二维相关跳频序列偶唯一性和理论界
许成谦, 赵雅洁     
1. 燕山大学 信息科学与工程学院, 秦皇岛 066004;
2. 燕山大学 河北省信息传输与信号处理重点实验室, 秦皇岛 066004
摘要

针对传统跳频序列偶只包含时延变量的一维汉明相关函数的问题,在相关函数中加入频移因素,提出了跳频序列偶的时频二维移位汉明相关函数的概念.证明了二维相关跳频序列偶的唯一性,保证了这类信号在实际应用中的唯一接收.导出了由二维相关跳频序列偶的汉明相关函数、序列偶个数、频隙个数和序列长度构成的理论界,对于构造满足理论界的二维相关跳频序列偶具有重要意义.

关键词: 跳频序列偶     二维汉明相关函数     唯一性     理论界    
中图分类号:TN911.22 文献标志码:A 文章编号:1007-5321(2018)01-0031-06 DOI:10.13190/j.jbupt.2017-097
Uniqueness and Theory Bounds of Two-Dimensional Correlation Frequency Hopping Sequence Pair
XU Cheng-qian, ZHAO Ya-jie     
1. School of Information Science and Engineering, Yanshan University, Hebei Qinhuangdao 066004, China;
2. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Hebei Qinhuangdao 066004, China
Abstract

In view of the traditional frequency hopping sequence pair containing only one-dimensional Hamming correlation function of time-delayed variables, frequency shift factors are added to correlation function, and the concept of time-frequency two-dimensional correlation function of frequency hopping sequence pair is proposed. The uniqueness of frequency hopping sequence pair is proved, and the only reception of this kind of signal is guaranteed in the practical application. The theory bounds formed by two-dimensional Hamming correlation values, the number of frequency hopping sequence pair, the number of frequency gap and sequence length are derived. It is of great significance to construct the two-dimensional correlation frequency hopping sequence pair which can satisfy the theory bounds.

Key words: frequency hopping sequence pair     two-dimensional Hamming correlation function     uniqueness     theoretical bound    

在跳频通信中,用来控制载波频率跳变的地址码序列称为跳频序列[1].对跳频序列的研究主要包括2个方面[2-3]:一方面是寻找跳频序列各种参数受到的理论限制;另一方面是构造满足理论界限的跳频序列集.文献[3-7]给出了跳频序列有关一维汉明相关函数的理论界.

跳频序列偶适用于发送端和接收端使用不同地址码的跳频通信系统,这类通信系统采用失配滤波实现相关接收[8-9].目前只有跳频序列偶包含时延变量的一维汉明相关函数的理论界[10].在实际系统中,跳频信号除存在传输时延外,还可能发生频率偏移.特别是像雷达等系统在高速运动的情况下,传输信号的频率可能发生偏移,跳频序列的频隙可能移位至其他频隙,导致与其他跳频序列发生碰撞,影响通信质量.因此有必要在传统汉明相关函数中引入频移变量,建立跳频序列偶的时频二维移位汉明相关函数的概念及其相关理论界.给出了跳频序列偶时频二维移位汉明相关函数的概念,证明了二维相关跳频序列偶的唯一性,推导了跳频序列偶的二维移位汉明相关函数的理论界.

1 跳频序列偶二维移位汉明相关函数的概念

跳频序列偶的时频二维移位汉明相关函数的概念定义如下.

定义1  设频率集F是一个加法群,(x, y)是F上周期为L的跳频序列x=(x(0), x(1), …, x(L-1))和y=(y(0), y(1), …, y(L-1))组成的序列偶,(x′, y′)是F上周期为L的跳频序列x′=(x′(0), x′(1), …, x′(L-1))和y′=(y′(0), y′(1), …, y′(L-1))组成的序列偶.称

$ {H_{\left( {x,y} \right)}}\left( {\tau ,d} \right) = \sum\limits_{j = 0}^{L - 1} {h\left[ {x\left( j \right),y\left( {j + \tau } \right) + d} \right]} $ (1)

为(x, y)的时频二维周期汉明自相关函数.称

$ \begin{array}{*{20}{c}} {{H_{\left( {x,y} \right)\left( {x',y'} \right)}}\left( {\tau ,d} \right) = {H_{\left( {x,y'} \right)}}\left( {\tau ,d} \right) = }\\ {\sum\limits_{j = 0}^{L - 1} {h\left[ {x\left( j \right),y'\left( {j + \tau } \right) + d} \right]} } \end{array} $ (2)

为(x, y)和(x′, y′)的时频二维周期汉明互相关函数.其中,h[·]为汉明函数,即当u=v时,h[u, v]=1,当uv时,h[u, v]=0,τ表示时延,d表示频移,0≤τL-1,dF,且j+τ≡(j+τ) mod Lj=0, 1, …, L-1.

d=0时,二维周期汉明相关函数退化成一维周期汉明相关函数.因此二维周期汉明相关函数是一维周期汉明相关函数的推广.

$ {H_{\rm{m}}}\left( {x,y} \right) = \max \left\{ {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)\left| {\left( {\tau ,d} \right) \ne \left( {0,0} \right)} \right.} \right\} $ (3)

表示跳频序列偶(x, y)的异相二维汉明自相关函数最大值.

$ {H_{\rm{m}}}\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] = \max \left\{ {{H_{\left( {x,y} \right)\left( {x',y'} \right)}}\left( {\tau ,d} \right)} \right\} $ (4)

表示跳频序列偶(x, y)和(x′, y′)的二维汉明互相关函数最大值.

$ \bar H\left( {x,y} \right) = \frac{1}{{Lq - 1}}\sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} $ (5)

表示跳频序列偶(x, y)的平均二维周期汉明自相关函数值.其中:L为序列长度,q为频隙数目.

$ \bar H\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] = \frac{1}{{Lq}}\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } $ (6)

表示跳频序列偶(x, y)和(x′, y′)的平均二维周期汉明互相关函数值.其中:L为序列长度,q为频隙数目.

$ \begin{array}{*{20}{c}} {{H_{{\rm{am}}}}\left( S \right) = }\\ {\max \left\{ {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)\left| {\left( {x,y} \right) \in S,\left( {\tau ,d} \right) \ne \left( {0,0} \right)} \right.} \right\}} \end{array} $ (7)
$ \begin{array}{*{20}{c}} {{H_{{\rm{cm}}}}\left( S \right) = }\\ {\max \left\{ {{H_{\left( {x,y'} \right)}}\left( {\tau ,d} \right)\left| {\left( {x,y} \right)} \right.,\left( {x',y'} \right) \in S,x \ne y'} \right\}} \end{array} $ (8)
$ {H_{\rm{m}}}\left( S \right) = \max \left\{ {{H_{{\rm{am}}}}\left( S \right),{H_{{\rm{cm}}}}\left( S \right)} \right\} $ (9)

分别表示跳频序列偶集S的最大异相二维周期汉明自相关、最大二维周期汉明互相关和最大二维周期汉明相关.

$ {S_{\rm{a}}}\left( S \right) = \sum\limits_{\left( {x,y} \right) \in S} {\sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } $ (10)
$ {S_{\rm{c}}}\left( S \right) = \frac{1}{2}\sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S}\\ {x \ne y} \end{array}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } } $ (11)

分别表示跳频序列偶集S的二维周期汉明自相关碰撞总数和二维周期汉明互相关碰撞总数.

$ {A_{\rm{a}}}\left( S \right) = \frac{{{S_{\rm{a}}}\left( S \right)}}{{M\left( {Lq - 1} \right)}} $ (12)
$ {A_{\rm{c}}}\left( S \right) = \frac{{2{S_{\rm{c}}}\left( S \right)}}{{M\left( {M - 1} \right)Lq}} $ (13)

分别表示跳频序列偶集S的平均二维周期汉明自相关和平均二维周期汉明互相关.

2 二维相关跳频序列偶的唯一性

定理1  设频率集F={f0, f1, …, fq-1}是一个加法群,x=(x(0), x(1), …, x(L-1)),y=(y(0), y(1), …, y(L-1))和y′=(y′(0), y′(1), …, y′(L-1))为F上长度为L的跳频序列,若跳频序列偶(x, y)和(x, y′)的二维周期汉明自相关函数相等,即H(x, y)(τ, d)= H(x, y′)(τ, d)(0≤τL-1,dF),则y=y′.

证明  设

$ {f_x}\left( {a,b} \right) = \sum\limits_{i = 0}^{q - 1} {\sum\limits_{j = 0}^{L - 1} {{x_{ij}}{a^i}{b^j}} } ,{f_y}\left( {a,b} \right) = \sum\limits_{i = 0}^{q - 1} {\sum\limits_{j = 0}^{L - 1} {{y_{ij}}{a^i}{b^j}} } $

是以ab为变量的二元多项式函数.其中,

$ {x_{ij}} = \left\{ \begin{array}{l} 1,\;\;\;\;i = x\left( j \right)\\ 0,\;\;\;\;i \ne x\left( j \right) \end{array} \right. $
$ {y_{\left( {i - d} \right)\left( {j + \tau } \right)}} = \left\{ \begin{array}{l} 1,\;\;\;\;i = y\left( {j + \tau } \right) + d\\ 0,\;\;\;\;i \ne y\left( {j + \tau } \right) + d \end{array} \right. $

$ \begin{array}{*{20}{c}} {{f_x}\left( {a,b} \right) = {f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right) = }\\ {\sum\limits_{i = 0}^{q - 1} {\sum\limits_{j = 0}^{L - 1} {{x_{ij}}{a^i}{b^j}} } \sum\limits_{k = 0}^{q - 1} {\sum\limits_{h = 0}^{L - 1} {{y_{kh}}{a^{ - k}}{b^{ - h}}} } = }\\ {\sum\limits_{i = 0}^{q - 1} {\sum\limits_{j = 0}^{L - 1} {\sum\limits_{k = 0}^{q - 1} {\sum\limits_{h = 0}^{L - 1} {{x_{ij}}{y_{kh}}{a^{i - k}}{b^{j - h}}} } } } } \end{array} $

ik=djh=-τ,则

$ \begin{array}{*{20}{c}} {{f_x}\left( {a,b} \right){f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right) = }\\ {\sum\limits_{i = 0}^{q - 1} {\sum\limits_{j = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {\sum\limits_{\tau = 0}^{L - 1} {{x_{ij}}{y_{\left( {i - d} \right)\left( {j + \tau } \right)}}{a^d}{b^{ - \tau }}} } } } } \end{array} $

其中

$ \begin{array}{*{20}{c}} {\sum\limits_{d = 0}^{q - 1} {\sum\limits_{\tau = 0}^{L - 1} {{x_{ij}}{y_{\left( {i - d} \right)\left( {j + \tau } \right)}}} } = \sum\limits_{i = x\left( j \right) = y\left( {j + \tau } \right) + d} {\sum\limits_{j = 0}^{L - 1} {1 \times 1} } = }\\ {\sum\limits_{x\left( j \right) = y\left( {j + \tau } \right) + d} 1 = \sum\limits_{j = 0}^{L - 1} {h\left[ {x\left( j \right),y\left( {j + \tau } \right) + d} \right]} = }\\ {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} \end{array} $

因此

$ {f_x}\left( {a,b} \right){f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right) = \sum\limits_{d = 0}^{q - 1} {\sum\limits_{\tau = 0}^{L - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right){a^d}{b^{ - \tau }}} } $

$ {{f}_{{{y}'}}}\left( a, b \right)=\sum\limits_{i=0}^{q-1}{\sum\limits_{j=0}^{L-1}{y_{ij}^{\prime }{{a}^{i}}{{b}^{j}}}} $,同理可得

$ {f_x}\left( {a,b} \right){f_{y'}}\left( {{a^{ - 1}},{b^{ - 1}}} \right) = \sum\limits_{d = 0}^{q - 1} {\sum\limits_{\tau = 0}^{L - 1} {{H_{\left( {x,y'} \right)}}\left( {\tau ,d} \right){a^d}{b^{ - \tau }}} } $

因为H(x, y)(τ, d)=H(x, y′)(τ, d),所以

$ {f_x}\left( {a,b} \right){f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right) = {f_x}\left( {a,b} \right){f_{y'}}\left( {{a^{ - 1}},{b^{ - 1}}} \right) $

fx(a, b)[fy(a-1, b-1)-fy(a-1, b-1)]=0

上式两边同时乘以fy(a-1, b-1),得

$ \begin{array}{*{20}{c}} {{f_x}\left( {a,b} \right){f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right)\left[ {{f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right) - } \right.}\\ {\left. {{f_{y'}}\left( {{a^{ - 1}},{b^{ - 1}}} \right)} \right] = 0} \end{array} $

因为fx(a, b)fy(a-1, b-1)不等于0,则有

$ {f_y}\left( {{a^{ - 1}},{b^{ - 1}}} \right) = {f_{y'}}\left( {{a^{ - 1}},{b^{ - 1}}} \right) $

所以y=y′.

3 跳频序列偶二维周期汉明相关函数的理论界

引理1  设S是由频率集F={f0, f1, …, fq-1}上M个周期为L的二维相关跳频序列偶组成的集合,对于任意频率fiF,(x, y)∈S,用ux(fi)=$ \sum\limits_{j=0}^{L-1} $h(x(j), fi)表示频率fix中出现的次数,则

$ \sum\limits_{x,y \in S} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } } = \sum\limits_{x,y \in S} {\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} } $ (14)

证明  由于

$ \begin{array}{*{20}{c}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } = }\\ {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {\sum\limits_{j = 0}^{L - 1} {h\left( {y\left( {j + \tau } \right) + d,x\left( j \right)} \right)} } } = }\\ {\sum\limits_{j = 0}^{L - 1} {{u_{{y^{\left( \tau \right)}} + d}}\left( {x\left( j \right)} \right)} = \sum\limits_{i = 0}^{q - 1} {{u_x}\left( {{f_i}} \right){u_{{y^{\left( \tau \right)}} + d}}\left( {{f_i}} \right)} = }\\ {\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} } \end{array} $

其中y(τ)+d=(y(0+τ)+d, y(1+τ)+d, …, y(L-1+τ)+d),ux(fi)表示频率fi在跳频序列x中出现的次数,uy(τ)+d(fi)表示频率fi在跳频序列y(τ)+d中出现的次数.所以得

$ \sum\limits_{x,y \in S} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } } = \sum\limits_{x,y \in S} {\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} } $

定理2  对于频率集合F={f0, f1, …, fq-1}上的(L, q)二维相关跳频序列偶(x, y),其异相二维自相关函数最大值Hm(x, y)满足

$ {H_m}\left( {x,y} \right) \ge \frac{{\sum\limits_{i = 0}^{q - 1} {{e_i}{d_i}} - L + d\left( {x,y} \right)}}{{Lq - 1}} $ (15)

其中:diei(i=0, 1, …, q-1)分别表示第i个频率fi在跳频序列xy的一个周期中出现的次数,d(x, y)表示跳频序列xy之间的汉明距离.

证明  由式(5)和式(6)知

$ \begin{array}{*{20}{c}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } = }\\ {L - d\left( {x,y} \right) + \sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} = }\\ {L - d\left( {x,y} \right) + \left( {Lq - 1} \right)\bar H\left( {x,y} \right)} \end{array} $

由引理1知

$ \begin{array}{*{20}{c}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } = \sum\limits_{i = 0}^{q - 1} {{u_x}\left( {{f_i}} \right){u_{{y^{\left( \tau \right)}} + d}}\left( {{f_i}} \right)} = }\\ {\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} } \end{array} $

已知频率集合F={f0, f1, …, fq-1},di=ux(fi),ei=uy(τ)+d(fi),0≤iq-1,则有

$ \begin{array}{*{20}{c}} {\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} = \sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } = }\\ {L - d\left( {x,y} \right) + \left( {Lq - 1} \right)\bar H\left( {x,y} \right)} \end{array} $

$ \begin{array}{*{20}{c}} {\bar H\left( {x,y} \right) = \frac{{\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right) - L + d\left( {x,y} \right)} }}{{Lq - 1}} = }\\ {\frac{{\sum\limits_{i = 1}^{q - 1} {{e_i}{d_i} - L + d\left( {x,y} \right)} }}{{Lq - 1}}} \end{array} $
$ {H_m}\left( {x,y} \right) \ge \bar H\left( {x,y} \right) = \frac{{\sum\limits_{i = 1}^{q - 1} {{e_i}{d_i} - L + d\left( {x,y} \right)} }}{{Lq - 1}} $

定理3  设跳频序列偶(x, y)和(x′, y′)分别是频率集合F={f0, f1, …, fq-1}上2个(L, q)二维相关跳频序列偶,并设aibicidi(i=0, 1, …, q-1)分别表示第i个频率fi在二维相关跳频序列xyx′、y′的一个周期中出现的次数,且所有fi的排列使得aic分别形成递减数列,即a0a1≥…≥aq-1c0c1≥ …≥cq-1,则二维相关跳频序列偶(x, y)与(x′, y′)之间的二维汉明互相关函数最大值Hm[(x, y)(x′, y′)]满足

$ \begin{array}{*{20}{c}} {{H_m}\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] \ge }\\ {\frac{1}{{3Lq - 2}}\left[ {\sum\limits_{i = 0}^{q - 1} {\left( {{a_i}{b_i} + {c_i}{d_i} + {a_i}{d_i}} \right) - 2\left( {L - {d_{\min }}} \right)} } \right]} \end{array} $ (16)

且满足下述条件时,式(16)右边达到最小:

1) b0b1≤…≤bq-1d0d1≤…≤dq-1bidi形成递增数列;

2) dmin=min{d(x, y), d(x′, y′)}.

证明  设

$ \begin{array}{*{20}{c}} {E\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] = }\\ {\frac{1}{{3Lq - 2}}\left[ {\sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} + } \right.}\\ {\left. {\sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x',y'} \right)}}\left( {\tau ,d} \right)} + \sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y'} \right)}}\left( {\tau ,d} \right)} } } \right]} \end{array} $

由式(5)和式(6)知

$ \begin{array}{*{20}{c}} {E\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] = }\\ {\frac{1}{{3Lq - 2}}\left[ {\left( {Lq - 1} \right)\bar H\left( {x,y} \right) + } \right.}\\ {\left( {Lq - 1} \right)\bar H\left( {x',y'} \right) + Lq\bar H\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right]} \end{array} $

由式(5)、式(6)、式(14)知

$ \begin{array}{*{20}{c}} {\left( {Lq - 1} \right)\bar H\left( {x,y} \right) = \sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} - }\\ {\left( {L - d\left( {x,y} \right)} \right)\left( {Lq - 1} \right)\bar H\left( {x',y'} \right) = }\\ {\sum\limits_{f \in F} {{u_{x'}}\left( f \right){u_{{{y'}^{\left( \tau \right)}} + d}}\left( f \right)} - \left( {L - d\left( {x',y'} \right)} \right)}\\ {Lq\bar H\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] = \sum\limits_{f \in F} {{u_x}\left( f \right){u_{{{y'}^{\left( \tau \right)}} + d}}\left( f \right)} } \end{array} $

由于,ai=ux(fi),bi=uy(τ)+d(fi),ci=ux(fi),di=uy(τ)+d(fi),0≤iq-1,有

$ \begin{array}{*{20}{c}} {E\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] = }\\ {\frac{1}{{3Lq - 2}}\left[ {\sum\limits_{f \in F} {{u_x}\left( f \right){u_{{y^{\left( \tau \right)}} + d}}\left( f \right)} - } \right.}\\ {\left( {L - d\left( {x,y} \right)} \right) + \sum\limits_{f \in F} {{u_{x'}}\left( f \right){u_{{{y'}^{\left( \tau \right)}} + d}}\left( f \right)} - }\\ {\left( {L - d\left( {x',y'} \right)} \right) + \sum\limits_{f \in F} {{u_x}\left( f \right){u_{{{y'}^{\left( \tau \right)}} + d}}\left( f \right)} = }\\ {\frac{1}{{3Lq - 2}}\left[ {\sum\limits_{i = 0}^{q - 1} {\left( {{a_i}{b_i} + {c_i}{d_i} + {a_i}{d_i}} \right) - \left( {L - d\left( {x,y} \right)} \right) - } } \right.}\\ {\left. {\left( {L - d\left( {x',y'} \right)} \right)} \right] \ge }\\ {\frac{1}{{3Lq - 2}}\left[ {\sum\limits_{i = 0}^{q - 1} {\left( {{a_i}{b_i} + {c_i}{d_i} + {a_i}{d_i}} \right) - 2\left( {L - {d_{\min }}} \right)} } \right]} \end{array} $

故得

$ \begin{array}{*{20}{c}} {{H_m}\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] \ge E\left[ {\left( {x,y} \right)\left( {x',y'} \right)} \right] \ge }\\ {\frac{1}{{3Lq - 2}}\left[ {\sum\limits_{i = 0}^{q - 1} {\left( {{a_i}{b_i} + {c_i}{d_i} + {a_i}{d_i}} \right) - 2\left( {L - {d_{\min }}} \right)} } \right]} \end{array} $

满足条件1)、2)时,由切比雪夫不等式可知,等式右边达到最小.

4 跳频序列偶集最大二维周期汉明相关函数的理论界

定理4  设S是由频率集F={f0, f1, …, fq-1}上M个(L, q)二维相关跳频序列偶组成的集合,(x, y)∈S,(x′, y′)∈Sτ=0, 1, …, L-1,d=0, 1, …, q-1.令函数

$ {H_{{\rm{CA}}}}\left( S \right) = \sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S} \end{array}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } } $ (17)

$ \begin{array}{*{20}{c}} {{H_{{\rm{CA}}}}\left( S \right) \le M\left( {L - {d_{\min }}} \right) + M\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + }\\ {M\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right)} \end{array} $

其中

$ {d_{\min }} = \min \left\{ {d\left( {x,y} \right)\left| {\left( {x,y} \right) \in S} \right.} \right\} $
$ \begin{array}{*{20}{c}} {{H_{{\rm{am}}}}\left( S \right) = }\\ {\max \left\{ {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)\left| {\left( {x,y} \right) \in S} \right.,\left( {\tau ,d} \right) \ne \left( {0,0} \right)} \right\}} \end{array} $
$ \begin{array}{*{20}{c}} {{H_{{\rm{cm}}}}\left( S \right) = }\\ {\max \left\{ {{H_{\left( {x,y'} \right)}}\left( {\tau ,d} \right)\left| {\left( {x,y} \right)} \right.,\left( {x',y'} \right) \in S,x \ne y'} \right\}} \end{array} $

证明

$ \begin{array}{*{20}{c}} {{H_{{\rm{CA}}}}\left( S \right) = \sum\limits_{\left( {x,y} \right) \in S} {H\left( {x,y} \right)\left( {0,0} \right)} + }\\ {\sum\limits_{\left( {x,y} \right) \in S} {\sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } + }\\ {\sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S}\\ {x \ne y'} \end{array}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } } \le }\\ {M\left( {L - {d_{\min }}} \right)M\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + }\\ {M\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right)} \end{array} $

定理5  设S是由频率集F={f0, f1, …, fq-1}上M个(L, q)二维相关跳频序列偶组成的集合,令$ {{H}_{\text{CA}}}\left( S \right)=\sum\limits_{\begin{smallmatrix} \ \left( x, y \right)\in S \\ \left( x\prime, y\prime \right)\in S \end{smallmatrix}}{\sum\limits_{\tau =0}^{L-1}{\sum\limits_{d=0}^{q-1}{{{H}_{\left( x, y \right)(x\prime, y\prime )}}\left( \tau, d \right)}}} $$ \left( x, y \right)\in S, \left( x\prime, y\prime \right)\in S $,则

$ {H_{{\rm{CA}}}}\left( S \right) \ge \frac{{{L^2}{M^2}}}{q} $ (18)

证明  对于任意整数i=0, 1, …, q-1,令gi=$ \sum\limits_{x\in S} $ux(fi),由定义1知

$ \begin{matrix} {{H}_{\left( x,y \right)\left( {x}',{y}' \right)}}\left( \tau ,d \right)={{H}_{\left( x,{y}' \right)}}\left( \tau ,d \right)= \\ \sum\limits_{j=0}^{L-1}{h\left[ x\left( j \right),{y}'\left( j+\tau \right)+d \right]} \\ \end{matrix} $

那么

$ \begin{array}{*{20}{c}} {\sum\limits_{j = 0}^{L - 1} {{u_{y'\left( \tau \right) + d}}\left( {x\left( j \right)} \right)} = \sum\limits_{j = 0}^{L - 1} {h\left( {y' + x\left( j \right)} \right)} = }\\ {\sum\limits_{j = 0}^{L - 1} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {h\left[ {x\left( j \right),y'\left( {j + \tau } \right) + d} \right]} } } = }\\ {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } } \end{array} $

由引理1得

$ \begin{array}{*{20}{c}} {{H_{{\rm{CA}}}}\left( S \right) = \sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S} \end{array}} {\sum\limits_{j = 0}^{L - 1} {{u_{{{y'}^{\left( \tau \right)}} + d}}\left( {x\left( j \right)} \right)} } = }\\ {\sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S} \end{array}} {\sum\limits_{i = 0}^{q - 1} {{u_x}\left( {{f_j}} \right){u_{{{y'}^{\left( \tau \right)}} + d}}\left( {{f_i}} \right)} } = \sum\limits_{i = 0}^{q - 1} {{{\left( {\sum\limits_{\left( {x,y} \right) \in S} {{u_x}\left( {{f_i}} \right)} } \right)}^2}} } \end{array} $

$ {{H}_{\text{CA}}}\left( S \right)=\sum\limits_{i=0}^{q-1}{g_{i}^{2}} $,并且

$ \begin{array}{*{20}{c}} {{g_i} \ge 0,i = 0,1, \cdots ,q - 1}\\ {\sum\limits_{i = 0}^{q - 1} {{g_i}} = \sum\limits_{\left( {x,y} \right) \in S} {\sum\limits_{i = 0}^{q - 1} {{u_x}\left( {{f_i}} \right)} } = \sum\limits_{\left( {x,y} \right) \in S} {L = LM} } \end{array} $

利用拉格朗日法,求得在上述条件下$ \sum\limits_{i=0}^{q-1}{g_{i}^{2}} $的最小值是$ \frac{{{L}^{2}}{{M}^{2}}}{q} $,即证得$ {{H}_{\text{CA}}}\left( S \right)\ge \frac{{{L}^{2}}{{M}^{2}}}{q} $.

推论1  设S是由频率集F={f0, f1, …, fq-1}上M个(L, q)二维相关跳频序列偶组成的集合,τ=0, 1, …, L-1,d=0, 1, …, q-1,则

$ \begin{array}{*{20}{c}} {q\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + q\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right) \ge }\\ {{L^2}M - q\left( {L - {d_{\min }}} \right)} \end{array} $ (19)

其中

$ \begin{array}{l} {d_{\min }} = \min \left\{ {d\left( {x,y} \right)\left| {\left( {x,y} \right) \in S} \right.} \right\}\\ {H_{\rm{m}}}\left( S \right) = \max \left\{ {{H_{{\rm{am}}}}\left( S \right),{H_{{\rm{cm}}}}\left( S \right)} \right\} \end{array} $

证明  由定理4和定理5,得

$ \begin{array}{*{20}{c}} {M\left( {L - {d_{\min }}} \right) + M\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + }\\ {M\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right) \ge \frac{{{L^2}{M^2}}}{q}}\\ {q\left( {L - {d_{\min }}} \right) + q\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + }\\ {q\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right) \ge {L^2}M}\\ {q\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + q\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right) \ge }\\ {{L^2}M - q\left( {L - {d_{\min }}} \right)} \end{array} $

推论2  设S是由频率集F={f0, f1, …, fq-1}上M个(L, q)二维相关跳频序列偶组成的集合,令Hm=max{Ham, Hcm},可得

$ {H_{\rm{m}}}\left( S \right) \ge \frac{{{L^2}M - q\left( {L - {d_{\min }}} \right)}}{{q\left( {LqM - 1} \right)}} $ (20)

证明  由推论1得

$ \begin{array}{*{20}{c}} {q\left( {Lq - 1} \right){H_{{\rm{am}}}}\left( S \right) + q\left( {M - 1} \right)Lq{H_{{\rm{cm}}}}\left( S \right) \ge }\\ {{L^2}M - q\left( {L - {d_{\min }}} \right)}\\ {\left[ {q\left( {Lq - 1} \right) + q\left( {M - 1} \right)Lq} \right]{H_{\rm{m}}}\left( S \right) \ge }\\ {{L^2}M - q\left( {L - {d_{\min }}} \right)}\\ {{H_{\rm{m}}}\left( S \right) \ge \frac{{{L^2}M - q\left( {L - {d_{\min }}} \right)}}{{q\left( {LqM - 1} \right)}}} \end{array} $
5 跳频序列偶集平均二维周期汉明相关函数的理论界

定理6  设S是由频率集F={f0, f1, …, fq-1}上M个(L, q)二维相关跳频序列偶组成的集合,则

$ \begin{array}{*{20}{c}} {\frac{{{A_{\rm{a}}}\left( S \right)}}{{Lq\left( {M - 1} \right)}}\frac{{{A_{\rm{c}}}\left( S \right)}}{{Lq - 1}} - \frac{{{d_{\min }}}}{{Lq\left( {Lq - 1} \right)\left( {M - 1} \right)}} \ge }\\ {\frac{{LM - q}}{{{q^2}\left( {Lq - 1} \right)\left( {M - 1} \right)}}} \end{array} $ (21)

其中:Aa(S)和Ac(S)分别表示跳频序列偶集S的平均二维周期汉明自相关和平均二维周期汉明互相关,dmin=min{d(x, y)|(x, y)∈S}.

证明

$ \begin{array}{*{20}{c}} {{H_{{\rm{CA}}}}\left( S \right) = \sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S} \end{array}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x,y} \right)\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } } = }\\ {\sum\limits_{\left( {x,y} \right) \in S} {{H_{\left( {x,y} \right)}}\left( {0,0} \right)} + \sum\limits_{\left( {x,y} \right) \in S} {\sum\limits_{\left( {\tau ,d} \right) \ne \left( {0,0} \right)} {{H_{\left( {x,y} \right)}}\left( {\tau ,d} \right)} } + }\\ {\sum\limits_{\begin{array}{*{20}{c}} {\left( {x,y} \right) \in S}\\ {\left( {x',y'} \right) \in S}\\ {x \ne y'} \end{array}} {\sum\limits_{\tau = 0}^{L - 1} {\sum\limits_{d = 0}^{q - 1} {{H_{\left( {x',y'} \right)}}\left( {\tau ,d} \right)} } } \le }\\ {M\left( {L - {d_{\min }}} \right) + {S_{\rm{a}}}\left( S \right) + 2{S_{\rm{c}}}\left( S \right)} \end{array} $

由定理5知,$ {{H}_{\text{CA}}}\left( S \right)\ge \frac{{{L}^{2}}{{M}^{2}}}{q} $.故得

$ M\left( {L - {d_{\min }}} \right) + {S_{\rm{a}}}\left( S \right) + 2{S_{\rm{c}}}\left( S \right) \ge \frac{{{L^2}{M^2}}}{q} $

根据式(10)~式(13)中Aa(S)和Ac(S)分别与Sa(S)和Sc(S)的关系知

$ \begin{array}{*{20}{c}} {M\left( {L - {d_{\min }}} \right) + M\left( {Lq - 1} \right){A_{\rm{a}}}\left( S \right) + }\\ {M\left( {M - 1} \right)Lq{A_{\rm{c}}}\left( S \right) \ge \frac{{{L^2}{M^2}}}{q}}\\ {M\left( {Lq - 1} \right){A_{\rm{a}}}\left( S \right) + M\left( {M - 1} \right)Lq{A_{\rm{c}}}\left( S \right) - M{d_{\min }} \ge }\\ {\frac{{{L^2}{M^2}}}{q} - LM}\\ {\frac{{{A_{\rm{a}}}\left( S \right)}}{{Lq\left( {M - 1} \right)}} + \frac{{{A_{\rm{c}}}\left( S \right)}}{{Lq - 1}} - \frac{{{d_{\min }}}}{{Lq\left( {Lq - 1} \right)\left( {M - 1} \right)}} \ge }\\ {\frac{{LM - q}}{{{q^2}\left( {Lq - 1} \right)\left( {M - 1} \right)}}} \end{array} $
6 结束语

给出了跳频序列偶的时频二维移位汉明相关函数的概念.证明了二维相关跳频序列偶的唯一性,保证了这类信号在实际应用中的唯一接收.导出了由二维相关跳频序列偶的汉明相关函数、序列偶个数、频隙个数和序列长度构成的理论界,对于构造满足理论界的二维相关跳频序列偶集具有重要指导意义.

参考文献
[1] 梅文华. 跳频序列设计[M]. 北京: 国防工业出版社, 2016: 5-19.
[2] 刘方, 彭代渊, 范佳, 等. 一类具有最优汉明自相关特性的跳频序列[J]. 电子学报, 2013, 41(1): 13–17.
Liu Fang, Peng Daiyuan, Fan Jia, et al. A new class of frequency-hopping sequences with optimal Hamming autocorrelation[J]. Acta Electronica Sinica, 2013, 41(1): 13–17.
[3] 彭代渊, 范平志, 李门浩. 低碰撞区跳频序列集周期Hamming相关函数的理论限[J]. 中国科学E辑, 2006, 36(2): 172–181.
Peng Daiyuan, Fan Pingzhi, Li Menhao. Theoretical bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone[J]. Science in China Series E:Information Sciences, 2006, 36(2): 172–181.
[4] 梅文华. 非重复跳频序列族的理论限制[J]. 电子与信息学报, 1995, 17(3): 238–242.
Mei Wenhua. Theoretical bounds on families of nonrepeating FH sequences[J]. Journal of Electronics & Information Technology, 1995, 17(3): 238–242.
[5] Peng Daiyuan, Fan Pingzhi. Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2004, 50(9): 2149–2154. doi: 10.1109/TIT.2004.833362
[6] Peng Daiyuan, Niu Xianhua, Tang Xiaohu, et al. Average Hamming correlation for the cubic polynomial hopping sequences[J]. IET Communications, 2010, 4(15): 1775–1786. doi: 10.1049/iet-com.2009.0783
[7] Han Hongyu, Peng Daiyuan, Liu Xing. New lower bounds on the aperiodic Hamming correlations of frequency hopping sequences with low hit zone[J]. Designs Codes and Cryptography, 2015, 75(1): 157–174. doi: 10.1007/s10623-013-9900-x
[8] 李刚, 许成谦, 刘凯, 等. 二值自相关二进阵列偶理论研究[J]. 北京邮电大学学报, 2008, 31(2): 90–94.
Li Gang, Xu Chengqian, Liu Kai, et al. Research on binary array pair with two-level autocorrelation[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(2): 90–94.
[9] 刘凯, 许成谦, 刘洺辛. 由平方剩余差集与差集偶构造二元ZCZ序列偶集[J]. 北京邮电大学学报, 2009, 32(4): 50–53.
Liu Kai, Xu Chengqian, Liu Mingxin. Binary sequence pair sets with zero correlation zone from quadratic difference set and difference set pair[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(4): 50–53.
[10] 许成谦, 王嘉星. 跳频序列偶相关函数及其理论界研究[J]. 系统工程与电子技术, 2015, 37(2): 412–416.
Xu Chengqian, Wang Jiaxing. Frequency-hopping sequence pair correlation function and its theoretical bound[J]. Systems Engineering and Electronics, 2015, 37(2): 412–416. doi: 10.3969/j.issn.1001-506X.2015.02.29