor J E, et al. Integrated provenance analysis of a convergent retroarc foreland system:U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley Basin, northern Andes, Colombia[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 111–126.
[5] Gehrels G E. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127–149. DOI: 10.1146/annurev-earth-050212-124012
[6] Horton B K, Anderson V J, Caballero V, et al. Application of detrital zircon U-Pb geochronology to surface and subsurface correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena Valley Basin of Colombia[J]. Geosphere, 2015, 11(6): 1790–1811. DOI: 10.1130/GES01251.1
[7] Saylor J E, Knowles J N, Horton B K, et al. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands[J]. The Journal of Geology, 2013, 121(1): 17–33. DOI: 10.1086/668683
[8] Amidon W H, Burbank D W, Gehrels G E. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 244–260.
[9] Link P K, Fanning C M, Beranek L P. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming:an example of reproducing the bumpy barcode[J]. Sedimentary Geology, 2005, 182(1/2/3/4): 101–142.
[10] Zhang J Y, Yin A, Liu W C, et al. Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet:constraints on the transport processes and evolution of Himalayan rivers[J]. Geological Society of America Bulletin, 2012, 124(9/10): 1449–1473.
[11] He Mengying, Zheng Hongbo, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121–140. DOI: 10.1016/j.earscirev.2014.05.014
[12] Davis S J, Dickinson W R, Gehrels G E, et al. The Paleogene California river:evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons[J]. Geology, 2010, 38(10): 931–934. DOI: 10.1130/G31250.1
[13] Lowe D G, Sylvester P J, Enachescu M E. Provenance and paleodrainage patterns of Upper Jurassic and Lower Cretaceous synrift sandstones in the Flemish Pass Basin, offshore Newfoundland, east coast of Canada[J]. AAPG Bulletin, 2011, 95(8): 1295–1320. DOI: 10.1306/12081010005
[14] Dickinson W R, Lawton T F, Pecha M, et al. Provenance of the Paleogene Colton formation (Uinta Basin) and Cretaceous-Paleogene provenance evolution in the Utah foreland:evidence from U-Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies[J]. Geosphere, 2012, 8(4): 854–880. DOI: 10.1130/GES00763.1
[15] Mackey G N, Horton B K, Milliken K L. Provenance of the Paleocene-Eocene Wilcox group, western gulf of Mexico basin:evidence for integrated drainage of the southern Laramide rocky mountains and cordilleran arc[J]. Geological Society of America Bulletin, 2012, 124(5/6): 1007–1024.
[16] Blum M, Pecha M. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons[J]. Geology, 2014, 42(7): 607–610. DOI: 10.1130/G35513.1
[17] Fildani A, Cope T D, Graham S A, et al. Initiation of the Magallanes foreland basin:timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis[J]. Geology, 2003, 31(12): 1081–1084. DOI: 10.1130/G20016.1
[18] DeCelles P G, Carrapa B, Gehrels G E. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina[J]. Geology, 2007, 35(4): 323. DOI: 10.1130/G23322A.1
[19] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:a test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115–125.
[20] Gehrels G, Rusmore M, Woodsworth G, et al. U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia:constraints on age and tectonic evolution[J]. Geological Society of America Bulletin, 2009, 121(9/10): 1341–1361.
[21] Gehrels G E, Dickinson W R, Ross G M, et al. Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America[J]. Geology, 1995, 23(19): 831–834.
[22] Gehrels G E. Detrital zircon geochronology of the Taku terrane, southeast Alaska[J]. Canadian Journal of Earth Sciences, 2002, 39(6): 921–931. DOI: 10.1139/e02-002
[23] Brown E H, Gehrels G E. Detrital zircon constraints on terrane ages and affinities and timing of orogenic events in the San Juan Islands and North Cascades, Washington[J]. Canadian Journal of Earth Sciences, 2007, 44(10): 1375–1396. DOI: 10.1139/E07-040
[24] May S R, Gray G G, Summa L L, et al. Detrital zircon geochronology from Cenomanian-Coniacian strata in the Bighorn Basin, Wyoming, U.S.A.:implications for stratigraphic correlation and paleogeography[J]. Rocky Mountain Geology, 2013, 48(1): 41–61. DOI: 10.2113/gsrocky.48.1.41
[25] Surpless K D, Graham S A, Covault J A, et al. Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin[J]. Geology, 2006, 34(1): 21–24. DOI: 10.1130/G21940.1
[26] Pollock J C, Hibbard J P, Sylvester P J. Early Ordovician rifting of Avalonia and birth of the Rheic ocean:U-Pb detrital zircon constraints from Newfoundland[J]. Journal of the Geological Society, 2009, 166(3): 501–515. DOI: 10.1144/0016-76492008-088
[27] Thomas W A, Astini R A, Mueller P A, et al. Transfer of the Argentine Precordillera terrane from Laurentia:constraints from detrital-zircon geochronology[J]. Geology, 2004, 32(11): 965–968. DOI: 10.1130/G20727.1
[28] Lease R O, Burbank D W, Gehrels G E, et al. Signatures of mountain building:detrital zircon U/Pb ages from northeastern Tibet[J]. Geology, 2007, 35(3): 239–242. DOI: 10.1130/G23057A.1
[29] Johnston S M, Hartz E H, Brueckner H K, et al. U-Pb zircon geochronology and tectonostratigraphy of southern Liverpool Land, East Greenland:implications for deformation in the overriding plates of continental collisions[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 512–524.
[30] Park H, Barbeau L D, J r, Rickenbaker A, et al. Application of foreland basin detrital-zircon geochronology to the reconstruction of the southern and central appalachian orogen[J]. The Journal of Geology, 2010, 118(1): 1–24. DOI: 10.1086/648532
[31] Shi Yu, Yu Jinhai, Santosh M. Tectonic evolution of the Qinling orogenic belt, Central China:new evidence from geochemical, zircon U-Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19–60. DOI: 10.1016/j.precamres.2013.03.001
[32] Rodrigues B, Chew D M, Jorge R C G S, et al. Detrital zircon geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal):constraints on the provenance and geodynamic evolution of the South Portuguese Zone[J]. Journal of the Geological Society, 2015, 172(3): 294–308. DOI: 10.1144/jgs2013-084
[33] Lawton T F, Hunt G J, Gehrels G E. Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah[J]. Geology, 2010, 38(5): 463–466. DOI: 10.1130/G30684.1
[34] Bernet M, Zattin M, Garver J I, et al. Steady-state exhumation of the European Alps[J]. Geology, 2001, 29(1): 35–38. DOI: 10.1130/0091-7613(2001)029<0035:SSEOTE>2.0.CO;2
[35] Malusà M G, Villa I M, Vezzoli G, et al. Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 324–336.
[36] Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274–276. DOI: 10.1038/nature06586
[37] Lawrence R L, Cox R, Mapes R W, et al. Hydrodynamic fractionation of zircon age populations[J]. Geological Society of America Bulletin, 2011, 123(1/2): 295–305.
[38] Latrubesse E M. Large rivers, megafans and other Quaternary avulsive fluvial systems:a potential "who's who" in the geological record[J]. Earth-Science Reviews, 2015, 146: 1–30. DOI: 10.1016/j.earscirev.2015.03.004
[39] Carter A, Moss S J. Combined detrital-zircon fission-track and U-Pb dating:a new approach to understanding hinterland evolution[J]. Geology, 1999, 27(3): 235–238. DOI: 10.1130/0091-7613(1999)027<0235:CDZFTA>2.3.CO;2
[40] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[M]//Hanchar J M, Hoskin P W O. Zircon:Reviews in Mineralogy and Geochemistry. Chantilly, VA:Mineralogical Society of America, 2003, 53:277-303.
[41] Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record:implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 252–266.
[42] Dickinson W R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 80–92.
[43] Dickinson W R, Lawton T F, Gehrels G E. Recycling detrital zircons:a case study from the Cretaceous Bisbee Group of southern Arizona[J]. Geology, 2009, 37(6): 503–506. DOI: 10.1130/G25646A.1
[44] Hietpas J, Samson S, Moecher D, et al. Enhancing tectonic and provenance information from detrital zircon studies:assessing terrane-scale sampling and grain-scale characterization[J]. Journal of the Geological Society, 2011, 168(2): 309–318. DOI: 10.1144/0016-76492009-163
[45] Hietpas J, Samson S, Moecher D, et al. Recovering tectonic events from the sedimentary record:detrital monazite plays in high fidelity[J]. Geology, 2010, 38(2): 167–170. DOI: 10.1130/G30265.1
[46] Thomas W A. Detrital-zircon geochronology and sedimentary provenance[J]. Lithosphere, 2011, 3(4): 304–308. DOI: 10.1130/RF.L001.1
[47] Sláma J, Košler J. Effects of sampling and mineral separation on accuracy of detrital zircon studies[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5). DOI: 10.1029/2012GC004106
[48] Pereira M F, Gama C, Chichorro M, et al. Evidence for multi-cycle sedimentation and provenance constraints from detrital zircon U-Pb ages:Triassic strata of the Lusitanian basin (western Iberia)[J]. Tectonophysics, 2016, 618: 318–331.
[49] 张英利, 王宗起, 闫臻, 等. 库鲁克塔格地区新元古代沉积物源分析:来自碎屑锆石年代学的证据[J]. 岩石学报, 2011, 27 (1): 121–132. [ Zhang Yingli, Wang Zongqi, Yan Zhen, et al. Provenance of Neoproterozoic rocks in Quruqtagh area, Xinjiang:Evidence from detrital zircon geochronology[J]. Acta Petrologica Sinica, 2011, 27(1): 121–132. ]
[50] 杨宗永, 何斌. 南盘江盆地中三叠统碎屑锆石地质年代学:物源及其地质意义[J]. 大地构造与成矿学, 2012, 36 (4): 581–596. [ Yang Zongyong, He Bin. Geochronology of detrital zircons from the middle Triassic sedimentary rocks in the Nanpanjiang Basin:provenance and its geological significance[J]. Geotectonica et Metallogenia, 2012, 36(4): 581–596. ]
[51] 徐亚军, 杜远生, 杨江海. 北祁连造山带晚奥陶世-泥盆纪构造演化:碎屑锆石年代学证据[J]. 地球科学, 2013, 38 (5): 934–946. [ Xu Yajun, Du Yuansheng, Yang Jianghai. Tectonic evolution of the North Qilian orogenic belt from the Late Ordovician to Devonian:evidence from detrital zircon geochronology[J]. Earth Science, 2013, 38(5): 934–946. ]
[52] 靳立杰, 周汉文, 朱云海, 等. 东昆仑地区赛什腾组碎屑锆石U-Pb年代学:对其物质来源及地层时代的约束[J]. 大地构造与成矿学, 2015, 39 (4): 691–703. [ Jin Lijie, Zhou Hanwen, Zhu Yunhai, et al. U-Pb Age of the detrital zircon from the Serteng Formation in east Kunlun:Constraints on its provenance and formation time[J]. Geotectonica et Metallogenia, 2015, 39(4): 691–703. ]
[53] Zimmermann U, Andersen T, Madland M V, et al. The role of U-Pb ages of detrital zircons in sedimentology-an alarming case study for the impact of sampling for provenance interpretation[J]. Sedimentary Geology, 2015, 320: 38–50. DOI: 10.1016/j.sedgeo.2015.02.006
[54] Mattinson J M. Zircon U-Pb chemical abrasion ("CA-TIMS") method:combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages[J]. Chemical Geology, 2005, 220(1/2): 47–66.
[55] Mojzsis S J, Harrison T M, Pidgeon R T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4, 300 Myr ago[J]. Nature, 2001, 409(6817): 178–181. DOI: 10.1038/35051557
[56] 杨亚楠, 李秋立, 刘宇, 等. 离子探针锆石U-Pb定年[J]. 地学前缘, 2014, 21 (2): 81–92. [ Yang Ya'nan, Li Qiuli, Liu Yu, et al. Zircon U-Pb dating by secondary ion mass spectrometry[J]. Earth Science Frontiers, 2014, 21(2): 81–92. ]
[57] 李秋立, 杨蔚, 刘宇, 等. 离子探针微区分析技术及其在地球科学中的应用进展[J]. 矿物岩石地球化学通报, 2013, 32 (3): 310–327. [ Li Qiuli, Yang Wei, Liu Yu, et al. Ion microprobe microanalytical techniques and their applications in earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 310–327. ]
[58] Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons:comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany[J]. Earth and Planetary Science Letters, 2006, 249(1/2): 47–61.
[59] Flowerdew M, Millar I, Curtis M, et al. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Palaeozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica[J]. Geological Society of America Bulletin, 2007, 119(3/4): 275–288.
[60] Yuan Honglin, Gao Shan, Dai Mengning, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2): 100–118.
[61] Kemp A I S, Foster G L, Scherstén A, et al. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas[J]. Chemical Geology, 2009, 261(3/4): 244–260.
[62] Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS:recipes, interpretations, and opportunities[J]. Chemical Geology, 2015, 402: 89–110. DOI: 10.1016/j.chemgeo.2015.02.028
[63] Gehrels G. Detrital zircon U-Pb geochronology:current methods and new opportunities[M]//Busby C, Azor A. Tectonics of Sedimentary Basins:Recent Advances. Oxford:Wiley-Blackwell, 2012:47-62.
[64] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59–79.
[65] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441–451.
[66] Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971–980. DOI: 10.1039/c4ja00024b
[67] Gehrels G E, Blakey R, Karlstrom K E, et al. Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona[J]. Lithosphere, 2011, 3(3): 183–200. DOI: 10.1130/L121.1
[68] Dickinson W R, Gehrels G E. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau:evidence for transcontinental dispersal and intraregional recycling of sediment[J]. Geological Society of America Bulletin, 2009, 121(3/4): 408–433.
[69] Raines M K, Hubbard S M, Kukulski R B, et al. Sediment dispersal in an evolving foreland:detrital zircon geochronology from Upper Jurassic and lowermost Cretaceous strata, Alberta Basin, Canada[J]. Geological Society of America Bulletin, 2013, 125(5/6): 741–755.
[70] Thomas W A, Becker T P, Samson S D, et al. Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic-wedge sandstones[J]. The Journal of Geology, 2004, 112(1): 23–37. DOI: 10.1086/379690
[71] Rubatto D, Williams I S, Buick I S. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia[J]. Contributions to Mineralogy and Petrology, 2001, 140(4): 458–468. DOI: 10.1007/PL00007673
[72] Nemchin A A, Giannini L M, Bodorkos S, et al. Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis:theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalara metamorphics, northwestern Australia[J[J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2771–2788. DOI: 10.1016/S0016-7037(01)00622-6
[73] Williams I S. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host rock partial melting, Cooma Complex, southeastern Australia[J]. Australian Journal of Earth Sciences, 2001, 48(4): 557–580. DOI: 10.1046/j.1440-0952.2001.00883.x
[74] Hawkesworth C, Cawood P, Kemp T, et al. A matter of preservation[J]. Science, 2009, 323(5910): 49–50. DOI: 10.1126/science.1168549
[75] 赵红格, 刘池洋, 王锋, 等. 贺兰山隆升时限及其演化[J]. 中国科学(D辑):地球科学, 2007, 37 (Suppl.1): 185–192. [ Zhao Hongge, Liu Chiyang, Wang Feng, et al. Uplift and evolution of Helan Mountain[J]. Science China (Seri.D):Earth Sciences, 2007, 37(Suppl.1): 185–192. ]
[76] 张义楷.鄂尔多斯西缘中新生代构造体制转换与油气聚集[D].西安:西北大学, 2007. [ Zhang Yikai. Transition of the Mesozoic-Cenozoic tectonic regimes and hydrocarbon accumulation in western Ordos region[D]. Xi'an:Northwest University, 2007. ]
[77] Stewart J H, Gehrels G E, Barth A P, et al. Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico[J]. Geological Society of America Bulletin, 2001, 113(10): 1343–1356. DOI: 10.1130/0016-7606(2001)113<1343:DZPOMT>2.0.CO;2
[78] 宋立军, 陈隽璐, 张英利, 等. 鄂尔多斯盆地西南部汭水河地区上三叠统碎屑锆石U-Pb年代学特征及其地质意义[J]. 地质学报, 2010, 84 (3): 370–386. [ Song Lijun, Chen Juanlu, Zhang Yingli, et al. U-Pb Chronological characteristics of Late Triassic sediment in southwestern Ordos and it's tectonic significance[J]. Acta Geologica Sinica, 2010, 84(3): 370–386. ]
[79] 杨华, 辛补社, 付金华, 等. 鄂尔多斯盆地西南缘崆峒山组砾岩中的碎屑锆石LA-ICP-MS U-Pb定年及其构造意义[J]. 地质论评, 2014, 60 (3): 677–692. [ Yang Hua, Xin Bushe, Fu Jinhua, et al. LA-ICP-MS U-Pb dating of detrital zircons from Kongtongshan Formation conglomerate in the southwestern margin of Ordos Basin and its tectonic significance[J]. Geological Review, 2014, 60(3): 677–692. ]