[1] |
Bedi D, Gillespie J W, Petrenko V A, et al. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins[J].
Mol Pharm , 2013, 10 (2) : 551-559 DOI:10.1021/mp3006006 |
|
[2] |
Khandelwal G, Jayaram B. DNA-water interactions distinguish messenger RNA genes from transfer RNA genes[J].
J Am Chem Soc , 2012, 134 (21) : 8814-8816 DOI:10.1021/ja3020956 |
|
[3] |
Kierzek E, Pasternak A, Pasternak K, et al. Contributions of stacking, preorganization, and hydrogen bonding to the thermodynamic stability of duplexes between RNA and 2′-O-Methyl RNA with locked nucleic acids[J].
Biochemistry , 2009, 48 (20) : 4377-4387 DOI:10.1021/bi9002056 |
|
[4] |
Shaw N N, Arya D P. Recognition of the unique structure of DNA: RNA hybrids[J].
Biochimie , 2008, 90 (7) : 1026-1039 DOI:10.1016/j.biochi.2008.04.011 |
|
[5] |
Sardo M, Siegel R, Santos S M, et al. Combining multinuclear high-resolution solid-state MAS NMR and computational methods for resonance assignment of glutathione tripeptide[J].
J Phys Chem A , 2012, 116 (25) : 6711-6719 DOI:10.1021/jp302128r |
|
[6] |
Yao L, Grishaev A, Cornilescu G, et al. The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy[J].
J Am Chem Soc , 2010, 132 (31) : 10866-10875 DOI:10.1021/ja103629e |
|
[7] |
Nozad A G, Meftah S, Ghasemi M H, et al. Investigation of intermolecular hydrogen bond interactions in crystalline l-Cysteine by DFT calculations of the oxygen-17, nitrogen-14, and hydrogen-2 EFG tensors and AIM analysis[J].
Biophys Chem , 2009, 141 (1) : 49-58 DOI:10.1016/j.bpc.2008.12.013 |
|
[8] |
Morrissey J H, Tajkhorshid E, Sligar S G, et al. Tissue factor/factor Ⅶ a complex: role of the membrane surface[J].
Thromb Res , 2012, 129 (S2) : S8-S10 |
|
[9] |
Bechinger B, Resende J M, Aisenbrey C. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments[J].
Biophys Chem , 2011, 153 (2, 3) : 115-125 |
|
[10] |
戴晨晔, 刘买利, 李从刚. 低盐和高盐环境下α-Synuclein构象的19F NMN研究[J].
波谱学杂志 , 2015, 32 (1) : 33-40 Dai Chen-ye, Liu Mai-li, Li Cong-gang. Salt content-dependent conformational changes of α-Synuclein studied by 19F NMR[J].
Chinese J Magn Reson , 2015, 32 (1) : 33-40 |
|
[11] |
郁桂云, 彭路明. 固体核磁共振谱学研究层状双氢氧化物[J].
波谱学杂志 , 2015, 32 (2) : 228-247 Yu Gui-yun, Peng Lu-ming. Solid-state NMR studies of layered double hydroxides: a review[J].
Chinese J Magn Reson , 2015, 32 (2) : 228-247 |
|
[12] |
Pike K J, Lemaitre V, Kukol A, et al. Solid-state 17O NMR of amino acids[J].
J Phys Chem B , 2004, 108 (26) : 9256-9263 DOI:10.1021/jp049958x |
|
[13] |
Lemaître V, de Planque M R R, Howes A P, et al. Solid-state 17O NMR as a probe for structural studies of proteins in biomembranes[J].
J Am Chem Soc , 2004, 126 (47) : 15320-15321 DOI:10.1021/ja0473283 |
|
[14] |
Wu G, Dong S. Two-dimensional 17O multiple quantum magic-angle spinning NMR of organic solids[J].
J Am Chem Soc , 2001, 123 (37) : 9119-9125 DOI:10.1021/ja0102181 |
|
[15] |
Profeta M, Mauri F, Pickard C J. Accurate first principles prediction of 17O NMR parameters in SiO2: assignment of the zeolite ferrierite spectrum[J].
J Am Chem Soc , 2003, 125 (2) : 541-548 DOI:10.1021/ja027124r |
|
[16] |
Yamada K, Dong S, Wu G. Solid-state 17O NMR investigation of the carbonyl oxygen electric-field-gradient tensor and chemical shielding tensor in amides[J].
J Am Chem Soc , 2000, 122 (47) : 11602-11609 DOI:10.1021/ja0008315 |
|
[17] |
Latosińska J N, Latosińska M, Tomczak M A, et al. Conformational stability and thermal pathways of relaxation in triclosan (Antibacterial/Excipient/Contaminant) in solid-state: Combined spectroscopic (1H NMR) and computational (Periodic DFT) study[J].
J Phys Chem A , 2015, 119 (20) : 4864-4874 DOI:10.1021/acs.jpca.5b02393 |
|
[18] |
黄忆宁. 应用多核固体核磁共振光谱与量子化学计算的方法研究层状的过渡金属硫化物[J].
波谱学杂志 , 2013, 30 (4) : 461-487 Sutrisno Andre, Huang Yi-ning. Multinuclear solid-state NMR and quantum chemical investigations of layered transition metal disulfides[J].
Chinese J Magn Reson , 2013, 30 (4) : 461-487 |
|
[19] |
ŁuczyńskaK, DrużbickiK, LyczkoK, 等. Experimental (X-ray, 13C CP/MAS NMR, IR, RS, INS, THz) and solid-state DFT study on (1:1) co-crystal of bromanilic acid and 2, 6-dimethylpyrazine[J].
J Phys Chem B , 2015, 119 (22) : 6852-6872 |
|
[20] |
Zheng A, Liu S B, Deng F. 19F Chemical shift of crystalline metal fluorides: Theoretical predictions based on periodic structure models[J].
J Phys Chem C , 2009, 113 (33) : 15018-15023 DOI:10.1021/jp904454t |
|
[21] |
Gervais C, Dupree R, Pike K J, et al. Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids[J].
J Phys Chem A , 2005, 109 (31) : 6960-6969 DOI:10.1021/jp0513925 |
|
[22] |
Uldry A C, Griffin J M, Yates J R, et al. Quantifying weak hydrogen bonding in iracil and 4-cyano-4'-ethynylbiphenyl: A combined computational and experimental investigation of NMR chemical shifts in the solid state[J].
J Am Chem Soc , 2008, 130 (3) : 945-954 DOI:10.1021/ja075892i |
|
[23] |
Esrafili M D, Elmi F, Hadipour N L. Density functional theory investigation of hydrogen bonding effects on the oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors of anhydrous chitosan crystalline structure[J].
J Phys Chem A , 2007, 111 (5) : 963-970 DOI:10.1021/jp066761r |
|
[24] |
Wu G, Dong S, Ida R, et al. A Solid-state 17O nuclear magnetic resonance study of nucleic acid bases[J].
J Am Chem Soc , 2002, 124 (8) : 1768-1777 DOI:10.1021/ja011625f |
|
[25] |
Ozeki K, Sakabe N, Tanaka J. The crystal structure of thymine[J].
Acta Cryst, Section B , 1969, 25 (6) : 1038-1045 DOI:10.1107/S0567740869003505 |
|
[26] |
Stewart R F, Jensen L H. Redetermination of the crystal structure of uracil[J].
Acta Cryst , 1967, 23 (6) : 1102-1105 DOI:10.1107/S0365110X67004360 |
|
[27] |
Barker D L, Marsh R E. The crystal structure of cytosine[J].
Acta Cryst , 1964, 17 (12) : 1581-1587 DOI:10.1107/S0365110X64003899 |
|
[28] |
Thewalt U, Bugg C E, Marsh R E. The crystal structure of guanine monohydrate[J].
Acta Cryst, Section B , 1971, 27 (12) : 2358-2363 DOI:10.1107/S0567740871005880 |
|
[29] |
Frisch M J, Trucks G W, Schlegel H B, et al.
Gaussian 09, B[M]. Wallingford: Gaussian Inc, 2009 |
|
[30] |
Chai J D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J].
Phys Chem Chem Phys , 2008, 10 (44) : 6615-6620 DOI:10.1039/b810189b |
|
[31] |
Perdew J P, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations[J].
J Chem Phys , 1996, 105 (22) : 9982-9985 DOI:10.1063/1.472933 |
|
[32] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J].
Phys Rev Lett , 1996, 77 (18) : 3865-3868 DOI:10.1103/PhysRevLett.77.3865 |
|
[33] |
Perdew J P, Burke K, Ernzerhof M. Perdew, burke, and Ernzerhof reply[J].
Phys Rev Lett , 1998, 80 (4) : 891-891 DOI:10.1103/PhysRevLett.80.891 |
|
[34] |
Pickard C J, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts[J].
Phys Rev B , 2001, 63 (24) : 245101 DOI:10.1103/PhysRevB.63.245101 |
|
[35] |
Vaara J, Lounila J, Ruud K, et al. Rovibrational effects, temperature dependence, and isotope effects on the nuclear shielding tensors of water: A new 17O absolute shielding scale[J].
J Chem Phys , 1998, 109 (19) : 8388-8397 DOI:10.1063/1.477501 |
|
[36] |
Wasylishen R E, Mooibroek S, Macdonald J B. A more reliable oxygen-17 absolute chemical shielding scale[J].
J Chem Phys , 1984, 81 (3) : 1057-1059 DOI:10.1063/1.447799 |
|
[37] |
Pyykko P. Spectroscopic nuclear quadrupole moments[J].
Mol Phys , 2001, 99 (19) : 1617-1629 DOI:10.1080/00268970110069010 |
|
[38] |
Johnson E R, Keinan S, Mori-Sánchez P, et al. Revealing noncovalent interactions[J].
J Am Chem Soc , 2010, 132 (18) : 6498-6506 DOI:10.1021/ja100936w |
|
[39] |
Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J].
J Comp Chem , 2012, 33 (5) : 580-592 DOI:10.1002/jcc.v33.5 |
|
[40] |
Chu Y, Zheng A, Deng F. Slight channel difference influences the reaction pathway of methanol-to-olefins conversion over acidic H-ZSM-22 and H-ZSM-12 zeolites[J].
Catal Sci Technol , 2015, 5 (7) : 3507-3517 DOI:10.1039/C5CY00312A |
|
[41] |
Chu Y, Zheng A, Deng F. Strong or weak acid, which is more efficient for Beckmann rearrangement reaction over solid acid catalysts?[J].
Catal Sci Technol , 2015, 5 (7) : 3675-3681 DOI:10.1039/C5CY00619H |
|
[42] |
Danelius E, Andersson H, Brath U, et al. Solution NMR investigations of weak interactions using peptidomimetic templates[C]. San Francisco: 248th ACS National Meeting, 2014.
|
|
[43] |
Bogle X, Vazquez R, Greenbaum S, et al. Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR[J].
J Phys Chem Lett , 2013, 4 (10) : 1664-1668 DOI:10.1021/jz400661k |
|
[44] |
Ropp J, Lawrence C, Farrar T C, et al. Rotational motion in liquid water is anisotropic: A nuclear magnetic resonance and molecular dynamics simulation study[J].
J Am Chem Soc , 2001, 123 (33) : 8047-8052 DOI:10.1021/ja010312h |
|
[45] |
Ida R, De Clerk M, Wu G. Influence of N-H…O and C-H…O Hydrogen bonds on the 17O NMR tensors in crystalline uracil: computational study[J].
J Phys Chem A , 2006, 110 (3) : 1065-1071 DOI:10.1021/jp0554947 |
|
[46] |
Hu J Z, Facelli J C, Alderman D W, et al. 15N Chemical shift tensors in nucleic acid bases[J].
J Am Chem Soc , 1998, 120 (38) : 9863-9869 DOI:10.1021/ja9816786 |
|
[47] |
Zheng A, Liu S B, Deng F. 13C shielding tensors of crystalline amino acids and peptides: Theoretical predictions based on periodic structure models[J].
J Comp Chem , 2009, 30 (2) : 222-235 DOI:10.1002/jcc.v30:2 |
|
[48] |
Reed A E, Weinstock R B, Weinhold F. Natural population analysis[J].
J Chem Phys , 1985, 83 (2) : 735-746 DOI:10.1063/1.449486 |
|
[49] |
卢天, 陈飞武. 原子电荷计算方法的对比[J].
物理化学学报 , 2012, 28 (1) : 1-18 Lu Tian, Chen Fei-wu. Comparison of computational methods for atomic charges[J].
Acta Phys-Chim Sin , 2012, 28 (1) : 1-18 |
|
[50] |
Gawinecki R, Kolehmainen E, Dobosz R, et al. Intramolecular interactions in nitroamines studied by 1H, 13C, 15N and 17O NMR spectral and quantum chemical methods[J].
J Iran Chem Soc , 2014, 11 (1) : 17-25 DOI:10.1007/s13738-013-0269-6 |
|