文章信息
- 柴江, 王欣, 李慧敏, 张欣, 杨芳, 唐志书, 宋小妹, 裴月湖, 梅其炳, 岳正刚
- CHAI Jiang, WANG Xin, LI Hui-min, ZHANG Xin, YANG Fang, TANG Zhi-shu, SONG Xiao-mei, PEI Yue-hu, MEI Qi-bing, YUE Zheng-gang
- 延龄草中2个甾体皂苷的2D NMR研究
- A Two-Dimensional NMR Study on Steroid Glycosides Extracted from Trillium tschonoskii
- 波谱学杂志, 2015, 37(1): 105-115
- Chinese Journal of Magnetic Resonance, 2015, 37(1): 105-115
- http://dx.doi.org/10.11938/cjmr20150112
-
文章历史
收稿日期: 2014-05-26
收修改稿日期: 2015-01-12
DOI:10.11938/cjmr20150112
2. 第四军医大学,药学院,国家中药管理局中药胃肠药理国家重点研究室,秦巴山区中药发展协同创新中心,陕西 西安 710032;
3. 西安市第一医院,陕西 西安 710002;
4. 沈阳药科大学,中药学院,辽宁 沈阳 110016
2. Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Collaborative Innovation Center for Chinese Medicine in Qinba Mountains, School of Pharmacy, the Fourth Military Medical University, Xi′an 710032, China;
3. The First Hospital of Xi′an, Xi′an 710002, China;
4. School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
延龄草为百合科(Liliaceae)延龄草属(Trillium)延龄草(Trillium tschonoskii Maxim.)植物,又名头顶一颗珠、芋儿七、尸儿七等,主要以干燥根及根茎入药,是秦巴山区名贵中草药,土家族“四大神药”之一,也是陕西地区“太白七药”之一.其味甘性平有小毒,传统主治头晕目眩、跌打损伤、神经衰弱等疾病[1, 2].现代药理学研究表明其具有降压、镇痛、抗炎、抗肿瘤、凝血等药理作用,引起人们广泛关注[3-5].目前从该植物中已经分离得到甾体皂苷、黄酮苷、倍半萜苷等化合物,其中主要成分为甾体皂苷[6, 7-9].本课题组对其化学成分进行了较为系统的研究,从中分离得到11个化合物[10],其中第一次分离得到的化合物(25S)-27-羟基-偏诺皂苷元-3β-O-α-L-吡喃鼠李糖基-(1→4)-[O-α-L-吡喃鼠李糖基-(1→2)]-O-β-D-吡喃葡萄糖苷{(25S)-27-hydroxy-penogenin-3β-O-α-L-rhamnopyranosyl-(1→4)-[O-α-L-rhamnopyranosyl-(1→2)]-O-β-D-glucopyranoside, 1}、(25S)-27-羟基-偏诺皂苷元-3β-O-α-L-吡喃鼠李糖基-(1→4)-O-α-L-吡喃鼠李糖基-(1→4)-[O-α-L-吡喃鼠李糖基-(1→2)]-O-β-D-吡喃葡萄糖苷(polyphylloside Ⅲ, 2),虽然已有学者从其它植物中分离得到这两个化合物,并对其碳谱进行了归属,但未曾报到这两个化合物完整的氢谱数据[11, 12].
1 实验部分 1.1 仪器Bruker AV-400型超导核磁共振谱仪测定,溶剂为pyridine-d5.TMS为内标.1H NMR和13C NMR的工作频率分别为400.13和100.6 MHz,峰宽分别为8 223.68 Hz和24 038.46 Hz.二维谱包括HMBC,HMQC,1H-1H COSY和NOESY谱,均采用标准脉冲程序,Waters公司Waters Quattro Premier型质谱仪.
1.2 药材延龄草药材于2010年9月采自陕西秦岭太白山,由陕西省药检所郭耀武药师鉴定为延龄草(Trillium tschonoskii Maxim.)的干燥根及根茎,样本现保存在秦巴山区中药发展协同创新中心研究室.
1.3 提取分离延龄草干燥根及根茎20 kg,经70%的乙醇/水溶液加热回流提取3次,每次2 h,减压回收溶剂得醇提浸膏; 将该醇提浸膏加适量水分散溶解,经D101大孔吸附树脂柱吸附24 h,依次用体积分数为0%,20%,60%,95%的乙醇/水溶液洗脱,将60%醇洗脱液浓缩液分3次上MCI-Gel大孔凝胶树脂柱,依次用体积分数为:0%,10%,20%,30%,50%,70%和95%的乙醇水洗脱进行粗分,最后用70%丙酮冲洗处理柱子,各流份减压浓缩蒸干,其中50%醇层部位用ODS拌样后上ODS柱(甲醇-水梯度洗脱),最终得到A,B,C,D,E,F,G和H八个流份.流份H经凝胶Sephadex LH-20柱色谱和中低压制备液相色谱再次纯化,分离得到化合物1,2.
2 结果与讨论 2.1 化合物1的结构鉴定化合物1白色粉末,Liebermann-Burchard反应阳性,Molish反应阳性;(+)-ESI-MS给出m/z 923 [M+Na]+的准分子离子峰.1H NMR谱中可看到一个烯烃质子信号δH 5.32 (1H, d, J=4.2 Hz),3个糖端基质子信号δH 4.97 (1H, d, J=7.9 Hz),5.85 (1H, br.s)和6.38 (1H, br.s),5个甲基质子信号δH 0.970 (3H, s),1.09 (3H, s),1.27 (3H, d, J=7.1 Hz),1.65 (3H, d, J=5.1 Hz)和1.82 (3H, d, J=6.0 Hz).13C NMR及DEPT谱,显示该化合物共含45个碳信号,其中有5个甲基、12个亚甲基、23个次甲基,其中(δC 100.6,78.84,77.41,78.45,78.22,61.66)可以归属为一组葡萄糖的信号,(δC 102.5,73.05,73.23,74.41,70.06,19.14)以及(δC 103.3,73.05,73.26,74.57,70.86,19.03)可以归属为两组鼠李糖信号[13, 14];剩余27个碳原子为苷元上碳原子[6],初步推断化合物1为甾体皂苷衍生物;δC 110.7为典型的螺甾皂苷C-22位的特征信号;δC 90.45、90.64为17位连有羟基时C-16和C-17的特征碳信号;因此,化合物1结构可以推断为连3个糖的偏诺皂苷衍生物[6].
综合采用2D NMR对化合物1进行了结构解析,通过HMQC,将化合物1所有碳氢信号进行了准确的归属(见表 1),通过1H-1H COSY、HMBC,对化合物1碳氢信号进行了相关连接.在化合物1的HMQC谱,较低场区可见δH4.97 (1H, d, J=7.9 Hz, Glc-1)与δC100.6 (Glc-1)相关,δH 6.38 (1H, br.s, Rha-1′)与δC102.5 (Rha-1′)相关,δH5.85 (1H, br.s, Rha-1′′)与δC103.3 (Rha-1′′)相关,其中(δH4.97, δC100.6)可归属为一组β-D-葡萄糖端基碳氢信号[13, 14],[(δH 6.39, δC102.5), (δH 5.85, δC103.3)]可归属为两组α-L-鼠李糖的端基碳氢信号[13, 14].分析化合物1的1H-1H COSY和HMBC谱,在1H-1H COSY谱中,H-1/H-2,H-2/H-3和H-3/H-4分别相关,在HMBC谱中,甲基质子δH 1.09 (H-19)与δC 37.62 (C-1),38.01 (C-10),50.63 (C-9)和141.1 (C-5)相关,烯碳质子δH5.32 (H-6)与δC39.41 (C-4),32.84 (C-7)和38.01 (C-10)相关,而且δC 38.01 (C-10)和δC 141.1 (C-5)是季碳,推断存在(图 2)所示的A环结构;同时,1H-1H COSY谱中,H-6/H-7,H-7/H-8,H-8/H-9,H-8/H-14,H-9/H-11,H-11/H-12,H-14/H-15和H-15/H-16相关,HMBC谱中,δH4.49 (H-16)与δC 45.64 (C-13)和30.62 (C-15)相关,δH0.970 (H-18)与δC 32.92 (C-12),45.64 (C-13),53.47 (C-14)和90.4 (C-17)相关,δH1.27 (H-21)与δC 90.4 (C-17)、45.5 (C-20)和110.7 (C-22)相关,而且δC 90.45 (C-17)、90.64 (C-16)为17位连有羟基时螺甾烷中C-16、C-17位的特征碳信号,因此推断存在(图 2)中B,C,D和E环的连接结构;此外,1H-1H COSY谱中,H-24/H-23,H-24/H-25,H-25/H-26和H-25/H-27分别相关,HMBC谱中,δH(1.50,H-23β)与δC 24.05 (C-24),110.7 (C-22)和45.53 (C-20)相关,以及δH(3.93, H-26α)与δC 24.05 (C-24)和39.44 (C-25)相关,而且δC 110.7 (C-22)是典型的22位螺原子,因此推断出有E、F环所示连接的结构.另外,HMBC显示δH 5.85 (Rha-1′′)与δC78.45 (Glc-4)相关,δH6.38 (Rha-1′)与δC78.84 (Glc-2)相关,δH4.97 (Glc-1)与δC78.45 (C-3)相关,因此表明存在(Rha-1′′-O-Glc-4)、(Rha-1′-O-Glc-2)及(Glc-1-O-C-3)连接顺序.
NO. | δH | δC | 1H-1H COSY | HMBC | NOESY | ||||
本次试验 | 文献[11] | 本次试验 | 文献[11] | ||||||
1 | α | 0.990*(1H, m) | 37.62 | 37.5 | H-1 β, H-2 α | C-19, C-10, C-5 | |||
β | 1.78*(1H, m) | H-1 a, H-2 α | |||||||
2 | α | 2.08*(1H, m) | 30.44 | 30.2 | H-1 α, H-2 β | C-4 | |||
β | 2.25*(1H, m) | H-2 α, H-3 | |||||||
3 | 3.88*(1H, m) | 78.45 | 77.8 | H-2 β, H-4 β | C-2, Glc-1 | ||||
4 | α | 2.08(1H, m) | 39.41 | 38.9 | H-4 β | C-2, C-3, C-5, C-6, C-10 | |||
β | 2.72*(1H, m) | H-3, H-4 α | H-1 α | ||||||
5 | / | 141.1 | 140.8 | / | / | H-19 | |||
6 | 5.32(1H, d, J=4.2 Hz) | 5.3(1H, mm) | 122.3 | 121.8 | H-α, H-7 β | C-4, C-7, C-10 | |||
7 | α | 1.60*(1H, m) | 32.84 | 32.1 | H-6, H-7 β, H-8 | C-5, C-6, C-9 | |||
β | 1.88*(1H, m) | H-6, H-7 α | |||||||
8 | 1.88*(1H, m) | 32.15 | 32.4 | H-7 α, H-9, H-14 | C-11 | H-11 β, H-18 | |||
9 | 0.980*(1H, m) | 50.63 | 50.3 | H-8, H-11 | C-19 | ||||
10 | / | 38.01 | 37.2 | / | / | ||||
11 | α | 1.48*(1H, m) | 21.42 | 21.0 | H-9, H-11 β, H-12 α | ||||
β | 1.56*(1H, m) | H-9, H-11 a, H-12 α, H-12 β | H-8, H-18 | ||||||
12 | α | 1.05*(1H, m) | 32.92 | 31.8 | H-11 α, H-11 β, H-12 β | C-11, C-13, C-14 | |||
β | 2.14*(1H, m) | H-11 β, H-12 α | |||||||
13 | / | 45.64 | 44.8 | / | / | ||||
14 | 1.80*(1H, m) | 53.47 | 53.0 | H-8, H-15 α, H-15 β | C-12, C-18 | ||||
15 | α | 2.20*(1H, m) | 30.62 | 32.0 | H-14, H-15 β, H-16 | C-16, C-17 | |||
β | 4.52*(1H, m) | H-14, H-15 α, H-16 | |||||||
16 | 4.49*(1H, m) | 90.64 | 90.0 | H-15 | C-15, C-17 | ||||
17 | / | 90.45 | 90.0 | / | / | ||||
18 | 0.970(3H, s) | 0.96(3H, s) | 17.64 | 17.1 | / | C-12, C-13, C-14, C-17 | H-11 α, H-20 | ||
19 | 1.09(3H, s) | 1.08(3H, s) | 19.93 | 19.4 | / | C-1, C-5, C-9, C-10 | H-4 | ||
20 | 2.32(1H, m) | 2.29(1H, q, J=7.2Hz) | 45.53 | 44.8 | H-21 | C-13, C-17, C-21, C-22 | H-18 | ||
21 | 1.27(3H, d, J=7.1 Hz) | 1.23(3H, d, J=7.2Hz) | 10.36 | 9.7 | H-20 | C-20, C-17, C-22 | |||
22 | / | 110.7 | 110.2 | / | / | ||||
23 | α | 1.86*(1H, m) | 32.55 | 31.8 | H-23 β, H-24 α | C-20, C-22, C-24 | H-20, H-25 | ||
β | 1.50*(1H, m) | H-23 α, H-24 α | |||||||
24 | α | 1.81*(1H, m) | 24.05 | 23.6 | H-23 α, H-23 β, H-24 β, H-25 | C-25, C-26, C-27 | |||
β | 1.87*(1H, m) | H-24 α, H-25 | |||||||
25 | 2.74(1H, m) | 2.75(1H, m) | 39.44 | 39.0 | H-24 α, H-24 β, H-26 α, H-27 α, H-27 β | C-23, C-24, C-26, C-27 | H-23 α | ||
26 | α | 3.93(1H, dd, J=11.2, 11.2 Hz) | 4.05(1H, dd, J=11.2, 11.2 Hz) | 64.42 | 63.9 | H-25, H-26 β | C-24, C-25 | ||
β | 4.10*(1H, m) | 3.88(1H, dd, J=11.2, 11.2 Hz) | H-26 α | ||||||
27 | α | 3.66(1H, dd, J=9.3, 11.1 Hz) | 3.63(1H, dd, J=11.9, 7.1 Hz) | 64.85 | 64.4 | H-25, H-27 β | C-24, C-25 | ||
β |
|
3.72(1H, dd, J=11.0, 10.0 Hz) | H-25, H-27 α | ||||||
Glc-1 | 4.97(1H, d, J=7.9 Hz) | 4.91(1H, d, J=6.2 Hz) | 100.6 | 100.3 | Glc-2 | Glc-2, Glc-3, C-3 | |||
2 | 4.44*(1H, ca.) | 78.84 | 78.0 | Glc-1, Glc-3 | Glc-1 | ||||
3 | 3.65*(1H, ca.) | 77.41 | 76.8 | Glc-2, Glc-4 | Glc-1 | Glc-5 | |||
4 | 3.88*(1H, t, J=8.9 Hz) | 78.45 | 78.0 | Glc-3, Glc-5 | Glc-6, Rha-1′′ | Glc-6 β | |||
5 | 4.24*(1H, br.d, J=10.4 Hz) | 78.22 | 77.6 | Glc-4, Glc-6 α, Glc-6 β | Glc-1, Glc-6 | Glc-3 | |||
6 | α | 4.23*(1H, br.d, J=10.5 Hz) | 61.66 | 61.3 | Glc-5, Glc-6 β | Glc-4, Glc-5 | |||
β | 4.10*(1H, m) | Glc-5, Glc-6 a | Glc-4 | ||||||
Rha-1′ | 6.38(1H, br.s) | 6.36 (1H, br) | 102.5 | 102.0 | Rha-2′ | Rha-5′, Glc-2 | Rha-5′ | ||
2′ | 4.55*(1H, br.d, J=9.03 Hz) | 73.05 | 72.4 | Rha-1′, Rha-3′ | Rha-4′, Rha-1′ | Rha-3′ | |||
3′ | 4.72*(1H, dd, J=3.0, 9.0 Hz) | 73.23 | 72.7 | Rha-2′, Rha-4′ | Rha-5′, Rha-4′ | Rha-2′ | |||
4′ | 4.38*(1H, t, J=9.4 Hz) | 74.41 | 73.9 | Rha-3′, Rha-5′ | Rha-3′, Rha-5′, Rha-6′ | ||||
5′ | 4.98*(1H, m) | 70.06 | 69.4 | Rha-4′, Rha-6′ | Rha-4′, Rha-6′ | Rha-1′ | |||
6′ | 1.82*(3H, d, J=6.0 Hz) | 19.14 | 18.6 | Rha-5′ | Rha-4′, Rha-5′ | ||||
Rha-1′′ | 5.85(1H, br.s) | 5.82(1H, br) | 103.3 | 102.9 | Rha-2′′ | Glc-4, Rha-2′′ | Rha-5′′ | ||
2′′ | 4.87*(1H, br.s) | 73.05 | 72.4 | Rha-1′′, Rha-3′′ | Rha-4′′ | Rha-3′′ | |||
3′′ | 4.67*(1H, dd, J=3.0, 9.0 Hz) | 73.26 | 72.8 | Rha-2′′, Rha-4′′ | Rha-1′′, Rha-2′′, Rha-5′′ | Rha-2′′ | |||
4′′ | 4.40*(1H, t, J=9.0 Hz) | 74.57 | 74.0 | Rha-3′′, Rha-5′′ | Rha-3′′, Rha-5′′, Rha-6′′ | ||||
5′′ | 4.98*(1H, m) | 70.86 | 70.3 | Rha-4′′, Rha-6′′ | Rha-1′′, Rha-3′′, Rha-6′′ | Rha-1′′ | |||
6′′ | 1.65*(3H, d, J=5.1 Hz) | 19.03 | 18.5 | Rha-5′′ | Rha-4′′ | ||||
*为文献中未明确归属的碳氢信号 |
综合以上分析,确定化合物1为27-羟基-偏诺皂苷元-3β-O-α-L-吡喃鼠李糖基-(1→4)-[O-α-L-吡喃鼠李糖基-(1→2)]-O-β-D-吡喃葡萄糖苷.同时,在NOSEY谱中(图 2),H-23α/H-20和H-23α/H-25相关,而且C-23~C-27的化学位移与(25S)-27-hydroxypenogenin-3-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranoside相似[6],而与trikamsteroside A有明显差异[6],表明化合物1的绝对构型与(25S)-27-hydroxypenogenin-3-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranoside相同.因此,化合物1的最终结构为(25S)-27-羟基-偏诺皂苷元-3β-O-α-L-吡喃鼠李糖基-(1→4)-[O-α-L-吡喃鼠李糖基-(1→2)]-O-β-D-吡喃葡萄糖苷{(25S)-27-hydroxypenogenin-3β-O-α-L-rhamnopyranosyl-(1→4)-[O-α-L-rhamnopyranosyl-(1→2)]-O-β-D-glucopyranoside}.
2.2 化合物2的结构鉴定化合物2白色粉末,Liebermann-Burchard反应阳性,Molish反应阳性.(+)-ESI-MS:m/z1 047 [M + Na]+的准分子离子峰.1H NMR谱中可看到一个烯烃质子信号δH5.29 (1H, d, J=4.3 Hz),4个糖端基质子信号δH 4.97 (1H, d, J=7.2 Hz)、5.87 (1H, br.s),6.35 (1H, br.s)和6.45 (1H, br.s),6个甲基质子信号δH 0.96 (3H, br.s)、1.08 (3H, br.s)、1.25 (3H, d, J=7.0 Hz)、1.58 (3H, d, J=6.1 Hz)、1.58 (3H, d, J=6.1 Hz)和1.75 (3H, d, J=6.0 Hz).13C NMR及DEPT谱,显示该化合物共含51个碳信号,其中有6个甲基,12个亚甲基,28个次甲基,5个季碳;其中(δC100.7,80.82,78.51,78.25,77.35,61.75)可以归属为一组葡萄糖的信号,(δC 102.4,77.51,72.63,72.36,70.16,18.27)、(δC 102.5,73.85,72.67,72.47,68.66,18.73)以及(103.6,73.93,73.01,72.55,69.35,18.97)可以归属为3组鼠李糖信号[13, 14],剩余27个碳信号为母核信号,且与化合物1比较多出一组鼠李糖信号,其它化学位移基本一致,因此,化合物2结构可以推断为连4个糖的偏诺皂苷衍生物[6].
综合采用2D NMR对化合物2进行了结构解析,通过HSQC,将化合物2上所有碳氢信号进行准确的归属(见表 2),通过1H-1H COSY和HMBC,对化合物2碳氢信号进行了相关连接.在HSQC谱中δH4.97 (1H, d, J=7.2 Hz)与δC 100.7相关,δH6. 35 (1H, br.s)与δC 102.5相关,δH5.87 (1H, br.s)与δC102.4相关,和δH6.45 (1H, br.s)与δC103.6相关,其中(δH4.97,δC 100.7)可确定为一个β-D-葡萄糖的端基碳氢信号,(δH6.35,δC 102.5)、(δH5.87,δC102.4)、(δH6.45,δC103.6)可确定为3个鼠李糖α-L-鼠李糖的端基碳氢信号[16],在HMBC谱中可见δH4.97 (Glc-1)与δC78.25 (C-3)、δH6.35 (Rha-1′)与δC80.82 (Glc-2)、δH5.87 (Rha-1′′)与δC78.25 (Glc-4)、以及δH6.45 (Rha-1′′′)与δC77.51 (Rha-4′′)相关,表明存在(Glc-1-O-C-3)、(Rha-1′-O-Glc-2)、(Rha-1′′-O-Glc-4)和(Rha-1′′′-O-Rha-4′′)连接结构,通过以上分析,确定化合物2为偏诺皂苷元3位成苷,连接1个β-D-葡萄糖,3个α-L-鼠李糖.在NOESY谱中,H-23α/H-20和H-25相关,而且C-23~C-27化学位移与化合物1相似,因此,表明25位氢也处在直立键,即25S.
NO. | δH | δC | 1H-1H COSY | HMBC | NOESY | ||||
本次试验 | 文献[12] | 本次试验 | 文献[12] | ||||||
1 | α | 0.980*(H, m) | 37.89 | 37.6 | H-1 β, H-2 α | C-19, C-2, C-5 | H-3 | ||
β | 1.78*(1H, m) | H-1 α, H-2 α | |||||||
2 | α | 1.89*(1H, m) | 30.43 | 30.2 | H-2 β, H-1 α | C-1, C-4 | |||
β | 2.05*(1H, m) | H-2 α | |||||||
3 | 3.77*(1H, m) | 78.25 | 78.3 | H-2 β, H-4 α, H-4 β | C-2, C-4, Glc-1 | H-1 α | |||
4 | α | 2.73*(1H, m) | 39.34 | 39.0 | H-3, H-4 β | C-2, C-5, C-6, C-10 | |||
β | 2.06*(1H, m) | H-3, H-4 α | |||||||
5 | / | 141.2 | 140.9 | / | / | ||||
6 | 5.29*(1H, d, J=4.3 Hz) | 122.2 | 121.8 | H-7 β | C-4, C-7 | ||||
7 | α | 1.59*(1H, m) | 32.28 | 32.1 | H-6, H-7 β, H-8 | C-6, C-14 | |||
β | 1.88*(1H, m) | H-6, H-7 α | |||||||
8 | 1.88*(1H, m) | 32.78 | 32.4 | H-7 α, H-9, H-14 | C-6, C-11, C-14 | H-11 β, H-18 | |||
9 | 0.960*(1H, m) | 50.6 | 50.3 | H-8, H-11 | C-19 | ||||
10 | 37.5 | 37.2 | / | / | |||||
11 | α | 1.49*(1H, m) | 21.3 | 21.0 | H-11 β, H-9, H-12 α | C-12, C-13 | |||
β | 1.57*(1H, m) | H-9, H-11 α, H-12 α, H-12 β | H-8, H-18 | ||||||
12 | α | 1.05*(1H, m) | 32.16 | 32.5 | H-11 α, H-11 β, H-12 β | C-11, C-13, C-14 | |||
β | 2.15*(H, m) | H-11 β, H-12 α | |||||||
13 | / | 45.48 | 45.1 | / | / | ||||
14 | 2.06*(1H, m) | 53.38 | 53.1 | H-8, H-15 α, H-15 β | C-8, C-15, C-18 | ||||
15 | α | 1.81*(1H, m) | 32.57 | 31.8 | H-14, H-15 β, H-16 | C-14, C-16, C-17 | |||
β | 2.22*(1H, m) | H-14, H-15 α, H-16 | |||||||
16 | 4.49*(1H, m) | 90.48 | 90.2 | H-15 α, H-15 β | C-15, C-17, C-18, C-20 | ||||
17 | / | 90.5 | 90.2 | / | / | ||||
18 | 0.960(3H, br.s) | 0.97(3H, s) | 17.49 | 17.1 | / | C-12, C-13, C-14, C-17 | H-11 α, H-20 | ||
19 | 1.08(3H, br.s) | 1.08(3H, s) | 19.78 | 19.4 | / | C-1, C-5, , C-9, C-10 | H-4 | ||
20 | 2.33*(1H, m) | 45.23 | 44.9 | H-21 | C-13, C-17, C-21, C-22 | H-18 | |||
21 | 1.25(3H, d, J=7.0 Hz) | 1.22(3H, d, J=6.2 Hz) | 10.06 | 9.6 | H-20 | C-17, C-20, C-22 | |||
22 | / | 110.6 | 110.3 | / | / | ||||
23 | α | 1.87*(1H, m) | 32.13 | 32.1 | H-23 β, H-24 α | C-20, C-22, C-24 | H-20, H-25 | ||
β | 1.52*(1H, m) | H-23 α | |||||||
24 | α | 1.81*(1H, m) | 24.01 | 23.6 | H-23 α, H-24 β, H-25 | C-22, C-23, C-25, C-26, C-27 | |||
β | 1.87*(1H, m) | H-24 α, H-25 | |||||||
25 | 2.75*(1H, m) | 39.34 | 39.0 | H-24 α, H-24 β, H-26 α, H-27 α | C-23, C-24, C-26, C-27 | H-23 α | |||
26 | α | 3.95*(1H, dd, J=11.0, 11.2 Hz) | 64.41 | 64.0 | H-25, H-26 β | C-22, C-24, C-25, C-27 | |||
β | 4.10*(1H, dd, J=3.6, 11.0 Hz) | H-26 α | |||||||
27 | α | 3.68*(1H, br d, J=6.5 Hz) | 64.75 | 64.4 | H-25, H-27 β | C-24, C-25, C-26 | |||
β | 3.75*(1H, dd, J=9.4, 11.2 Hz) | H-27 α | |||||||
Glc-1 | 4.97(1H, d, J=7.2 Hz) | 4.92(1H, d, J=7.2 Hz) | 100.7 | 100.4 | Glc-2 | C-3, Glc-2, Glc-3 | |||
2 | 4.46*(1H, ca.) | 80.82 | 80.4 | Glc-1, Glc-3 | Glc-1, Glc-3, Rha-1′ | ||||
3 | 3.65*(1H, ca.) | 77.35 | 76.9 | Glc-2, Glc-4 | Glc-4, Glc-5 | Glc-5 | |||
4 | 4.24*(1H, br.d, J=10.4 Hz) | 78.25 | 78.3 | Glc-3, Glc-5 | Glc-6, Rha-1′′ | Glc-6 β | |||
5 | 4.24*(1H, br.d, J=10.4 Hz) | 78.51 | 77.7 | Glc-4, Glc-6 α, Glc-6 β | Glc-1, Glc-6 | Glc-3 | |||
6 | α | 4.23*(H α, br.d, J=10.5 Hz) | 61.57 | 61.4 | Glc-5, Glc-6 β | Glc-4, Glc-5 | |||
β | 4.10*(H β, br.d, J=10.5 Hz) | Glc-5, Glc-6 α | Glc-4 | ||||||
Rha-1′ | 6.35(1H, br.s) | 6.22(1H) | 102.5 | 102.1 | Rha-2′ | Rha-3′, Rha-5′, Glc-2 | Rha-5′ | ||
2′ | 4.61*(1H, br.s) | 72.67 | 72.8 | Rha-1′, Rha-3′ | Rha-1′, Rha-3′ | Rha-3′ | |||
3′ | 4.77*(1H, dd, J=3.3, 9.5 Hz) | 72.47 | 72.4 | Rha-2′, Rha-4′ | Rha-2′, Rha-5′ | Rha-2′ | |||
4′ | 4.45*(1H, ca.) | 73.85 | 74.1 | Rha-3′, Rha-5′ | Rha-2′, Rha-3′, Rha-5′ | ||||
5′ | 4.96*(1H, m) | 68.66 | 69.5 | Rha-4′, Rha-6′ | Rha-1′, Rha-6′ | Rha-1′ | |||
6′ | 1.58*(1H, d, J=6.1 Hz) | 18.73 | 18.4 | Rha-5′ | Rha-4′, Rha-5′ | ||||
Rha-1′′ | 5.87(1H, br.s) | 5.78(1H) | 102.4 | 102.3 | Rha-2′′ | Rha-2′′, Glc-4 | Rha-5′′ | ||
2′′ | 4.61*(1H , ca.) | 72.63 | 73.2 | Rha-1′′, Rha-3′′ | Rha-4′′ | Rha-3′′ | |||
3′′ | 4.77*(1H, ca.) | 72.36 | 72.8 | Rha-2′′, Rha-4′′ | Rha-1′′, Rha-4′′, Rha-5′′ | Rha-2′′ | |||
4′′ | 4.34*(1H, t, J=9.1 Hz) | 77.51 | 78.1 | Rha-3′′, Rha-5′′ | Rha-2′′, Rha-3′′, Rha-6′′ | ||||
5′′ | 4.98*(1H, m) | 70.19 | 68.4 | Rha-4′′, Rha-6′′ | Rha-1′′, Rha-3′′, Rha-6′′ | Rha-1′′ | |||
6′′ | 1.75*(1H, d, J=6.0 Hz) | 18.93 | 18.7 | Rha-5′′ | Rha-4′′, Rha-5′′ | ||||
Rha-1′′′ | 6.45(1H, br.s) | 6.33(1H) | 103.6 | 103.2 | Rha-2′′′ | Rha-2′′′, Rha-3′′′, Rha-5′′′, Rha-4′′ | Rha-5′′′ | ||
2′′′ | 4.61*(1H, br.s) | 73.01 | 72.8 | Rha-1′′′, Rha-3′′′ | Rha-4′′′ | ||||
3′′′ | 4.77*(1H, dd, 3.0, 9.0 Hz) | 72.55 | 72.6 | Rha-2′′′, Rha-4′′′ | Rha-1′′′, Rha-2′′′, Rha-5′′′ | Rha-3′′′ | |||
4′′′ | 4.34*(1H, t, J=9.9 Hz) | 73.93 | 74.0 | Rha-2′′′, Rha-5′′′ | Rha-3′′′, Rha-5′′′ | Rha-2′′′ | |||
5′′′ | 4.98*(1H, ca.) | 69.35 | 70.3 | Rha-4′′′, Rha-6′′′ | Rha-1′′′, Rha-6′′′ | Rha-1′′′ | |||
6′′′ | 1.58*(1H, d, J=6.1 Hz) | 18.97 | 18.8 | Rha-5′′′ | Rha-4′′′, Rha-5′′′ | ||||
*为文献中未明确归属的碳氢信号 |
化合物2的最终结构为(25S)-27-羟基偏诺皂苷元-3β-O-α-L-吡喃鼠李糖基-(1→4)-O-α-L-吡喃鼠李糖基-(1→4)-[O-α-L-吡喃鼠李糖基-(1→2)]-O-β-D-吡喃葡萄糖苷(polyphylloside Ⅲ).
3 结论采用2D NMR对两个化合物详细碳氢数据进行全归属,通过NOESY谱确定了F环的绝对构型,完善了这两个天然产物的NMR数据.
[1] | Xie Zong-wan(谢宗万). The Compilation of Chinese Herbal Medicine(全国中草药汇编):上册(第2版)[M]. Beijing (北京): People's Medical Publishing House(人民卫生出版社), 2000. |
[2] | Song Xiao-mei(宋小妹), Liu Hai-jing(刘海静) . Research and Application of "Qi-Medicines" in Taibai Mountains(太白七药研究与应用)[M]. Beijing(北京): People's Medical Publishing House(人民卫生出版社), 2011 . |
[3] | Yu Ling-ling(喻玲玲), Zou Kun(邹坤), Wang Xi-zhi(汪鋆植) et al . Study on the anti-inflammatory, analgesic and thrombosis effects of extract of Trillium tschonoskii Maxim(延龄草提取物抗炎、镇痛和凝血作用的研究)[J]. Lishizhen Medicine and Materia Medica Research(时珍国医国药) , 2008, 19 (5) : 1178-1180 |
[4] | Li Y H, Sun Y, Fan L et al . Paris saponin VII inhibits growth of colorectal cancer cells through Ras signaling pathway[J]. Biochem Pharmacol , 2014, 88 (2) : 150-157 DOI:10.1016/j.bcp.2014.01.018 |
[5] | Wang H, Zhai Z B, Li N L et al . Steroidal saponin of Trillium tschonoskii. Reverses multidrug resistance of hepatocellular carcinoma[J]. Phytomedicine , 2013, 20 (11) : 985-991 DOI:10.1016/j.phymed.2013.04.014 |
[6] | Masateru O, TAKAMURA C, SUGITA F et al . Two new steroid glycosides and a new sesquiterpenoid glycoside from the underground parts of Trillium kamtschaticum[J]. Chem Pharm Bull , 2007, 55 (4) : 551-556 DOI:10.1248/cpb.55.551 |
[7] | Masateru O, Fumie S, Syoko S et al . Three new steroid glycosides from the underground parts ofTrillium kamtschaticum[J]. Chem Pharm Bull , 2007, 55 (7) : 1093-1096 DOI:10.1248/cpb.55.1093 |
[8] | Nakano K, Maruashi T, Nohara T et al . A flavonol glycoside and a sesquiterpene cellobioside from Trillium tschonoskii[J]. Phytochemistry , 1983, 22 (5) : 1249-1251 DOI:10.1016/0031-9422(83)80233-7 |
[9] | Huang H C, Tsai W J, Liaw C C et al . Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi[J]. Chem Pharm Bull , 2007, 55 (9) : 1412-1415 DOI:10.1248/cpb.55.1412 |
[10] | Li Hui-min(李慧敏), Pan Xian-wei(潘宪伟), Mei Qi-bing(梅其炳) et al . Isolation and identification of chemical constituents from root and rhizoma of Trillium tschonoskii Maxim(延龄草化学成分的分离与鉴定)[J]. Journal of Shenyang Pharmaceutical University(沈阳药科大学学报) , 2013, 30 (7) : 509-516 |
[11] | Ju Y, Jia Z J . Steroidal saponins from the rhizomes Smilax menispermoidea[J]. Phytochemistry , 1992, 31 (4) : 1349-1351 DOI:10.1016/0031-9422(92)80288-P |
[12] | Chen Chang-xiang(陈昌祥), Zhou Jun(周俊), Hiromichi Nagasawa et al . Two minor steroidal saponins from the aerial parts of paris polyhylla var. Yunnanensis(滇重楼地上部分的两个微量皂甙)[J]. Acta Botanica Yannanico(云南植物研究) , 1995, 17 (2) : 215-220 |
[13] | Huang H C, Lin M K, Hwang S Y et al . Two anti-inflammatory steroidal saponins from Dracaena angustifolia Roxb[J]. Molecules , 2013, 18 (8) : 8752-8763 DOI:10.3390/molecules18088752 |
[14] | Kang Li-ping(康利平), Wang Yong-ze(王永泽), Feng Bing(冯冰) et al . An NMR study on two glucosylated steroidal saponins of Tb 2(皂苷Tb 2个糖基化产物的NMR研究)[J]. Chinese J Magn Reson(波谱学杂志) , 2012, 29 (1) : 101-111 |