文章快速检索     高级检索
  波谱学杂志   2017, Vol. 34 Issue (2): 131-136.  DOI: 10.11938/cjmr20170201
0

引用本文 [复制中英文]

陈艳华, 张则婷, 白佳, 等. PDI抑制α-synuclein纤维化聚集作用机制研究[J]. 波谱学杂志, 2017, 34(2): 131-136. DOI: 10.11938/cjmr20170201.
[复制中文]
CHEN Yan-hua, ZHANG Ze-ting, BAI Jia, et al. Inhibition Mechanisms of Protein Disulfide Isomerase on α-Synuclein Fibril Aggregation[J]. Chinese Journal of Magnetic Resonance, 2017, 34(2): 131-136. DOI: 10.11938/cjmr20170201.
[复制英文]

基金项目

国家自然科学基金资助项目(21203243)

通讯联系人

张则婷, Tel:027-87197391, E-mail:zhangzeting@wipm.ac.cn

文章历史

收稿日期:2016-04-22
收修改稿日期:2017-04-19
PDI抑制α-synuclein纤维化聚集作用机制研究
陈艳华1,2, 张则婷1, 白佳1,2, 刘晓黎1, 刘买利1, 李从刚1     
1. 中国科学院生物磁共振分析重点实验室, 波谱与原子分子物理国家重点实验室, 武汉磁共振中心(中国科学院 武汉物理与数学研究所), 湖北 武汉 430071;
2. 中国科学院大学, 北京 100049
摘要: 天然无结构蛋白α-synuclein在帕金森症(PD)患者脑部的路易小体中异常聚集,被认为是引起PD的重要原因之一,但是目前关于α-synuclein的聚集机制仍没有定论.蛋白质二硫键异构酶(PDI)是细胞内质网中重要的分子伴侣蛋白,能够阻止内质网中无结构蛋白的聚集.在PD患者的脑细胞内发现PDI过量表达,且酶活性位点半胱氨酸被亚硝基化使其活性受到抑制.体外实验证明,PDI能够抑制α-synuclein的聚集,但其具体的分子机制还不清楚,研究PDI抑制α-synuclein聚集的具体机制可能对于PD治疗有重要意义.该文利用核磁共振(NMR)方法研究了α-synuclein与PDI的相互作用,发现α-synuclein与PDI的结合位点位于α-synuclein的N端;将PDI所有的6个半胱氨酸突变成丝氨酸,得到突变体PDI C-S,发现α-synuclein与PDI C-S的结合位点则位于其C末端;荧光实验结果表明突变体PDI C-S对α-synuclein纤维化聚集的抑制作用减弱,说明PDI抑制α-synuclein的纤维化聚集主要是通过与α-synuclein的N端残基结合来实现的.
关键词: 核磁共振(NMR)    相互作用    α-synuclein    蛋白质二硫键异构酶(PDI)    
Inhibition Mechanisms of Protein Disulfide Isomerase on α-Synuclein Fibril Aggregation
CHEN Yan-hua1,2, ZHANG Ze-ting1, BAI Jia1,2, LIU Xiao-li1, LIU Mai-li1, LI Cong-gang1     
1. CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan(Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), Wuhan 430071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Abnormal aggregation of α-synuclein, an intrinsically disordered protein in Lewy bodies, is considered a hallmark of Parkinson's disease (PD). The mechanisms underlying abnormal α-synuclein aggregation, however, are yet to be understood. Protein disulfide isomerase (PDI) is an important molecular chaperone in the endoplasmic reticulum, which can prevent disordered protein forming aggregation. PDI is shown to be overexpressed in the brain of PD patients, but with reduced activity due to S-nitrosylation of the cysteine residues in the active site. In vitro experiments have demonstrated that PDI can inhibit the aggregation of α-synuclein with unknown mechanisms. Hence, it may be of importance to study the inhibition mechanisms of PDI on α-synuclein aggregation. In this study, the interaction between α-synuclein and PDI was studied by NMR spectroscopy. It was found that the binding sites between the two are located on the N-terminal of α-synuclein. A variant PDI (PDI C-S) was prepared, in which all six cysteines were mutated to serines. It was found that the binding sites between PDI C-S and α-synuclein are located on the C-terminus of α-synuclein. The results of thioflavin T (ThT) fluorescence experiment showed that the inhibition activity of PDI C-S on α-synuclein aggregation was lower than the wild type, suggesting that wild type PDI may inhibit α-synuclein aggregation through binding to its N-terminal.
Key words: NMR    interaction    α-synuclein    protein disulfide isomerase (PDI)    
引言

帕金森症(PD)是常见的神经退行性疾病,主要病理学特征为患者脑部出现路易小体,路易小体的主要蛋白成分则是异常聚集的α-synuclein[1].α-synuclein是1个含有140个氨基酸的天然无结构蛋白.根据α-synuclein各个部分的特点,可以分为3个区域:N端的1~60位残基,含有4个不完全重复的保守片段(KTKEGV)[2];NAC区域61~95位残基,含有3个重复的保守片段(KTKEGV);C端96~140位残基,含有无结构蛋白特有的大量酸性氨基酸和脯氨酸.N端和NAC端是与生物膜相互作用的主要区域[3],而酸性C端则被认为是与其他蛋白质相互作用的主要位置[4].研究[5, 6]表明α-synuclein在细胞内质网中的浓度大大高于细胞质,高浓度的α-synuclein可损害内质网的正常生理功能,导致内质网压力变化.

在细胞内质网的压力应对机制中,蛋白质二硫键异构酶(PDI)发挥着重要作用[7].PDI主要存在于细胞内质网中,是一种多功能蛋白.PDI负责氧化还原内质网中新生肽链二硫键的形成和断裂,酶催化分子中错误链接的二硫键重排形成正确的二硫键[8];而且通过分子伴侣功能防止无结构蛋白发生聚集,并最终使无结构蛋白被运输出内质网[9].PDI通过控制内质网中的无结构蛋白应答来调节内质网的压力平衡[10].PDI的结构整体呈马蹄型[11],含有4个类似硫氧还原蛋白的结构域ABB´A´:A和A´分别含有1个二硫键酶活性位点CXXC,A和A´两个活性结构域由结构相对刚性的B和B´连接,B´上有1个疏水口袋,是主要的底物结合位点[12];在A´和B´之间有一段灵活性很强的X linker,强酸性的C末端含有29个残基,带有1个KDEL内质网定位信号[13].然而,在PD患者的脑细胞中,大量PDI酶活性位点的半胱氨酸被亚硝基化,从而失去了调控α-synuclein等无结构蛋白聚集和运输的功能[14, 15].Cheng等人[16]的研究表明,野生型PDI能够抑制α-synuclein的纤维化聚集.但是目前关于PDI与α-synuclein的相互作用,及其对α-synuclein纤维化聚集的调节机制尚不清楚,这些机制的揭示将有助于了解α-synuclein的纤维化聚集过程.

核磁共振(NMR)方法是研究不同蛋白之间相互作用的有力手段,NMR在α-synuclein的结构及相互作用研究中已经取得了许多研究成果[17].本文通过NMR方法研究了α-synuclein与PDI的相互作用,发现α-synuclein与PDI的结合位点主要位于α-synuclein的N端,但是与半胱氨酸突变为丝氨酸的突变体——PDI C-S的结合位点则位于α-synuclein的C末端.硫磺素T(ThT)是能与淀粉样纤维特异性结合的荧光染料,可以利用ThT荧光实验来检测纤维结构的形成,蛋白纤维化聚集程度越大,测得的荧光强度越强[18].通过ThT荧光实验我们发现,相对于野生型PDI,PDI C-S突变体抑制α-synuclein的纤维化聚集作用明显减弱.结合NMR和ThT荧光实验结果可知,PDI通过与α-synuclein的N端残基结合抑制其纤维化聚集,并且PDI的半胱氨酸残基在这个过程中起到重要的作用.

1 实验部分 1.1 样品制备 1.1.1 野生型PDI及其突变体PDI C-S的表达与纯化

首先挑取已转入野生型或突变型PDI重组质粒(His6-PDI-pET-28a)的大肠杆菌BL21(DE3)单克隆于LB培养基中,37 ℃条件下培养至在600 nm处的光密度值(OD600)为0.8,然后加入异丙基硫代半乳糖苷(IPTG)至终浓度为1.0 mmol/L,37 ℃继续诱导表达5 h;6 000 rpm离心10 min,去上清收集细胞;将细胞重悬后超声裂解至透亮,20 000 rpm离心收集上清.收集的上清液首先用Ni亲和层析柱(GE Healthcare Life Sciences China,北京)纯化,然后洗脱液再用Superdex S-75(GE Healthcare Life Sciences China,北京)分子筛纯化,最后经阴离子交换柱Source Q(GE Healthcare Life Sciences China,北京)纯化,得到纯度达标的样品,冻干封存备用.

1.1.2 α-synuclein的表达与纯化

α-synuclein的表达和纯化方法参考戴晨晔等人[19]文章.

1.2 NMR实验 1.2.1 NMR样品制备

将冻存的α-synuclein蛋白样品溶解于450 μL NMR缓冲液(含20 mmol/L Tris和100 mmol/L NaCl,pH 7.0)中,加入50 μL D2O,α-synuclein的最终浓度为0.125 mmol/L.

1.2.2 1H-15N HSQC实验

1H-15N HSQC实验均在Bruker 600 MHz谱仪上完成,实验温度为298 K.谱宽为7 240 Hz(1H)×1 580 Hz(15N),采样数据点阵为t2×t1 = 2 048×256,累加次数(ns)为20,弛豫等待时间(d1)为1.0 s.谱图化学位移归属根据BioMagResBank(BMRB entry number 16543).

1.3 ThT荧光实验

70 μmol/L的α-synuclein溶于1 mL的缓冲溶液中(含20 mmol/L Tris-Hcl和100 mmol/L NaCl,pH 7.0),加入PDI或突变体PDI C-S使其终浓度为35 μmol/L(对照组不加PDI或突变体PDI C-S),在37 ℃、220 rpm的条件下进行纤维化诱导.间隔一定时间,取样10 μL加入1 mL的ThT(浓度为50 μmol/L)混合均匀.使用FS5荧光仪(Edinburgh Instruments Ltd.,英国)进行荧光测定,选择5 nm的狭缝带宽,在450 nm处进行激发,发射光谱记录范围为470~600 nm,记录步长为1 nm.纤维生长情况在482 nm下进行评估.

2 结果与讨论 2.1 α-synuclein与PDI及其突变体PDI C-S结合位点的研究

PDI抑制α-synuclein纤维化聚集的功能已有报道[16],但具体的作用机制并不清楚.为了研究α-synuclein与PDI相互作用的结合位点,我们采集了15N标记的α-synuclein的1H-15N HSQC谱图[图 1(a)中的蓝色谱图所示],谱峰集中出现在δH 7.5~8.5之间,表明α-synuclein呈现无结构状态;向α-synuclein中加入终浓度为0.2 mmol/L PDI,在同样的实验条件下再次采集α-synuclein的1H-15N HSQC谱图[图 1(a)中的红色谱图所示],发现α-synuclein的部分氨基酸残基出现化学位移变化.通过(1) 式计算各个残基的化学位移变化,得到滴定后各个残基的化学位移变化柱状图[图 1(b)].

图 1 (a) 0.125 mmol/L 15N标记的α-synuclein加入终浓度为0.2 mmol/L野生型PDI前(蓝色)后(红色)的1H-15N HSQC谱图;(b)加入PDI后,α-synuclein各个氨基酸残基的化学位移变化柱状图 Figure 1 (a) 1H-15N HSQC spectra of 15N-labeled α-synuclein (0.125 mmol/L) in the absence (blue) and presence (red) of wild type PDI (0.2 mmol/L); (b) Chemical shift changes of the amino acid residues in α-synuclein upon interaction with PDI
$ \Delta {\delta _{{\rm{combined}}}} = 0.25\sqrt {{{\left[ {\delta \left( {^1{{\rm{H}}_{{\rm{free}}}}} \right) - \delta \left( {^1{{\rm{H}}_{{\rm{bound}}}}} \right)} \right]}^2} + {{\left\{ {1/5\left[ {\delta \left( {^{15}{{\rm{N}}_{{\rm{free}}}}} \right) - \delta \left( {^{15}{{\rm{N}}_{{\rm{bound}}}}} \right)} \right]} \right\}}^2}} $ (1)

图 1显示发生化学位移变化的残基主要位于α-synuclein的N端,特别是V3、F4、M5、K6等残基[图 1(b)],表明α-synuclein主要是通过这些位点与PDI相互作用.

为了研究PDI的半胱氨酸对α-synuclein与其结合的影响,我们将PDI的6个半胱氨酸突变为丝氨酸,得到突变体PDI C-S,并分别采集加入突变体PDI C-S前后α-synuclein的1H-15N HSQC谱图[图 2(a)],发现加入突变体PDI C-S后α-synuclein C末端的Q134、D135、Y136、E137等信号消失[图 2(b)],表明C端残基是α-synuclein与PDI C-S结合的主要位点.

图 2 (a) 0.125 mmol/L 15N标记的α-synuclein加入终浓度为0.2 mmol/L PDI C-S前(蓝色)后(红色)的1H-15N HSQC谱图;(b)加入PDI C-S后,α-synuclein各个残基的化学位移变化柱状图,黄色部分表示消失的峰 Figure 2 (a) 1H-15N HSQC spectra of 15N-labeled α-synuclein in the absence (blue) and presence (red) of PDI C-S (0.2 mmol/L); (b) Chemical shift changes of amino acid residues in α-synuclein upon interaction with PDI C-S, yellow part represents the NMR peaks disappeared
2.2 ThT荧光实验

从NMR实验结果得到野生型PDI与α-synuclein的N端残基结合,而突变体PDI C-S与α-synuclein的C端结合.为了比较野生型PDI和突变体PDI C-S对α-synuclein纤维化聚集过程是否也会有不同影响,我们采用ThT荧光实验进行研究.从图 3可以看到,野生型PDI几乎完全抑制了α-synuclein的纤维化聚集,而突变体PDI C-S的抑制作用减弱,这可能是由于α-synuclein的N端和C端在纤维化聚集的过程中起着不同的作用.

图 3 硫磺素T(ThT)荧光实验监测PDI及其突变体PDI C-S对α-synuclein纤维化聚集的影响 Figure 3 Influence of PDI or PDI C-S to the fibrillation of α-synuclein monitoring by thioflavin T(ThT) fluorescence

Rao等人[20]发现许多抑制α-synuclein聚集的小分子与α-synuclein的接触位点主要位于N端的3~18和38~51之间,与C端基本没有相互作用;同时突触前蛋白synphilin-1与α-synuclein的N端结合,抑制了α-synuclein聚集[21]α-synuclein的N端乙酰化破坏了其N端与其他部位的相互作用,使得α-synuclein的聚集减缓[22];此外,α-synuclein主要通过N端接触形成二聚体,而二聚体比单体α-synuclein更稳定,因而N端在α-synuclein纤维化聚集过程中起到重要作用[23].Cheng等人[16]的研究表明,PDI的A´结构域在抑制α-synuclein纤维化聚集的过程中发挥着重要作用.A´结构域对于PDI与无结构蛋白的结合至关重要[12],所以PDI可能通过A´结构域与α-synuclein的N端结合,破坏α-synuclein分子间相互作用,阻碍α-synuclein二聚的形成,从而进一步抑制了α-synuclein的纤维化聚集.

α-synuclein的C端有分子伴侣的功能,能够与α-synuclein的N端和NAC端接触,防止α-synuclein的纤维化聚集[24];同时负电荷富集的C端结合钙离子或者被截去,都会使α-synuclein的纤维化聚集大大加快[25, 26].因此,突变体PDI C-S与α-synuclein的C端结合,可能使得α-synuclein的疏水区暴露,导致PDI C-S抑制α-synuclein聚集的功能减弱,这表明PDI上的半胱氨酸对PDI抑制α-synuclein纤维化聚集至关重要,半胱氨酸在这个过程中的具体作用有待进一步研究.对于PD患者,影响PDI与α-synuclein N端相互作用,可能是由于患者脑细胞中PDI的二硫键位点半胱氨酸被亚硝基化从而失去抑制α-synuclein纤维化聚集功能的作用机制[14].

3 结论

通过结合NMR和ThT荧光实验研究了PDI抑制α-synuclein纤维化的作用机制,发现PDI主要是通过结合α-synuclein的N端残基,抑制α-synuclein纤维化聚集,并且半胱氨酸对于PDI抑制α-synuclein纤维化聚集的功能至关重要.


参考文献
[1] SPILLANTINI M G, CROWTHER R A, JAKES R, et al. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies[J]. P Natl Acad Sci USA, 1998, 95(11): 6469-6473. DOI: 10.1073/pnas.95.11.6469.
[2] KESSLER J C, ROCHET J C, LANSBURY P T. The N-terminal repeat domain of alpha-synuclein inhibits beta-sheet and amyloid fibril formation[J]. Biochemistry, 2003, 42(3): 672-678. DOI: 10.1021/bi020429y.
[3] ELIEZER D, KUTLUAY E, BUSSELL R, et al. Conformational properties of alpha-synuclein in its free and lipid-associated states[J]. J Mol Biol, 2001, 307(4): 1061-1073. DOI: 10.1006/jmbi.2001.4538.
[4] UVERSKY V N, FINK A. Amino acid determinants of alpha-synuclein aggregation:putting together pieces of the puzzle[J]. Febs Lett, 2002, 522(1-3): 9-13. DOI: 10.1016/S0014-5793(02)02883-1.
[5] ZHANG L, ZHANG C Y, ZHU Y Y, et al. Semi-quantitative analysis of alpha-synuclein in subcellular pools of rat brain neurons:An immunogold electron microscopic study using a C-terminal specific monoclonal antibody[J]. Brain Res, 2008, 1244: 40-52. DOI: 10.1016/j.brainres.2008.08.067.
[6] SMITH W W, JIANG H B, PEI Z, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity[J]. Hum Mol Genet, 2005, 14(24): 3801-3811. DOI: 10.1093/hmg/ddi396.
[7] LYLES M M, GILBERT H F. Catalysis of the oxidative folding of ribonuclease-a by protein disulfide isomerase-dependence of the rate on the composition of the redox buffer[J]. Biochemistry, 1991, 30(3): 613-619. DOI: 10.1021/bi00217a004.
[8] FREEDMAN R B, DUNN A D, RUDDOCK L W. Protein folding:A missing redox link in the endoplasmic reticulum[J]. Curr Biol, 1998, 8(13): 468-470. DOI: 10.1016/S0960-9822(98)70295-7.
[9] CAI H, WANG C C, TSOU C L. Chaperone-like activity of protein disulfide-isomerase in the refolding of a protein with no disulfide bonds[J]. J Biol Chem, 1994, 269(40): 24550-24552.
[10] MAATTANEN P, GEHRING K, BERGERON J J M, et al. Protein quality control in the ER:The recognition of misfolded proteins[J]. Semin Cell Dev Biol, 2010, 21(5): 500-511. DOI: 10.1016/j.semcdb.2010.03.006.
[11] WANG C, LI W, REN J Q, et al. Structural insights into the redox-regulated dynamic conformations of human protein disulfide isomerase[J]. Antioxid Redox Sign, 2013, 19(1): 44-53.
[12] KLAPPA P, RUDDOCK L W, DARBY N J, et al. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins[J]. Embo J, 1998, 17(4): 927-935. DOI: 10.1093/emboj/17.4.927.
[13] FREEDMAN R B, GANE P J, HAWKINS H C, et al. Experimental and theoretical analyses of the domain architecture of mammalian protein disulphide-isomerase[J]. Biol Chem, 1998, 379(3): 321-328.
[14] UEHARA T, NAKAMURA T, YAO D D, et al. S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration[J]. Nature, 2006, 441(7092): 513-517. DOI: 10.1038/nature04782.
[15] NAKAMURA T, TU S C, AKHTAR M W, et al. Aberrant protein S-nitrosylation in neurodegenerative diseases[J]. Neuron, 2013, 78(4): 596-614. DOI: 10.1016/j.neuron.2013.05.005.
[16] CHENG H, WANG L, WANG C C. Domain a' of protein disulfide isomerase plays key role in inhibiting alpha-synuclein fibril formation[J]. Cell Stress Chaperon, 2010, 15(4): 415-421. DOI: 10.1007/s12192-009-0157-2.
[17] DAI C Y, ZHANG Z T, LIU M L, et al. Application of NMR in the studies of structure and interactions of α-synuclein[J]. Chinese J Magn Reson, 2016, 33(1): 154-167.
戴晨晔, 张则婷, 刘买利, 等. NMR在α-synuclein的结构及相互作用研究中的应用[J]. 波谱学杂志, 2016, 33(1): 154-167.
[18] KHURANA R, COLEMAN C, IONESCU-ZANETTI C, et al. Mechanism of thioflavin T binding to amyloid fibrils[J]. J Struct Biol, 2005, 151(3): 229-238. DOI: 10.1016/j.jsb.2005.06.006.
[19] DAI C Y, LIU M L, LI C G. Salt content-dependent conformational changes of α-synuclein studied by 19F NMR[J]. Chinese J Magn Reson, 2015, 32(1): 33-40.
戴晨晔, 刘买利, 李从刚. 低盐和高盐环境下α-synuclein构象的19F NMR研究[J]. 波谱学杂志, 2015, 32(1): 33-40. DOI: 10.11938/cjmr20150104.
[20] RAO J N, DUA V, ULMER T S. Characterization of alpha-synuclein interactions with selected aggregation-inhibiting small molecules[J]. Biochemistry, 2008, 47(16): 4651-4656. DOI: 10.1021/bi8002378.
[21] XIE Y Y, ZHOU C J, ZHOU Z R, et al. Interaction with synphilin-1 promotes inclusion formation of alpha-synuclein:mechanistic insights and pathological implication[J]. Faseb J, 2010, 24(1): 196-205. DOI: 10.1096/fj.09-133082.
[22] ZABROCKI P, BASTIAENS I, DELAY C, et al. Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson[J]. BBA-Mol Cell Res, 2008, 1783(10): 1767-1780.
[23] YU J P, MALKOVA S, LYUBCHENKO Y L. Alpha-synuclein misfolding:Single molecule AFM force spectroscopy study[J]. J Mol Biol, 2008, 384(4): 992-1001. DOI: 10.1016/j.jmb.2008.10.006.
[24] HONG D P, XIONG W, CHANG J Y, et al. The role of the C-terminus of human alpha-synuclein:Intra-disulfide bonds between the C-terminus and other regions stabilize non-fibrillar monomeric isomers[J]. Febs Lett, 2011, 585(3): 561-566. DOI: 10.1016/j.febslet.2011.01.009.
[25] LOWE R, POUNTNEY D L, JENSEN P H, et al. Calcium(Ⅱ) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain[J]. Protein Sci, 2004, 13(12): 3245-3252.
[26] LI W X, WEST N, COLLA E, et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations[J]. P Natl Acad Sci USA, 2005, 102(6): 2162-2167. DOI: 10.1073/pnas.0406976102.