[1] |
Hetzel R, Wuthrich K, Deisenhofer J et al .
Dynamics of aromatic amino-acid residues in globular conformation of basic pancreatic trypsin-inhibitor (Bpti). 2. semiempirical energy calculations[J].
Biophys Struct Mech , 1976, 2 (2) : 159-180 DOI:10.1007/BF00863707 |
|
[2] |
Wagner G, Demarco A, Wuthrich K .
Dynamics of aromatic amino-acid residues in globular conformation of basic pancreatic trypsin-inhibitor (Bpti). 1. 1H NMR studies[J].
Biophys Struct Mech , 1976, 2 (2) : 139-158 DOI:10.1007/BF00863706 |
|
[3] |
Wuthrich K, Wagner G .
Internal motion in globular proteins[J].
Trends Biochem Sci , 1978, 3 (10) : 227-230 |
|
[4] |
Wagner G .
Characterization of the distribution of internal motions in the basic pancreatic trypsin-inhibitor using a large number of internal NMR probes[J].
Q Rev Biophys , 1983, 16 (1) : 1-57 DOI:10.1017/S0033583500004911 |
|
[5] |
Burley S K, Petsko G A .
Aromatic-aromatic interaction -a mechanism of protein-structure stabilization[J].
Science , 1985, 229 (4708) : 23-28 DOI:10.1126/science.3892686 |
|
[6] |
Weiss M A, Karplus M, Sauer R T .
1H NMR aromatic spectrum of the operator binding domain of the lambda-repressor -resonance assignment with application to structure and dynamics[J].
Biochemistry , 1987, 26 (3) : 890-897 DOI:10.1021/bi00377a033 |
|
[7] |
Weiss M A, Nguyen D T, Khait I et al .
Two-dimensional NMR and photo-cidnp studies of theinsulin monomer -assignment of aromatic resonances with application to protein folding, structure, and dynamics[J].
Biochemistry , 1989, 28 (25) : 9855-9873 DOI:10.1021/bi00451a046 |
|
[8] |
Dougherty D A .
Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp[J].
Science , 1996, 271 (5246) : 163-168 DOI:10.1126/science.271.5246.163 |
|
[9] |
Smith B O, Ito Y, Raine A et al .
An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types[J].
J Biomol NMR , 1996, 8 (3) : 360-368 DOI:10.1007/BF00410335 |
|
[10] |
Ma J C, Dougherty D A .
The cation-pi interaction[J].
Chem Rev , 1997, 97 (5) : 1303-1324 DOI:10.1021/cr9603744 |
|
[11] |
Gallivan J P, Dougherty D A .
Cation-pi interactions in structural biology[J].
Proc Nat Acad Sci US , 1999, 96 (17) : 9459-9464 DOI:10.1073/pnas.96.17.9459 |
|
[12] |
Crowhurst K A, Forman-Kay J D .
Aromatic and methyl NOES highlight hydrophobic clustering in the unfolded state of an SH3 domain[J].
Biochemistry , 2003, 42 (29) : 8687-8695 DOI:10.1021/bi034601p |
|
[13] |
Meyer E A, Castellano R K, Diederich F .
Interactions with aromatic rings in chemical and biological recognition[J].
Angew Chem Int Ed , 2003, 42 (11) : 1210-1250 DOI:10.1002/anie.200390319 |
|
[14] |
Eletsky A, Atreya H S, Liu G H et al .
Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4, 3)D HCCH NMR spectroscopy[J].
J Am Chem Soc , 2005, 127 (42) : 14578-14579 DOI:10.1021/ja054895x |
|
[15] |
Teilum K, Brath U, Lundstrom P et al .
Biosynthetic C-13 labeling of aromatic side chains in proteins for NMR relaxation measurements[J].
J Am Chem Soc , 2006, 128 (8) : 2506-2507 DOI:10.1021/ja055660o |
|
[16] |
Mok K H, Kuhn L T, Goez M et al .
A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein[J].
Nature , 2007, 447 (7140) : 106-109 DOI:10.1038/nature05728 |
|
[17] |
Esfandiary R, Hunjan J S, Lushington G H et al .
Temperature dependent 2(nd) derivative absorbance spectroscopy of aromatic amino acids as a probe of protein dynamics[J].
Protein Science , 2009, 18 (12) : 2603-2614 DOI:10.1002/pro.v18:12 |
|
[18] |
Wiesler S C, Weinzierl R O, Buck M .
An aromatic residue switch in enhancer-dependent bacterial RNA polymerase controls transcription intermediate complex activity[J].
Nucleic Acids Res , 2013 DOI:10.1093/nar/gkt271 |
|
[19] |
Williams J K, Zhang Y, Schmidt-Rohr K et al .
pH-dependent conformation, dynamics and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid state NMR[J].
Biophys J , 2013, 104 (8) : 1698-1708 DOI:10.1016/j.bpj.2013.02.054 |
|
[20] |
Wuthrich K .
NMR of Proteins and Nucleic[M]. New York: Acids Wiley, 1986 .
|
|
[21] |
Vuister G W, Kim S J, Wu C et al .
2D and 3D NMR-study of phenylalanine residues in proteins by reverse isotopic labeling[J].
J Am Chem Soc , 1994, 116 (20) : 9206-9210 DOI:10.1021/ja00099a041 |
|
[22] |
Kay L E, Gardner K H .
Solution NMR spectroscopy beyond 25 kDa[J].
Curr Opin Struc Biol , 1997, 7 (5) : 722-731 DOI:10.1016/S0959-440X(97)80084-X |
|
[23] |
Aghazadeh B, Zhu K, Kubiseski T J et al .
Structure and mutagenesis of the Dbl homology domain[J].
Nat Struct Biol , 1998, 5 (12) : 1098-1107 DOI:10.1038/4209 |
|
[24] |
Gardner K H, Kay L E .
The use of H-2, C-13, N-15 multidimensional NMR to study the structure and dynamics of proteins[J].
Annu Rev Bioph Biom , 1998, 27 : 357-406 DOI:10.1146/annurev.biophys.27.1.357 |
|
[25] |
Clore G M, Starich M R, Bewley C A et al .
Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints[J].
J Am Chem Soc , 1999, 121 (27) : 6513-6514 DOI:10.1021/ja991143s |
|
[26] |
Medek A, Olejniczak E T, Meadows R P et al .
An approach for high-throughput structure determination of proteins by NMR spectroscopy[J].
J Biomol NMR , 2000, 18 (3) : 229-238 DOI:10.1023/A:1026544801001 |
|
[27] |
Ab E, Pugh D J R, Kaptein R et al .
Direct use of unassigned resonances in NMR structure calculations with proxy residues[J].
J Am Chem Soc , 2006, 128 (23) : 7566-7571 DOI:10.1021/ja058504q |
|
[28] |
Kainosho M, Torizawa T, Iwashita Y et al .
Optimal isotope labelling for NMR protein structure determinations[J].
Nature , 2006, 440 (7080) : 52-57 DOI:10.1038/nature04525 |
|
[29] |
Yamazaki T, Formankay J D, Kay L E .
2-Dimensional NMR experiments for correlating C-13-beta and H-1-delta/ epsilon chemical-shifts of aromatic residues in C-13-labeled proteins via scalar couplings[J].
J Am Chem Soc , 1993, 115 (23) : 11054-11055 DOI:10.1021/ja00076a099 |
|
[30] |
Grzesiek S, Bax A .
Audio-frequency NMR in a nutating frame -application to the assignment of phenylalanine residues in isotopically enriched proteins[J].
J Am Chem Soc , 1995, 117 (24) : 6527-6531 DOI:10.1021/ja00129a016 |
|
[31] |
Simorre J P, Zimmermann G R, Pardi A et al .
Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA[J].
J Biomol NMR , 1995, 6 (4) : 427-432 |
|
[32] |
Carlomagno T, Maurer M, Sattler M et al .
PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C-alpha, C' transfer and C-beta, C-aromatic correlations[J].
J Biomol NMR , 1996, 8 (2) : 161-170 |
|
[33] |
Zerbe O, Szyperski T, Ottiger M et al .
Three-dimensional H-1-TOCSY-relayed ct-C-13, H-1 -HMQC for aromatic spin system identification in uniformly C-13-labeled proteins[J].
J Biomol NMR , 1996, 7 (2) : 99-106 |
|
[34] |
Whitehead B, Tessari M, Dux P et al .
A N-15-filtered 2D H-1 TOCSY experiment for assignment of aromatic ring resonances and selective identification of tyrosine ring resonances in proteins: Description and application to photoactive yellow protein[J].
J Biomol NMR , 1997, 9 (3) : 313-316 DOI:10.1023/A:1018687127330 |
|
[35] |
Prompers J J, Groenewegen A, Hilbers C W et al .
Two-dimensional NMR experiments for the assignment of aromatic side chains in C-13-labeled proteins[J].
J Magn Reson , 1998, 130 (1) : 68-75 DOI:10.1006/jmre.1997.1277 |
|
[36] |
Slupsky C M, Gentile L N, McIntosh L P .
Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains[J].
Biochem Cell Biol , 1998, 76 (2-3) : 379-390 DOI:10.1139/o98-017 |
|
[37] |
Sattler M, Schleucher J, Griesinger C .
Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients[J].
Prog Nucl Mag Res Sp , 1999, 34 (2) : 93-158 DOI:10.1016/S0079-6565(98)00025-9 |
|
[38] |
Lohr F, Katsemi V, Betz M et al .
Sequence-specific assignment of histidine and tryptophan ring H-1, C-13 and N-15 resonances in C-13/N-15-and H-2/C-13/N-15-labelled proteins[J].
J Biomol NMR , 2002, 22 (2) : 153-164 DOI:10.1023/A:1014271204953 |
|
[39] |
Lohr F, Rogov V V, Shi M C et al .
Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues[J].
J Biomol NMR , 2005, 32 (4) : 309-328 DOI:10.1007/s10858-005-1195-4 |
|
[40] |
Lohr F, Hansel R, Rogov V V et al .
Improved pulse sequences for sequence specific assignment of aromatic proton resonances in proteins[J].
J Biomol NMR , 2007, 37 (3) : 205-224 DOI:10.1007/s10858-006-9128-4 |
|
[41] |
Rajesh S, Nietlispach D, Nakayama H et al .
A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp[J].
J Biomol NMR , 2003, 27 (1) : 81-86 DOI:10.1023/A:1024710729352 |
|
[42] |
Schlorb C, Ackermann K, Richter C et al .
Heterologous expression of hen egg white lysozyme and resonance assignment of tryptophan side chains in its non-native states[J].
J Biomol NMR , 2005, 33 (2) : 95-104 DOI:10.1007/s10858-005-2063-y |
|
[43] |
Ohki S Y, Kainosho M .
Stable isotope labeling methods for protein NMR spectroscopy[J].
Prog Nucl Mag Res Sp , 2008, 53 (4) : 208-226 DOI:10.1016/j.pnmrs.2008.01.003 |
|
[44] |
Ikeya T, Takeda M, Yoshida H et al .
Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system[J].
J Biomol NMR , 2009, 44 (4) : 261-272 DOI:10.1007/s10858-009-9339-6 |
|
[45] |
Takeda M, Ono A M, Terauchi T et al .
Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination[J].
J Biomol NMR , 2010, 46 (1) : 45-49 DOI:10.1007/s10858-009-9360-9 |
|
[46] |
Skalicky J J, Mills J L, Sharma S et al .
Aromatic ring-flipping in supercooled water: Implications for NMR-based structural biology of proteins[J].
J Am Chem Soc , 2001, 123 (3) : 388-397 DOI:10.1021/ja003220l |
|
[47] |
Mills J L, Szyperski T .
Protein dynamics in supercooled water: The search for slow motional modes[J].
J Biomol NMR , 2002, 23 (1) : 63-67 DOI:10.1023/A:1015397305148 |
|
[48] |
Seifert M H, Ksiazek D, Azim M K et al .
Slow exchange in the chromophore of a green fluorescent protein variant[J].
J Am Chem Soc , 2002, 124 (27) : 7932-7942 DOI:10.1021/ja0257725 |
|
[49] |
Rao D K, Bhuyan A K .
Complexity of aromatic ring-flip motions in proteins: Y97 ring dynamics in cytochrome c observed by cross-relaxation suppressed exchange NMR spectroscopy[J].
J Biomol NMR , 2007, 39 (3) : 187-196 DOI:10.1007/s10858-007-9186-2 |
|
[50] |
Boyer J A, Lee A L .
Monitoring aromatic picosecond to nanosecond dynamics in proteins via C-13 relaxation: Expanding perturbation mapping of the rigidifying core mutation, V54A, in Eglin C[J].
Biochemistry , 2008, 47 (17) : 4876-4886 DOI:10.1021/bi702330t |
|
[51] |
Boyer J A, Clay C J, Luce K S et al .
Detection of native-state nonadditivity in double mutant cycles via hydrogen exchange[J].
J Am Chem Soc , 2010, 132 (23) : 8010-8019 DOI:10.1021/ja1003922 |
|
[52] |
Zhuravleva A, Orekhov V Y .
Divided evolution: A scheme for suppression of line broadening induced by conformational exchange[J].
J Am Chem Soc , 2008, 130 (11) : 3260-3261 DOI:10.1021/ja710056t |
|
[53] |
Henzler-Wildman K, Kern D .
Dynamic personalities of proteins[J].
Nature , 2007, 450 (7172) : 964-972 DOI:10.1038/nature06522 |
|
[54] |
Henzler-Wildman K A, Lei M, Thai V et al .
A hierarchy of timescales in protein dynamics is linked to enzyme catalysis[J].
Nature , 2007, 450 (7171) : 913-927 DOI:10.1038/nature06407 |
|
[55] |
Baldwin A J, Kay L E .
NMR spectroscopy brings invisible protein states into focus[J].
Nat Chem Biol , 2009, 5 (11) : 808-814 DOI:10.1038/nchembio.238 |
|
[56] |
Mittermaier A K, Kay L E .
Observing biological dynamics at atomic resolution using NMR[J].
Trends Biochem Sci , 2009, 34 (12) : 601-611 DOI:10.1016/j.tibs.2009.07.004 |
|
[57] |
Bernado P, Blackledge M .
Structural biology proteins in dynamic equilibrium[J].
Nature , 2010, 468 (7327) : 1046-1048 DOI:10.1038/4681046a |
|
[58] |
Villali J, Kern D .
Choreographing an enzyme's dance[J].
Curr Opin Chem Biol , 2010, 14 (5) : 636-643 DOI:10.1016/j.cbpa.2010.08.007 |
|
[59] |
Eisenmesser E Z, Millet O, Labeikovsky W et al .
Intrinsic dynamics of an enzyme underlies catalysis[J].
Nature , 2005, 438 (7064) : 117-121 DOI:10.1038/nature04105 |
|
[60] |
Korzhnev D M, Salvatella X, Vendruscolo M et al .
Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR[J].
Nature , 2004, 430 (6999) : 586-590 DOI:10.1038/nature02655 |
|
[61] |
Luz Z, Meiboom S .
Nuclear Magnetic Resonance study of protolysis of trimethylammonium Ion in aqueous solution -order of reaction with respect to solvent[J].
J Chem Phys , 1963, 39 (2) : 366-370 DOI:10.1063/1.1734254 |
|
[62] |
Allerhand A, Gutowsky H S .
Spin-echo NMR studies of chemical exchange.1. some general aspects[J].
J Chem Phys , 1964, 41 (7) : 2115-2126 DOI:10.1063/1.1726215 |
|
[63] |
Krishnan V V, Rance M .
Influence of chemical-exchange among homonuclear spins in heteronuclear coherence-transfer experiments in liquids[J].
J Magn Reson Ser A , 1995, 116 (1) : 97-106 DOI:10.1006/jmra.1995.1194 |
|
[64] |
Li Y, Palmer A G, 3 rd .
Narrowing of protein NMR spectral lines broadened by chemical exchange[J].
J Am Chem Soc , 2010, 132 (26) : 8856-8857 DOI:10.1021/ja103251h |
|
[65] |
Gullion T, Baker D B, Conradi M S .
New, compensated Carr-Purcell sequences[J].
J Magn Reson , 1990, 89 (3) : 479-484 |
|
[66] |
Ellett J D, Waugh J S .
Chemical-shift concertina[J].
J Chem Phys , 1969, 51 (7) : 2851 DOI:10.1063/1.1672422 |
|
[67] |
Mueller L, Legault P, Pardi A .
Improved RNA structure determination by detection of NOE contacts to exchange-broadended amino protons[J].
J Am Chem Soc , 1995, 117 (45) : 11043-11048 DOI:10.1021/ja00150a001 |
|
[68] |
Mulder F A A, Spronk C, Slijper M et al .
Improved HSQC experiments for the observation of exchange broadened signals[J].
J Biomol NMR , 1996, 8 (2) : 223-228 |
|
[69] |
Davis A L, Keeler J, Laue E D et al .
Experiments for recording pure-sbsorption heteronuclear correlation spectra using pulsed field gradients[J].
J Magn Reson , 1992, 98 (1) : 207-216 |
|
[70] |
Muhandiram D R, Farrow N A, Xu G Y et al .
A gradient C-13 NOESY-HSQC experiment for recording NOESY spectra of C-13-labeled proteins dissolved in H2O[J].
J Magn Reson Ser B , 1993, 102 (3) : 317-321 DOI:10.1006/jmrb.1993.1102 |
|
[71] |
Kay L E, Xu G Y, Singer A U et al .
A gradient-enhanced HCCH TOCSY experiment for recording side-chain H-1 and C-13 correlations in H2O samples of proteins[J].
J Magn Reson Ser B , 1993, 101 (3) : 333-337 DOI:10.1006/jmrb.1993.1053 |
|
[72] |
Delaglio F, Grzesiek S, Vuister G W et al .
Nmrpipe -a multidimensional spectral processing system based on Unix Pipes[J].
J Biomol NMR , 1995, 6 (3) : 277-293 |
|
[73] |
Johnson B A, Blevins R A .
NMR view -a computer-program for the visualization and analysis of NMR data[J].
J Biomol NMR , 1994, 4 (5) : 603-614 DOI:10.1007/BF00404272 |
|
[74] |
Gronenborn A M, Filpula D R, Essig N Z et al .
A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein-G[J].
Science , 1991, 253 (5020) : 657-661 DOI:10.1126/science.1871600 |
|