矿物岩石地球化学通报  2017, Vol. 36 Issue (3): 374-393   PDF    
二叠纪大火成岩省的环境与生物效应:进展与前瞻
陈军, 徐义刚    
中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广州 510640
摘要: 地质历史时期大规模火山活动与同期古环境、生物多样性显著变化之间的时空耦合关系、内在机制联系,日渐成为地球科学领域广受关注的热点问题之一。本文聚焦二叠纪,系统回顾了近年来关于二叠纪3个大火成岩省(塔里木、峨眉山、西伯利亚)及其同期古环境背景、生物演化事件方面的研究进展,并对二叠纪大火成岩省研究领域的争议性问题进行了总结和展望。
关键词: 二叠纪      大火成岩省      塔里木      峨眉山      西伯利亚      古环境      生物多样性     
Permian Large Igneous Provinces and Their Impact on Paleoenvironment and Biodiversity: Progresses and Perspectives
CHEN Jun, XU Yi-gang    
State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: The spatial and temporal relationship, and the fundamentally mechanistic association between massive volcanism and contemporaneous changes in paleoenvironment and biodiversity, most notably the connection between large igneous provinces and mass extinctions, remain an increasingly hot topic in Earth Sciences, which attract the attention from not only the scientific community but also the general public. This paper focuses on the Permian geological events and briefly reviews recent progresses in the studies of three Permian Large Igneous Provinces(Tarim, Emeishan, and Siberian)and their potential impact on paleoenvironment and biodiversity. Some controversial problems in this field are highlighted, and perspectives for future study are also discussed.
Key words: Permian     Large Igneous Province     Tarim     Emeishan     Siberian     Paleoenvironment     Biodiversity    

当今人类社会正面临大气二氧化碳浓度快速升高、异常气候事件频发、海平面上升、海洋酸化、物种快速消亡等一系列重大环境与生态问题;通过对比地质历史时期五次大规模生物灭绝事件(“Big Five”)的物种消亡速度,部分科学家甚至悲观地认为人类社会可能正在经历着第六次生物大灭绝(Barnosky et al., 2011)。众多研究表明,类似的灾难性事件曾经在地球历史上多次发生(Sepkoski,1981; Raup and Sepkoski, 1982; Bambach,2006; Stanley,2016);“将今论古,以古示今”,从地质记录中总结地球系统圈层相互作用的规律,评估当今地球环境状态、预测未来发展趋势、寻找可行性解决方案,是地球科学领域面临的现实挑战之一。一般而言,岩石圈大规模火山活动可在短时间内释放大量的火山灰、有毒气体及温室气体,继而对大气圈、水圈和生物圈造成深远影响;因而在某种程度上,研究地质历史时期地球深部过程及表层系统响应的规律,尤其是大火成岩省火山活动与生物灭绝事件的耦合关系、内在机制联系(Wignall,2001; Courtillot and Renne, 2003; Saunders,2005; White and Saunders, 2005; Bond and Wignall, 2014),对于解决人类社会面临的现实问题,具有重要启示意义。当然,从统计规律上看,并非所有的大火成岩省火山活动都造成了生物灭绝事件,而且不是所有的生物灭绝事件都被证实与大规模火山活动有关(Bond and Wignall, 2014; Ernst,2014; 戎嘉余和黄冰,2014);所以,对比、分析不同大火成岩省形成的地球动力学过程、火山活动的时间及速度,以及同期海洋及陆地环境背景、生物分异度变化,总结共性及差异,才是探索大规模火山活动背景下生物、环境协同演化关系的正确途径。

二叠纪是地质历史上火山作用相对频繁的时期,从全球背景、长时间尺度上看,可能受控于泛大陆的聚合和裂解活动(Golonka and Ford, 2000)。研究表明,二叠纪至少存在3个阶段的大规模火山活动,即:① 以塔里木大火成岩省(Xu et al., 2014; 杨树锋等,2014)为典型代表的早二叠世(乌拉尔世)火山活动,也包括藏北羌塘溢流玄武岩(Zhai et al., 2013; Zhang and Zhang, 2017)、保山地块卧牛寺玄武岩(Ali et al., 2013; Liao et al., 2015)、克什米尔地区Panjal Trap(Shellnutt et al., 2011, 2012a, 2014; Stojanovic et al., 2016)等;② 中二叠世(瓜德鲁普世)晚期的峨眉山大火成岩省(Zhou et al., 2002; Zhang et al., 2006; Shellnutt,2014);③ 二叠-三叠纪之交以广泛分布于华南地区的多层火山灰为特征的酸性火山作用(殷鸿福等,1989Yin et al., 1992; Gao et al., 2013; 朱江和张招崇,2013; He et al., 2014),以及地质历史时期最大规模的大陆溢流玄武岩-西伯利亚大火成岩省(Reichow et al., 2009; Ivanov et al., 2013; Burgess and Bowring, 2015)。从全球气候演变看,二叠纪代表了从晚古生代冰期(Late Paleozoic Ice Age; LPIA)的“冰室”环境向三叠纪早期“温室”环境的转换(Shi and Waterhouse, 2010);从生物演化角度看,石炭纪晚期-乌拉尔世早期是生物多样性整体上稳定、繁荣的阶段,进入瓜德鲁普世早期开始出现强烈波动,至瓜德鲁普世末期发生一次显著的生物更替事件(即“前乐平世生物事件”或“瓜德鲁普世末期生物灭绝”),并在二叠-三叠纪之交发生显生宙最大规模的生物灭绝事件,“古生代演化生物群”被“现代演化生物群”最终取代(Sepkoski,1981; Raup and Sepkoski, 1982)。乌拉尔世早期、瓜德鲁普世晚期、二叠-三叠纪之交的大规模火山活动、全球环境变化、生物演化事件,显然不仅只是时间上的巧合,而可能存在内在机制上的某种关联,但考虑到表层响应的差异(如时间和速度、环境背景、生物多样性等),这些机制应该也不尽相同。本文针对上述3个阶段的火山活动、环境背景、生物演化,对近年来的一些研究进展进行简要回顾和评述,抛砖引玉,希望能促进更广泛的交流和讨论。

1 二叠纪地质年代框架

精细的年龄约束是探讨地质历史上某一特定时期的地质事件、环境背景、生物事件之间相互关联性的基本前提。国际地层委员会二叠系分会(Subcommission on Permian Stratigraphy; SPS)最新推荐的“二叠纪地质年表”(Permian Timescale,2017年1月版)中,石炭纪-二叠纪界线年龄为298.9±0.15 Ma(Ramezani et al., 2007; Schmitz and Davydov, 2012),乌拉尔世-瓜德鲁普世界线年龄为272.95±0.11 Ma(Wu et al., 2017),瓜德鲁普世-乐平世界线年龄为259.1±0.5 Ma (Zhong et al., 2014),二叠纪-三叠纪界线年龄为251.902±0.024 Ma(Burgess et al., 2014)。上述4个年龄值都是基于CA-TIMS方法(Mattinson,2005)获得的锆石U-Pb年龄,是迄今为止最高精度的年龄约束。结合乌拉尔世、瓜德鲁普世、乐平世的其他6个年龄,这些数据共同确立了二叠纪的最新地质年代框架(图 1)。

图 1 二叠纪地质年代框架(2017年1月版) Figure 1 Permian Timescale(January, 2017)

需要注意的是,由于分析方法(U-Pb vs. Ar-Ar,CA-ID-TIMS vs. SHRIMP或SIMS)、研究对象(火成岩 vs. 沉积岩)的差异,有关二叠纪大规模火山活动的喷发起始、主峰及持续时间(地质事件层面),古海水温度变化、海洋酸化、缺氧、碳同位素异常(环境背景层面),生物多样性显著变化的时间和速度(生物事件层面)等,往往很难保证都在最精准的时间尺度上进行直接关联,这是在探索二叠纪大火成岩省在环境变化、生物演化方面产生影响的内在机制时的瓶颈,通常也是产生争议的根源。

2 二叠纪大火成岩省

大火成岩省(Large Igneous Province; LIP)是指在相对短暂的地质时间内由于持续或脉动式岩浆作用在板内构造环境中形成的大规模岩浆岩建造,岩性主要为镁铁质基性岩(如玄武岩)及超基性岩类(如苦橄岩、金伯利岩),也包括长英质(或硅质)岩浆岩;覆盖面积通常超过0.1 Mkm2,岩浆岩总量大于0.1 Mkm3;最长持续时间不超过50 Ma,可由一期或多期岩浆活动组成,每期时间都短于1~5 Ma,且在此期间喷出的岩浆体积超过总量的75%(Coffin and Eldholm, 1994; Bryan and Ernst, 2008)。简而言之,大火成岩省应具有分布范围广、主峰期持续时间短、形成于板内环境、组分以基性岩及超基性岩为主几个重要特征,这是区别大火成岩省和其他小规模岩浆活动的标志,也是探讨其成因和演化的理论基础。基于上述鉴别特征,目前二叠纪被列入“大火成岩省”类别的大规模火山活动共有3期:乌拉尔世塔里木大火成岩省、瓜德鲁普世末期峨眉山大火成岩省、二叠-三叠纪之交西伯利亚大火成岩省。与塔里木大火成岩省大致同期的Cimmerian地块周缘的岩浆活动(Yeh and Shellnutt, 2016),分布于藏北羌塘、滇西保山地块、克什米尔Panjal Trap、阿曼等地区,由于规模或研究程度差异,暂未归入“大火成岩省”之列;二叠纪晚期(乐平世)火山活动异常频繁,直接证据是广泛分布于华南地区的几十层黏土岩或火山碎屑岩(殷鸿福等,1989Yin et al., 1992),但矿物学和地球化学证据(Gao et al., 2013; He et al., 2014; Liao et al., 2016)表明,这些酸性火山作用形成于汇聚大陆边缘岩浆弧向陆陆碰撞转换的环境或局部的后碰撞环境,不符合“大火成岩省”定义中的板内环境。关于二叠纪大火成岩省(塔里木、峨眉山、西伯利亚)的不同科学问题的专门研究及综述较多,本文在此不再累述,主要就时间尺度、岩浆总量2项对环境、生物可能产生重要影响的指标进行简要分析和对比。

2.1 塔里木大火成岩省

塔里木大火成岩省是塔里木地块地质演化历史上火山活动最为强烈、影响范围最广的一次重要板内岩浆事件(Zhang et al., 2013a),主要分布于塔里木盆地的中西部地区,覆盖面积0.25~0.30×106 km2(Xu et al., 2014),岩浆岩总量约0.15×106 km3(Xu et al., 2014);岩石类型以玄武质岩浆岩为主,也发育少量酸性岩类(Xu et al., 2014)。

时间尺度的限定(如起始时间、主峰期及持续时间、结束时间等)是决定能否在塔里木大火成岩省深部地质过程、地幔柱模型、成矿作用、环境与生物影响等方面取得进一步突破的关键问题。过去二十多年来对塔里木板块内部二叠纪火山岩的研究中,曾报道了针对不同岩石类型、采用不同分析方法获得的众多年龄数据(Shangguan et al., 2016),分布于205~358 Ma的较大范围内,其中镁铁质岩浆活动主要集中在两期(~283 Ma,~267 Ma),硅质岩浆活动则持续自~291 Ma至~272 Ma。在汇总、分析“可靠的”全岩Ar-Ar年龄、锆石U-Pb年龄的基础上,Xu等(2014)认为塔里木大火成岩省火山活动可大致分为3个阶段,即:① 第1期(~300 Ma),代表塔里木大火成岩省的起始时间,但分布范围仅局限于瓦基里塔格地区。对瓦基里塔格金伯利岩中的钙钛矿测得的U-Pb年龄为299.9±4.3 Ma,与斜锆石的U-Pb年龄300.8±4.7 Ma、300.5±4.4 Ma在误差范围内基本一致(Zhang et al., 2013b);② 第2期(年龄范围为287~292 Ma),主峰期年龄约为290 Ma(Xu et al., 2014),代表塔里木大火成岩省的主要喷发阶段,分布范围最广,以柯坪地区印干-四石厂一带最为典型,为玄武岩和流纹岩构成的双峰式火山岩,具有弱的Nb-Ta负异常和负εNd(t)值特征。对柯坪玄武岩的Ar-Ar测年获得的年龄为287.3±4.0 Ma、287.9±3.1 Ma(Wei et al., 2014),这与利用SHRIMP方法得到的U-Pb年龄289.5±2.0 Ma、288.9±2.0 Ma(Yu et al., 2011)在误差范围内一致;③ 第3期,代表塔里木大火成岩省第2次主要喷发阶段,年龄范围为272~284 Ma,主峰期年龄约为280 Ma(Xu et al., 2014),主要分布在巴楚、瓦基里塔格、皮羌等塔里木盆地边缘地区,包括侵入岩、基性岩墙群、流纹岩等岩石类型,具有Nb-Ta正异常和正εNd(t)值特征。上述分析表明,塔里木大火成岩省岩浆活动的总持续时间大于20 Ma(~300~280 Ma),其中溢流玄武岩主体喷发期大于5 Ma(~292~287 Ma)。

除时间因素外,另一个难点问题是确定塔里木大火成岩省准确的覆盖面积或岩浆总量。由于地处塔克拉玛干沙漠,塔里木大火成岩省的火山岩多不完整出露,通常的保守估计,残余分布面积约为0.25×106km2(Li et al., 2011; Xu et al., 2014),其中基性岩类约占80%。基于近年来塔里木盆地的地球物理勘探、油气钻井数据,如果假定岩浆岩平均厚度约600 m,则岩浆总量约为0.15×106km3(Xu et al., 2014);最近的一项研究中,Usui和Tian(2017)认为塔里木大火成岩省总分布面积和岩浆总量可能分别超过0.3×106km2和0.3×106km3

综合时间尺度和岩浆总量,即使假定0.3×106km3(可能的上限)的岩浆岩在5 Ma(主喷发期的下限)内喷出,塔里木大火成岩省的喷发速率(0.06 km3/a)与西伯利亚、中大西洋(CAMP)、德干(Deccan Traps)等超级大火成岩省(至少>1 km3/a)相比仍有较大差距。

2.2 峨眉山大火成岩省

与塔里木大火成岩省相比,峨眉山大火成岩省的研究历史较长且更早得到国际地学界承认,因而得到更为广泛的关注(徐义刚等,2013)。关于峨眉山大火成岩省的分布范围,目前基本达成一致的认识是:主要分布于扬子克拉通西缘,云南、四川、贵州境内,东部可达广西(Fan et al., 2008)和重庆(Li et al., 2017),西界为哀牢山-红河断裂,西北界为龙门山—小菁河断裂;由于紧邻三江构造带,复杂的地质历史使得峨眉山大火成岩省经历强烈的变形和破坏,已知出露面积约0.25×106 km2,也极有可能超过0.7×106 km2(Li et al., 2017);火山岩厚度有“西厚东薄”的总体规律,西部“内带”地区最厚约5 km,东部“外带”地区仅几百米(He et al., 2003; Zhang et al., 2006, 2008),岩浆总量保守估计约0.3~0.6×106 km3(Shellnutt,2014)。

峨眉山玄武岩下伏地层为瓜德鲁普统茅口灰岩,其上被乐平统下部的吴家坪组(或宣威组/龙潭组)所覆盖,原则上可以利用生物地层对其起始及结束时间进行相对约束;但由于瓜德鲁普世末期全球范围内的大规模海平面下降的影响,以及峨眉山地幔柱上升造成的地壳快速差异抬升,华南地区茅口组(孤峰组)与上覆吴家坪组(或宣威组/龙潭组)之间存在广泛的平行不整合,这给生物地层精细约束带来一定困难。Sun等(2010)通过对峨眉山大火成岩省内带、中带、外带多条剖面玄武岩层位上下的海相地层中的牙形刺生物地层研究,并结合大火成岩省范围以外其他瓜德鲁普统-乐平统界线(GLB)连续剖面(如广西来宾蓬莱滩、铁桥)的牙形刺生物带资料,认为峨眉山大火成岩省的最早喷发时间在牙形刺Jinogondolella altudaensis带,但分布范围有限(如贵州盘县、织金);最大范围/幅度喷发时间,相当于牙形刺Jinogondolella xuanhanensis带。根据国际地层委员会“二叠纪地质年表”(Permian Timescale,2017年1月版)Capitanian阶顶、底界线年龄259.1±0.5 Ma、265.1±0.4 Ma,以及广西蓬莱滩、铁桥剖面瓜德鲁普统牙形刺序列(Mei et al., 1998; Jin et al., 2006; Sun et al., 2017),本文大致推断,Sun等(2010)所确定的最早喷发、最大范围/幅度喷发时间可能分别约为263.5 Ma、260.9 Ma。

对峨眉山玄武岩全岩Ar-Ar、锆石U-Pb年龄数据的统计,初步确定峨眉山大火成岩省的形成时间为260±3 Ma(Shellnutt,2014);但这些年龄数据所采用的分析方法多为SIMS和LA-ICP-MS,分析误差(>1%)可能大于火山作用的持续时间,因而在探讨动力学机制、环境和生物影响时难以提供有力的判断依据;同时,基性-超基性层状岩体的年龄并不真正代表玄武岩喷发的年龄,因而无法准确代表火山作用的喷发时限。He等(2007)认为宣威组底部(即与“王坡页岩”相当层位)的黏土岩沉积应与峨眉山玄武岩的剥蚀产物有关,其锆石主要来自于峨眉山大火成岩省顶部的酸性组分;因此,峨眉山大火成岩省顶部的酸性火山岩、宣威组底部碎屑岩和界线黏土岩近似为一个等时地质界面(isochron),GLB界线年龄等同于峨眉山大火成岩省的年龄。利用单颗粒锆石CA-TIMS方法,Zhong等(2014)对大理宾川地区峨眉山玄武岩组顶部酸性凝灰岩和广元朝天剖面GLB黏土岩进行了高精度定年,测得的酸性凝灰岩和黏土岩年龄分别为259.1±0.5 Ma、259.2±0.3 Ma,两者在误差范围内完全一致,这些结果限定了峨眉山大火成岩省主峰期年龄为259.1~259.2 Ma,持续时间小于1 Ma。

2.3 西伯利亚大火成岩省

西伯利亚大火成岩省形成于显生宙最大规模的大陆溢流岩浆活动,由于与二叠纪末期生物大灭绝事件的时间耦合关系(Renne and Basu, 1991; Campbell et al., 1992; Renne et al., 1995; Kamo et al., 2003; Reichow et al., 2009; Svensen et al., 2009; Ivanov et al., 2013; Burgess and Bowring, 2015),使其成为地质学界研究大规模火山作用及其环境、生物影响的最重要案例之一。现有资料表明,西伯利亚大火成岩省主要分布于西伯利亚克拉通及西西伯利亚盆地,向北可到泰米尔半岛、向西至乌拉尔山、向南至库兹涅斯克盆地(Reichow et al., 2009)。由于出露情况限制,尽管难以确定准确的分布面积和岩浆总量,但Ivanov等(2013)认为分布面积可能达到7×106 km2,岩浆总体积可能为4×106 km3;即使较保守的估计(Reichow et al., 2009),其分布面积和岩浆总量亦可分别达到5×106 km2、3×106 km3

Ivanov等(2013)统计了截至2013年发表的西伯利亚大火成岩省Ar-Ar(49个值)、U-Pb(18个值)年龄数据,结果显示Ar-Ar年龄、U-Pb年龄主峰值分别在~253 Ma、~251 Ma,在系统性误差(~1%)范围内一致。多数情况下,典型的、快速喷发的大火成岩省应为单幕式、持续时间小于2 Ma(Bryan and Ernst, 2008),如Karoo(Svensen et al., 2012)、峨眉山(Shellnutt et al., 2012b); 尽管Ivanov等(2013)提出不同的见解,即西伯利亚大火成岩省至少包括两幕,分别在~252 Ma(二叠-三叠纪之交)、~242 Ma(中三叠世安尼期),但这并不否认二叠纪-三叠纪之交是规模和影响都最大的主峰期。另一方面,CA-ID-TIMS高精度测年方法的迅速发展,使得对二叠纪末生物灭绝事件的绝对年龄约束日益精确(Bowring et al., 1998; Mundil et al., 2001, 2004; Shen et al., 2011; Burgess et al., 2014); 尤其是在“EARTHTIME”执行后,对浙江煤山剖面二叠-三叠系界线(PTB)上下黏土层中的单颗粒锆石重新测年的结果(Burgess et al., 2014),将灭绝时间进一步限定在251.941±0.037 Ma与251.880±0.031 Ma之间,持续时间仅61±48 ka。西伯利亚大火成岩省已知主峰期(~252 Ma)、持续时间( < 1 Ma),与二叠纪末生物灭绝事件相关的时间尺度,存在数量级上的差距,因而还不能确证内在机制上的关系。Burgess和Bowring(2015)通过对西伯利亚大火成岩省一系列火山碎屑岩、岩浆岩、层状侵入岩的高精度定年,将西伯利亚大火成岩省火山活动时间进一步限定为252.27±0.11 Ma~251.354±0.088 Ma;其中,岩浆总量(4×106 km3)的2/3在~251.9 Ma之前的300 ka内全部喷出(图 2)。

图 2 西伯利亚大火成岩省岩浆活动时间序列(Burgess and Bowring, 2015),及浙江煤山剖面二叠-三叠系界线附近高精度U-Pb定年(Burgess et al., 2014)、碳同位素变化(Burgess et al., 2014)、古海水温度变化(Chen et al., 2016b) Figure 2 Timeline of the Siberian Traps volcanism(Burgess and Bowring, 2015), compiled with high-precision geochronology(Burgess et al., 2014), high-resolution carbon isotope records(Burgess et al., 2014), and seawater temperature changes(Chen et al., 2016b) around the Permian-Triassic boundary at the Meishan section
2.4 二叠纪大火成岩省主要特征的对比

在上述梳理基础上,表 1列出了塔里木、峨眉山和西伯利亚大火成岩省的主要特征,包括主峰期的持续时间、岩浆总量两大定量特征,这是决定大规模火山活动物质和能量自地球深部向表层迁徙的速率即其潜在影响力的要素(Courtillot and Fluteau, 2014; Ernst,2014)。由于火山岩出露情况、研究程度的限制,尽管这些数值不可能完全准确,但大致可以在数量级上确定二叠纪3个大火成岩省的显著差别:主峰期喷发速率方面,西伯利亚大火成岩省极有可能接近8 km3/a,峨眉山大火成岩省约0.5 km3/a,塔里木大火成岩省可能不超过0.06 km3/a。值得注意的是,最近对柯坪玄武岩底部和顶部出露的中酸性凝灰岩高精度CA-TIMS锆石U-Pb定年的结果(罗震宇,未发表资料),确定库普库兹曼组的火山作用起始于~289.3 Ma,开派兹雷克组的火山作用结束于~284.3 Ma,进一步证实柯坪玄武岩的喷发时限大于5 Ma;Usui和Tian(2017)通过对柯坪玄武岩的古地磁初步研究,表明~150 m厚的玄武岩可能在几百年内全部喷出,下部库普库兹曼组的喷发速度相比上部开派兹雷克组较低。需要强调的是,除溢流岩浆阶段的岩浆总量及喷发速率之外,火山碎屑喷发阶段的一些特征,如凝灰岩或火山灰喷发的时间、分布范围、厚度等,同样也可以反映大火成岩省的潜在影响力,因为这一阶段喷发出的火山灰及气体可导致“火山冬天”、酸雨、气候变暖等灾难性事件,但目前关于塔里木、峨眉山和西伯利亚大火成岩省火山碎屑喷发阶段的定量性研究资料(如时间、范围等)尚不够系统,难以有效对比。

表 1 二叠纪大火成岩省(塔里木,峨眉山,西伯利亚)主要特征对比 Table 1 Comparison of main characteristics of the Permian LIPs(Tarim, Emeishan, and Siberian)

除岩浆喷发速率之外,火山作用过程中释放气体(如CO2、CH4、SO2)的潜力也是决定大火成岩省影响力的重要特征之一(Ganino and Arndt, 2009; Self et al., 2014)。大火成岩省岩浆总量与生物灭绝率之间的非相关关系,使得Ganino和Arndt(2009)意识到,岩浆上涌过程中与沉积岩的接触变质作用(contact metamorphism),可能在更大程度上决定大火成岩省是否可以对生物圈产生最终影响。从这个角度考虑,西伯利亚大火成岩省之所以最具破坏性,是因为其下伏岩层主要为蒸发岩、白云岩、煤层、富含有机质页岩等“富气”(主要为CO2)类型(Svensen et al., 2009; Iacono-Marziano et al., 2012a, 2012b; Polozov et al., 2016)。峨眉山玄武岩下伏的巨厚层白云岩、茅口灰岩,使得通过接触变质作用释放的CO2可达到61 600~145 600 Gt(Ganino and Arndt, 2009);另外,对大理苦橄岩橄榄石斑晶内的熔体包裹体中硫含量的分析(Zhang et al., 2013c),估计峨眉山大火成岩省火山活动可能至少释放了1 500 Gt的SO2(假设岩浆总量>0.3 Mkm3);这些CO2和SO2的释放,也使得峨眉山大规模火山活动具备较大的破坏潜力。对塔里木盆地的各时代地层,特别是石炭-二叠系的地层研究(Li et al., 2014),表明火山岩之下早二叠世-石炭纪—泥盆纪地层主要以泥岩、砂岩为主,灰岩的沉积厚度及分布都有限,缺乏如蒸发岩、煤层和富有机质页岩等“富气”类型,与西伯利亚、峨眉山大火成岩省存在显著差别。除浅成或超浅成侵入岩和喷出岩的快速冷凝导致岩浆挥发分释放(Black et al., 2012; Zhang et al., 2013c),以及深成侵入岩与沉积岩接触热变质作用而释放气体(Ganino and Arndt, 2009; Svensen et al., 2009)之外,地幔柱头部与岩石圈相互作用时从再循环洋壳所释放的CO2和HCl(Sobolev et al., 2011)也具备极大破坏力;上述3种途径,即岩浆挥发分释放、接触变质释气、地幔柱排气,是否在塔里木、峨眉山和西伯利亚大火成岩省都存在,或者哪种方式占主导地位,尚待进一步证实与厘清(朱江和张招崇,2013)。

3 二叠纪古环境演变

地质记录中的诸多证据(Parrish,1995; Zharkov and Chumakov, 2001)表明,二叠纪是一个相对特殊的“冰与火”的转换期(Shi and Waterhouse, 2010):起始于晚古生代冰期(晚石炭世-早二叠世)的“冰室”气候,大陆冰川几乎覆盖了整个冈瓦纳地区(Fielding et al., 2008; Isbell et al., 2012; Montañez and Poulsen, 2013);终止于二叠-三叠纪之交向“温室”气候的转换(Sun et al., 2012; Romano et al., 2013),海水温度在短期内快速上升~10℃(Chen et al., 2016b)。究其根源,这些变化可能都受泛大陆聚合、裂解活动的控制(Barron and Fawcett, 1995; Scotese and Langford, 1995; Golonka and Ford, 2000; Yeh and Shellnutt, 2016)。

3.1 晚古生代冰期

晚古生代冰期是显生宙最大规模冰川发育期,持续时间自石炭纪早期(Visean)至二叠纪中晚期之交(Capitanian-Wuchiapingian),长达~70 Ma(Montañez and Poulsen, 2013)。早期研究认为晚古生代冰期是一次单幕、持续性事件(Veevers and Powell, 1987; Crowley and Baum, 1991; Crowley,1999),但最近对冈瓦纳地区(如澳大利亚、南极、印度、非洲、南美)石炭-二叠纪冰川沉积的研究(Isbell et al., 2012)表明,晚古生代冰期存在不同程度的冰川进退,为间歇、多幕式,共计规模不等的8个阶段(石炭纪C1、C2、C3、C4;二叠纪P1、P2、P3、P4),其中石炭纪晚期(Gzhelian)-二叠纪早期(Sakmarian)为顶峰期,冰川覆盖面积最广。

石炭纪晚期(Moscovian-Gzhelian,~9 Ma)是典型的间冰期(C4、P1之间),对北美地台(US midcontinent)的旋回地层学研究(Ross and Ross, 1987)显示,这一时期海平面持续偏高,可能代表一个弱的“温室”期(Montañez and Poulsen, 2013),因为冰川沉积证据仅在冈瓦纳少数地区可见。二叠纪早期(Asselian-early Sakmarian),即P1阶段,被普遍认为是晚古生代冰期的顶峰(Isbell et al., 2012; Montañez and Poulsen, 2013),冰川自南极贯穿冈瓦纳直达约~30° S的低纬度地区。导致P1阶段最大面积冰川覆盖的原因,可能与大气二氧化碳浓度(pCO2)的降低(体积比最低约280×10-6)(Montañez et al., 2007),及同期大气氧气浓度(pO2)显著升高(最高约30%)(Berner, 2006, 2009)有关,其根源可能是低纬度湿地地区异常巨量的有机碳埋藏(Berner,2003)。萨克马尔期(Sakmarian,293.5~290.1 Ma)中期,进入P1、P2之间的另一个间冰期,这一时期,pCO2由~280×10-6持续上升至~2 500×10-6(Montañez et al., 2007),pO2则转入下降阶段(~26%)(Berner, 2006, 2009),这种显著变化,可能受控于大气圈中大量温室气体的迅速注入(Montañez et al., 2007; Birgenheier et al., 2010)。萨克马尔晚期至中、晚二叠世之交,还存在3个阶段的冰期(P2、P3、P4),但主要局限于澳大利亚东部Sydney、Bowen、Gunnedah盆地等高纬度地区(Isbell et al., 2012; Metcalfe et al., 2015)。

除冰川覆盖范围(Isbell et al., 2012)、海平面变化(Ross and Ross, 1987)、大气二氧化碳和氧气浓度变化(Montañez et al., 2007)等外,古海水温度变化也是示踪晚古生代冰期演化的一个重要指标。Chen等(2013, 2016a)通过对位于低纬度地区的贵州罗甸纳庆剖面自石炭纪维宪期(Visean)至二叠纪罗德期(Roadian)牙形刺氧同位素的测定,重建了这一时间段的古海水温度变化情况。数据显示,在约335~270 Ma间,δ18 O的最高峰值(23.3‰)出现在晚石炭世巴什基尔期中期(~320 Ma);经过2次阶段性下降后,在石炭-二叠纪之交达到~21‰;二叠纪早期,即Asselian-Kungurian末期,δ18 O基本稳定在~21‰;自乌拉尔世-瓜德鲁普世之交,至瓜德鲁普世-乐平世之交(Chen et al., 2013),δ18 O呈持续下降趋势(~21‰~19‰)。根据上述δ18 O变化趋势及计算的古海水温度,Chen等(2016a)认为晚古生代冰期的顶峰(即最大冰川覆盖面积)应在巴什基尔期中期(~320 Ma),而非普遍认为的(Montañez et al., 2007; Isbell et al., 2012)出现在阿瑟尔期-萨克马尔中期(即P1阶段);晚古生代冰期主幕的结束,发生在Kungurian晚期-Capitanian末期(Chen et al., 2013),也就否认了根据冰川沉积(Isbell et al., 2012)、大气二氧化碳浓度快速上升(Montañez et al., 2007)所提出的Sakmarian晚期存在间冰期的说法。

3.2 瓜德鲁普世末期环境变化

瓜德鲁普世-乐平世之交生物灭绝事件(又称“前乐平世生物危机”或“瓜德鲁普世末生物灭绝”)的提出(Jin et al., 1994; Stanley and Yang, 1994),尤其是其与峨眉山大火成岩省的时间耦合关系(Zhou et al., 2002),使得对于这一时段古环境背景的研究日渐成为热点;但瓜德鲁普世末期全球范围内的大规模海平面下降(Haq and Schutter, 2008),导致具有GLB界线地层连续沉积的剖面很少(Jin et al., 2006),这给完整重建GLB古环境变化带来了现实难题。在华南其他大部分地区接受剥蚀时,海水并未完全退出位于滇黔桂盆地东侧的广西来宾地区;在瓜德鲁普世-乐平世之交,该地区形成了一套以海百合茎灰岩为代表的低水位沉积,即“来宾灰岩”,其上为代表乐平世海侵体系的硅质岩与灰岩互层的合山组。通过在广西来宾蓬莱滩、铁桥剖面的多年研究,关于这一地区的岩石地层、化石延限、生物地层(Shen et al., 2007a),以及古环境指标(如C,O,Sr,Ca,S等)的连续变化,目前已获得较为系统的认识(Wang et al., 2004; Chen et al., 2011; Zhong et al., 2013; Jost et al., 2014; Zhang et al., 2015)。

Wang等(2004)较早研究了蓬莱滩、铁桥剖面GLB附近的无机碳同位素变化,数据表明2条剖面GLB界线层位都存在一次碳同位素值负偏(蓬莱滩~2‰;铁桥~3.5‰);其中蓬莱滩剖面的负偏,在后续研究中得到证实(Chen et al., 2011; Jost et al., 2014),但在与全球范围内其他剖面对比中,Jost等(2014)发现:来宾地区GLB的碳同位素值负偏,并非在所有地区都有体现;瓜德鲁普统上部-乐平统底部存在碳同位素值负偏的剖面,其层位和幅度也不一致。即使在华南地区,如四川朝天(Lai et al., 2008; Saitoh et al., 2013a)、四川上寺(Lai et al., 2008; Shen et al., 2013a; Xie et al., 2017)、贵州熊家场(Wignall et al., 2009; Bond et al., 2010)、广西合山(Shen et al., 2013a)、四川渡口(Shen et al., 2013a)、重庆(Tian et al., 2016)等,GLB界线附近的碳同位素变化也存在差别,瓜德鲁普世末期的碳循环可能受地层连续性、沉积相、构造环境等多种复杂因素控制,因而需要先厘清GLB碳同位素变化的规律,才能论证峨眉山大规模火山活动对区域或全球碳循环的影响。

值得注意的是,通过对日本Kamura、克罗地亚Verbit地区的GLB地层碳同位素研究中,Isozaki等(2007a, 2007b, 2011)发现这两个地区的δ13 Ccarb在Capitanian期呈现出异常的持续高值现象(5‰~6‰,最高值约7‰),认为其代表低纬度泛大洋地区异常高的海洋初级生产力、巨量的有机碳埋藏,指示持续时间相对较长的全球变冷环境,即“Kamura事件”,并将其归为瓜德鲁普世末期生物灭绝事件的主要诱因之一。但目前为止,类似Kamura、Verbit地区的δ13 Ccarb异常持续高值在绝大多数地区未见报道,而且没有直接证据(即古海水温度)证实在Capitanian期发生了长时间的变冷事件。利用牙形刺氧同位素,Chen等(2011)重建了来宾地区GLB界线上下的古海水温度,发现在瓜德鲁普世晚期-乐平世早期存在3阶段的温度变化趋势,即升(~4℃)—降(6~8℃)—升(~10℃);但由于地层延限、数据分辨率限制,尚不足以证明“Kamura事件”是否存在,以及峨眉山大规模火山活动、碳循环、古海水温度变化之间的内在联系。

为论证海洋碳循环、钙循环与峨眉山大规模火山活动温室气体(CO2、CH4)释放之间的潜在关系,Jost等(2014)研究了华南蓬莱滩、朝天和土耳其Koserelik Tepe剖面的C-Ca同位素。结果显示,3条研究剖面的δ13 Ccarb、δ44/40Ca并不存在一致规律;结合对全球其他剖面δ13 Ccarb记录的对比分析后,Jost等(2014)认为GLB的C-Ca同位素异常很可能受区域埋藏条件、后期成岩作用改造的影响,不反映全球性碳循环、钙循环,暗示瓜德鲁普世末期火山活动、环境变化、生物灭绝之间的关联性较弱。

对广西来宾蓬莱滩、铁桥和美国西部Apache剖面的多硫同位素对比研究,Zhang等(2015)发现在瓜德鲁普世末期存在可对比的多硫同位素异常现象,指示硫的生物地球化学循环发生了根本性的变化,而间歇性硫化海水的上涌,是这一生物地球化学体系转变的主导因素;根据多硫同位素异常在地层中的位置(牙形刺Jinogondolella granti带,至Clarkina postbitteri postbitteri带),提出硫化海水上涌是导致瓜德鲁普世末生物灭绝的重要因素。对四川朝天剖面沉积环境、C-N-S等地球化学指标的研究(Saitoh et al., 2013a, 2013b, 2014)提出,瓜德鲁普世末期存在含氧量最小带(oxygen minimum zone; OMZ)的扩张,导致硫化、缺氧的深层海水上涌到斜坡相环境,造成浅海生物的生态危机(Saitoh et al., 2014)。需要注意的是,对朝天剖面茅口灰岩及上伏“王坡页岩”(硅质泥岩段)、吴家坪组灰岩的牙形刺生物地层研究(Lai et al., 2008; Sun et al., 2010)表明,朝天剖面GLB存在较大程度的地层缺失,Saitoh等(2014)所识别出的“异常”,位于“王坡页岩”(硅质泥岩段),最高层位可能仅到牙形刺Jinogondolella shannoni带,这比Zhang等(2015)在蓬莱滩、铁桥、Apache剖面识别出的硫化海水上涌层位要低至少3个牙形刺带(Jinogondolella altudaensis带、Jinogondolella prexuanhanensis带、Jinogondolella xuanhanensis带),根据蓬莱滩、铁桥剖面牙形刺化石带的延限(Mei et al., 1998; Jin et al., 2006; Sun et al., 2017)大致推算(假定茅口组内部沉积速率无显著变化),可能早~3 Ma;而且,在同处华南的蓬莱滩、铁桥剖面这3个牙形刺带内,无明显多硫同位素异常,仅在Apache剖面Jinogondolella altudaensis带下部存在一次较显著硫同位素变化(先负偏后正偏)。简而言之,上述“硫化、缺氧海水上涌”事件需要进一步验证。

3.3 二叠-三叠纪之交环境突变

关于二叠-三叠纪之交古环境变化的研究众多,涉及区域分布全球,本文无法全面梳理,仅选择近年来较受关注的几个研究领域(如升温、酸化、缺氧等)做简要点评。

3.3.1 急剧升温

如前所述,Burgess等(2014)将二叠纪末生物大灭绝的最长延续时间限定在61±48 ka(起始于251.941±0.037 Ma,结束于251.880±0.031 Ma)以内,而西伯利亚大火成岩省的最新测年结果(Burgess and Bowring, 2015),表明其持续时间小于1 Ma,涵盖大灭绝全过程;尽管时间上的重合表明西伯利亚大规模火山活动可能是造成生物灭绝的原因,但要厘清内在机制,显然不能仅依靠地质年代学,需要在地层记录尤其是海相沉积中寻找联系火山活动与生物灭绝的高分辨率证据。一般而言,典型大火成岩省火山活动,会释放巨量的火山灰、H2S、SO2、CO2、CH4等(Robock,2000; Self et al., 2014),会造成短期内的“火山冬天”和长期的温室效应;所以,重建连续、高分辨率古海水温度记录,可以制约西伯利亚大规模火山活动约1 Ma主峰期中最具破坏性的阶段。

Joachimski等(2012)利用传统质谱分析方法(IRMS)对浙江煤山、四川上寺剖面PTB附近牙形刺化石的氧同位素进行了测定,结果显示在二叠纪末发生一次显著的δ18 O降低,指示约8℃的快速升温,认为这次升温事件是造成二叠纪末生物大灭绝的原因之一。考虑到煤山、上寺剖面PTB地层高度凝缩,而且IRMS方法通常需要至少0.5 mg磷酸银结晶作为有效的测试样品(对PTB的牙形刺化石而言,即约10~50粒标本),所以2条剖面获得的结果中(Joachimski et al., 2012)缺少灭绝层位的数据,升温事件究竟出现在生物大灭绝开始之前、期间或之后,证据尚不充足。利用二次离子探针(SIMS)微区原位分析方法,测定牙形刺化石及其他生物质磷酸盐样品的氧同位素组成以重建古气候,是近年来建立并逐渐完善的重要手段(Trotter et al., 2008, 2015, 2016; Rigo et al., 2012; Wheeley et al., 2012),其主要优势在于:① 高分辨率,样品需求量少,可对单颗牙形刺化石进行多次分析;② 高精度,在测定δ18 O时可获得的内部精度、外部精度都能达到0.2‰(1σ SE及1σ SD);③ 高效率,可自动、连续分析。Chen等(2016b)利用SIMS方法对华南不同沉积环境的4条剖面(煤山:上斜坡相;上寺:下斜坡至盆地相;代家沟、凉风垭:浅水台地相)PTB上下的牙形刺进行了系统的氧同位素分析,包括关键的灭绝层位(如煤山25层)的标本。结果证实,二叠纪末期的确存在一次急速、大幅升温事件(在~20 ka内升高约10℃);但与Joachimski等(2012)不同的是,Chen等(2016b)的数据显示这次升温事件发生在碳同位素负偏及生物灭绝之后,且灭绝之前及最大灭绝层位(即煤山24~25层)古海水温度都无明显变化,所以急剧升温事件不是造成二叠纪末生物大灭绝的直接诱因(图 2)。这样的变化趋势,即升温位于灭绝层位之上,在伊朗西北部的Kuh-e-Ali Bashi、Zal剖面(Schobben et al., 2014; IRMS方法),伊朗中部的Abadeh剖面(陈军,未发表数据;SIMS方法),以及广西来宾蓬莱滩PTB剖面(沈树忠,未发表数据; SIMS方法)也同样存在,有力地佐证了Chen等(2016b)关于升温和灭绝之间关系的结论。

Brand等(2012)利用意大利Dolomites地区腕足类壳体的δ18 O、Δ47值重建了该地区生物灭绝层位附近的古海水温度变化,结果与采用牙形刺测得的古温度记录存在重要差别:灭绝之前~20 ka至灭绝之前~1.9 ka,Dolomites地区古海水温度已经达到~35℃并保持稳定;灭绝之前~1.9 ka至灭绝层位,快速升高到~40℃并在灭绝期间继续上升。采用同样的方法(即腕足类δ18 O),Garbelli等(2016)重建了西藏姜叶玛剖面PTB的古海水温度及变化,数据显示与Dolomites地区相似的特征,自长兴早期的背景值~26℃(6-1至8-2层)上升至长兴晚期的~32.6℃(8-13层),并在灭绝之前(9层顶部)继续升高至~36℃。

3.3.2 海洋酸化

西伯利亚大火成岩省岩浆及其接触变质作用,以及地幔柱头部与岩石圈相互作用释放出的巨量CO2(Svensen et al., 2009; Sobolev et al., 2011),除了能造成急剧升温之外,另一个潜在的影响是海洋酸化,因而指示海水酸度变化的指标也可以用来验证大火成岩省与生物灭绝之间的关系。在古特提斯地区,Payne等(2010)研究了贵州打讲剖面碳酸盐岩的钙同位素变化情况,结果显示在灭绝层位上下,δ44/40Ca出现一次幅度约0.3‰的快速负偏,代表当时海水δ44/40Ca值的变化,而且与δ13 Ccarb同步,指示海洋酸化事件。对煤山剖面PTB牙形刺化石的钙同位素分析(Hinojosa et al., 2012),发现同样的规律,即在灭绝层位上下,δ44/40Ca与δ13 Ccarb同步负偏,因此大规模火山活动释放的CO2可能造成海洋酸化并最终导致生物灭绝。

在新特提斯洋地区,Clarkson等(2015)研究了阿联酋Wadi Bih剖面(碳酸盐岩台地相)的硼同位素。数据显示,δ11 B在第一幕灭绝(即相当于煤山25层,最大规模灭绝层位)上下并无显著变化,但在第二幕灭绝(即相当于煤山28层)之前出现约6‰的大幅度负偏(即海水pH值降低约0.6)。海洋酸化发生于最大规模灭绝之后,且δ11 B与δ13 Ccarb无相关关系(在全球性δ13 Ccarb负偏的层位,δ11 B保持稳定;δ11 B负偏的层位,δ13 Ccarb却保持稳定),显然这些数据不支持“海洋酸化造成生物灭绝”的结论。

除了钙、硼同位素等地球化学指标外,生物生理结构上的变化也可以用来指示生存环境(Knoll et al., 2007)。海洋底栖生物矿化作用如钙质壳的形成,与海水的物理化学性质如酸碱度、温度、盐度、含氧量等有密切关系;基于这一思路,Garbelli等(2017)对二叠纪末生物灭绝前和灭绝期间的腕足动物钙质壳纤维结构进行了系统研究,化石分布范围包括特提斯周缘5个地区(意大利Dolomites,伊朗,华南,土耳其,西藏色龙)。结果显示,在生物大灭绝层位,小嘴贝大类腕足动物壳第三层柱状层往往不发育,壳质纤维体变小,而扭月贝大类的柱状层和纤维大小并未发生变化。与现生腕足类在大气二氧化碳浓度升高、海水pH值降低环境背景下的壳质特征比较后,Garbelli等(2017)认为小嘴贝大类、扭月贝大类壳质结构上的不同,反映两大类群腕足动物在适应海水酸化能力上的差异;最终扭月贝大类的长身贝目、直形贝目、石燕贝目等古生代主要类群在生物灭绝中未能幸免,而小嘴贝大类的壳质纤维小型化使其更能适应恶化的海洋环境,并最终渡过难关。

3.3.3 海洋缺氧

“二叠纪-三叠纪之交发生海洋缺氧”观点的提出,相对历史较长,证据多样,如:沉积相特征(Wignall and Hallam, 1992),沉积岩Th/U值(Wignall and Twitchett, 1996),泛大洋缺氧硅质岩(Isozaki,1997),草莓状黄铁矿(Wignall et al., 2005; Shen et al., 2007b; Bond and Wignall, 2010),生物标志物(Grice et al., 2005b; Cao et al., 2009; Xie et al., 2017),铁组分(Grice et al., 2005a; Xiang et al., 2016),氧化还原敏感元素(Algeo et al., 2011; Xiang et al., 2016),铀含量及铀同位素(Brennecka et al., 2011; Lau et al., 2016),钼含量及钼同位素(Proemse et al., 2013)等。

多种研究表明,二叠纪-三叠纪之交的确存在海洋缺氧事件,但缺氧所影响的范围(如高纬度、低纬度地区)与环境(如深海、斜坡、浅海台地)究竟有何规律,以及缺氧在生物灭绝中是否起主导作用,尚待厘清。Isozaki(1997)所提出的长达~20 Ma的超级缺氧事件显然不是一般性规律,至多代表泛大洋地区日本西南、加拿大Cache Creek这样的特例。值得注意的是,Proemse等(2013)分析了加拿大Sverdrup Basin水深条件不同的两条剖面的钼含量及钼同位素;结果显示,在生物灭绝层位,代表深水环境的Buchanan Lake剖面存在钼同位素的显著正偏,而代表浅水环境的West Blind Fiord剖面钼同位素保持稳定,这说明在讨论是否存在缺氧事件或者缺氧对生物灭绝的影响时需要根据沉积环境具体分析。Xiang等(2016)对四川上寺剖面PTB地层进行了铁组分、微量元素、氮同位素、TOC等系列指标的综合分析,结果显示,上寺剖面自乐平统-三叠纪早期,底层海水氧化还原呈分阶段、动态变化,生物灭绝层位上下并不存在缺氧,继而说明缺氧至少不是上寺剖面二叠纪末生物灭绝的主要诱因。

从上述分析还可看出,尽管指示氧化还原状态的指标众多,但除在少数研究程度较高的剖面(如煤山、上寺)之外,极少有在同一剖面开展多重指标(如钼含量及钼同位素、铀含量及铀同位素、氧化还原敏感金属元素等)相互校验的系统性工作,这或许是未来开展缺氧事件研究中值得注意的方向。

3.3.4 火山活动与汞异常

利用海相地层记录中的“汞异常”来论证大火成岩省火山活动与生物灭绝或缺氧事件之间的关系,成为最近几年来的研究热点(Thibodeau and Bergquist, 2017),如新元古代火山活动(Sial et al., 2010)、Deccan Traps(Sial et al., 2013, 2014, 2016; Font et al., 2016)、Karoo-Ferrar大火成岩省(Percival et al., 2015)、CAMP大火成岩省(Thibodeau et al., 2016),及西伯利亚大火成岩省(Sanei et al., 2012; Grasby et al., 2013, 2016, 2017)。海相地层中的“汞异常”,通常表现为与背景值相比显著升高的汞含量(Hg concentration),及显著升高的汞与总有机碳含量比值(Hg/TOC)。Sanei等(2012)研究了加拿大北极地区Buchanan Lake剖面二叠纪末生物灭绝层位上下的汞含量、总有机碳含量,发现在生物灭绝前存在显著的“汞异常”;结合碳同位素变化、黄铁矿层指示的缺氧环境,及二叠纪末“飞灰事件”(Grasby et al., 2011)的地层层位,Sanei等(2012)认为Buchanan Lake剖面二叠纪末的“汞异常”,可能与西伯利亚大火成岩省大规模火山喷发释放的气化汞(Hgg0)有关。

全球汞循环规律(Mason and Sheu, 2002)显示,海洋中汞含量异常的原因,除岩浆释气外,也可能与煤系燃烧、森林野火、风化剥蚀、地外来源等有关(Thibodeau and Bergquist, 2017)。汞在复杂的生物地球化学循环中存在质量相关分馏(mass-dependent fractionation; MDF; 常以δ202Hg作为代表)和非质量相关分馏(mass-independent fractionation; MIF; 常以Δ199Hg作为代表),两者的结合可以作为有效的示踪工具(Bergquist and Blum, 2009; Blum et al., 2014; Yin et al., 2016):海洋沉积物中汞的两大来源,即陆相输入(terrestrial runoff)、大气沉降(atmospheric Hg2+ deposition),具有不同的同位素特征,因而根据同位素值可以区分源区。Grasby等(2017)在先前研究(Sanei et al., 2012)的基础上,分析了Buchanan Lake剖面的汞同位素变化,并与煤山剖面PTB地层的汞含量、汞同位素进行了对比。结果表明:代表低纬度、浅海斜坡相的煤山剖面,与代表高纬度、远洋深海相的Buchanan Lake剖面在生物灭绝之前都存在Hg、Hg/TOC值的显著升高;δ202Hg在灭绝层位上下都有先降低、后回升的变化趋势,最低值都在灭绝层位,但变化幅度却有显著差异,煤山剖面降幅约1.5‰,而Buchanan Lake剖面仅约0.5‰;在Buchanan Lake剖面,Δ199Hg仅有微弱变化,灭绝前约0.15‰,灭绝后为0.12‰~0.18‰,但在煤山剖面,Δ199Hg却有显著负偏,自灭绝前约0.15‰降为灭绝后的-0.12‰。结合沉积环境差别,Grasby等(2017)认为Buchanan Lake剖面的“汞异常”主要受西伯利亚大规模火山活动的大气汞沉降控制,而煤山剖面则同时受火山作用来源及陆源输入(风化剥蚀、森林野火事件)影响。

4 二叠纪生物演化事件

显生宙生物多样性研究(Sepkoski,1981; Raup and Sepkoski, 1982; Bambach,2006; Alroy et al., 2008)表明,石炭-二叠纪之交、二叠-三叠纪之交是生命演化历史上2个重要的转折期,前者为繁盛、增长期(Stanley and Powell, 2003),后者则发生地史时期最大规模灭绝事件(Jin et al., 2000; Shen et al., 2011; Wang et al., 2014),造成~81%的海洋生物种级分类单元的消亡(Stanley,2016),直至灭绝后~8-9 Ma的中三叠世早期才重新恢复为稳定、多样的生态系统(Chen and Benton, 2012)。由于生物地理区系、地层对比、化石门类研究程度等因素的影响,关于石炭-二叠纪之交的生物分异度变化,多停留在某一门类、某一地区或某一具体时段,如珊瑚(Wang and Sugiyama, 2000)、腕足(Shen et al., 2006, 2013b)、蜓类(Groves and Wang, 2009)、古植物(Montañez et al., 2007; Wang et al., 2012)等,整体分异度数据较少。现有研究表明,总体来说石炭纪-二叠纪早期是生物繁盛时期,受泛大陆聚合和裂解、两极冰盖进退的古地理、古气候格局的控制(Chumakov and Zharkov, 2002),主要生物门类都表现出显著的地理区系特征;全球范围内陆地上发育最大规模的森林,陆生脊椎动物两栖类、昆虫等多样性丰富,海洋生物如珊瑚、蜓类、腕足、菊石、牙形刺的多样性都呈稳定、上升趋势。以海洋无脊椎动物为例,自晚古生代冰期主峰期结束(Sakmarian中晚期)至乌拉尔世晚期,总体分异度、灭绝率和新生率都呈同步上升趋势(Stanley and Powell, 2003)。

二叠纪生物演化的重要转折期之一出现在瓜德鲁普世晚期-乐平世早期,即所谓“前乐平世生物危机”或“瓜德鲁普世末期生物灭绝事件”,这一生物事件,在珊瑚(Wang and Sugiyama, 2000)、腕足(Shen et al., 2006; Clapham et al., 2009)、蜓类(Groves and Wang, 2013)、菊石(Ehiro and Shen, 20082010)等的多样性变化上都有不同程度的体现。瓜德鲁普世末期全球性大规模海平面下降(Haq and Schutter, 2008),造成GLB地层大范围缺失,这也给生物多样性变化研究带来不确定因素。与二叠纪末生物大灭绝相比,瓜德鲁普世末期生物事件有2大显著特征:① 灭绝选择性,即部分门类或属种的生物灭绝(主要如蜓类、珊瑚、苔藓虫等底栖生物),其他则受影响不大或只是正常的生物更替(如双壳、腕足);② 灭绝不等时性,即各门类生物分异度出现最显著变化的时间不同(Shen and Shi, 2009)。上述特征,也使得部分研究者认为,瓜德鲁普世末期的一系列地质、环境、生物事件可能只是二叠纪晚期生物灭绝的“序曲”(Clapham and Bottjer, 2007; Isozaki et al., 2007a; Clapham et al., 2009; Isozaki, 2009a, 2009b)。

越来越多的证据表明,二叠纪末生物灭绝(end-Permian mass extinction; EPME)是在短时间内快速发生、海陆同步的灾难性事件(Jin et al., 2000; Rampino et al., 2000; Shen et al., 2011; Burgess et al., 2014; Zhang et al., 2016)。目前关于二叠纪末生物灭绝的较大争议(Shen and Bowring, 2014),主要是关于灭绝模式,以及与之相对应的持续时间、灭绝机制。利用置信区间(confidence interval)方法,Jin等(2000)分析了煤山剖面15个主要化石门类(如腕足、珊瑚、蜓类、有孔虫、介形类、头足类等共162属,333种)的地层延限,提出二叠纪末生物灭绝是一次单幕式、快速灭绝事件,最大幅度灭绝位于煤山25层,种级灭绝率高达94%,以碳同位素负偏为化学地层标志。以生物地层对比、绝对年龄约束为基础,Shen等(2011)Wang等(2014)采用约束最优化(constrained optimization;CONOP)方法对华南及冈瓦纳北缘共18条剖面、1450个化石种的地层延限进行了定量化分析,证实二叠纪末生物灭绝为单幕式,最大规模灭绝在层位上对应于煤山24e层顶部,伴有碳同位素快速负偏,最大灭绝区间为24e~28层,持续时间不超过200 ka;最近的高精度锆石U-Pb定年结果(Burgess et al., 2014),将最大规模灭绝限定在251.941±0.037 Ma,灭绝事件结束于251.880±0.031 Ma,持续总时间小于61±48 ka。

另外一种观点则认为,二叠-三叠纪之交生物灭绝(Permian-Triassic mass extinction; PTME)主要分为两幕,分别对应于煤山剖面25层和28层,即牙形刺Clarkina meishanensis带和Isarcicella staeschei带,其间为短暂恢复期(Yin et al., 2007, 2012; Song et al., 2013)。单幕式(Jin et al., 2000; Shen et al., 2011; Wang et al., 2014)、两幕式(Song et al., 2013)或多幕式(Xie et al., 2005; Yin et al., 2007)等不同观点的根源,是地层记录中不同生物类群消亡的时间或速度的差异(Jin et al., 2000; Song et al., 2013),取决于全球范围内不同地区环境灾变(如升温、酸化、缺氧等)是否同步,以及生物自身特点,主要为适应环境变化的能力,如可适应栖息环境窄或广、耐受高温及酸化能力强或弱等。华南地区酸性火山作用(Yin et al., 1992; Gao et al., 2013; He et al., 2014; Liao et al., 2016)可能不是生物灭绝的诱因,但会给生物灭绝之前的生态系统造成一定压力(Wang et al., 2014);二叠纪末期西伯利亚大规模岩浆活动(Burgess and Bowring, 2015),则是“骆驼背上的最后一根稻草”,使得环境迅速到达临界点,最终造成海、陆生态系统的同步崩溃。“物竞天择,适者生存”,由于某些特殊地区“避难所”(Beatty et al., 2008)或特定水深环境下“避难带”(Song et al., 2014)的存在,以及少数生物自身对环境因素耐受能力较强或及时演化策略的调整(如小型化)等原因,使得不同地区、不同生物类群在灭绝事件中消亡的时间或速度存在一定差异,极少数甚至渡过难关。

5 总结与前瞻

由于二叠纪塔里木、峨眉山、西伯利亚大火成岩省在地球动力学过程、起始与持续时间、喷发方式及规模上的差异(表 1),其影响力也就不尽相同,所以在研究三者地质过程、环境与生物影响(图 3)时,区别对待、具体分析是基本原则,切忌以偏概全、简单照搬。经过国内外学者多年研究,尤其是近年来在高精度年代学、非传统稳定同位素地球化学、定量地层学方面的重要进展,提高了对该领域的一些根本性问题的认识,但仍有部分关键问题需要在未来研究中予以解决,包括:

数据来源:二叠纪地质年代框架、牙形刺化石带、地磁极性来自国际地层委员会二叠系分会(SPS)最新推荐的“二叠纪地质年表”(Permian Timescale,2017年1月版);泛大陆聚合、Cimmerian地块漂移及新特提斯洋的演化历史主要来自Yeh and Shellnutt, 2016; 塔里木大火成岩省火山活动年龄(~300 Ma、~290 Ma、~280 Ma)来自Xu et al., 2014; 克什米尔Panjal Trap的主峰期年龄(~289 Ma)来自Shellnutt et al., 2011; 藏北羌塘溢流玄武岩主峰期年龄(~287 Ma)来自Zhang and Zhang, 2017; 峨眉山大火成岩省起始、峰期及结束年龄主要来自Sun et al. (2010)Zhong et al. (2014)及本文根据蓬莱滩剖面牙形刺序列的推算; 华南酸性火山活动(Yin et al., 1992; Gao et al., 2013; He et al., 2014)年龄为大致估计;西伯利亚大火成岩省年龄来自Burgess and Bowring(2015); 海平面变化曲线来自Haq and Schutter(2008); 晚古生代冰期二叠纪的4个阶段(P1、P2、P3、P4) 主要根据澳大利亚东部冰川沉积记录及U-Pb年代确定(Isbell et al., 2012; Metcalfe et al., 2015) 图 3 精时地层(绝对年龄、生物地层)约束的二叠纪主要地质事件、气候演变及生物事件 Figure 3 Major geological, environmental, and biological events during the Permian, constrainted by updated U-Pb geochronology and conodont biostratigraphy

(1) 塔里木大火成岩省喷发过程的完整重建,及其与藏北羌塘、保山地块、克什米尔Panjal Trap、阿曼等地同时期火山活动之间的关系。从全球古地理格局看,泛大陆的聚合和Cimmerian地块漂移可能是控制这一时期火山活动、气候变化和生物演化的根源,所以未来研究中可借助精细年代学、古地磁、岩石地球化学等手段进一步论证是否可能存在二叠纪早期“泛大陆火山链”(Pangean Rim of Fire)(Golonka and Ford, 2000)。

(2) 精时地层是研究地质历史时期地质事件、环境背景与生物事件之间关系的前提,在二叠纪地质年代框架中,乌拉尔世Sakmarian、Artinskian、Kungurian的“金钉子”目前尚未正式确立,其难点在于典型地层即俄罗斯乌拉尔南部地区与华南、北美地台、冈瓦纳地区等在生物地层、年代学、化学地层对比方面还存在众多分歧,这也从根本上制约了关于晚古生代冰期气候变化、海平面变化与生物多样性变化之间联系的进一步探讨。

(3) 罗甸纳庆剖面石炭纪Visean期至二叠纪Roadian期的连续、长时间尺度牙形刺氧同位素记录(Chen et al., 2016a),能否在华南其他地层剖面以及乌拉尔南部地区、北美地台等得到验证,以及对于晚古生代冰期的演化历史有何指示意义,也是未来研究中值得关注的问题之一。

(4) 关于起始喷发环境、地壳抬升及沉降模型、起始与结束年龄,是峨眉山大火成岩省研究领域一直以来争议较大的问题。另一方面,能否在华南地区海相地层剖面中,予以GLB生物地层界线年龄直接约束,并结合高分辨率牙形刺、蜓类生物地层分带,建立区域和全球对比的生物地层年代学框架,也是关键性科学问题之一。瓜德鲁普世晚期的碳循环,特别是类似“Kamura事件”的异常高值现象,以及与古温度变化、海平面变化、锶同位素变化、生物分异度变化之间的精细耦合关系,也是值得进一步深入研究的问题。

(5) 西伯利亚大火成岩省、二叠纪末生物灭绝事件的年代学约束方面,业已取得重要进展(Burgess et al., 2014; Burgess and Bowring, 2015),但关于华南酸性火山活动与西伯利亚大火成岩省岩浆活动的时间关系及各自在生物灭绝中所起的作用,尚待进一步厘清。非传统稳定同位素(如Ca、B、Mo、Zn、Li、Os、Hg等)理论和分析方法的逐步完善,给二叠-三叠纪古环境背景研究,特别是论证大规模火山活动与生物灭绝事件之间的内在机制关系,提供了重要契机,但需要注意的是,精时地层约束、全球尺度对比分析是最终解决问题的重要前提。

参考文献
[] Algeo T J, Kuwahara K, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynard J B. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65–83. DOI:10.1016/j.palaeo.2010.07.007
[] Ali J R, Cheung H M C, Aitchison J C, Sun Y D. 2013. Palaeomagnetic re-investigation of Early Permian rift basalts from the Baoshan Block, SW China: Constraints on the site-of-origin of the Gondwana-derived eastern Cimmerian terranes. Geophysical Journal International, 193(2): 650–663. DOI:10.1093/gji/ggt012
[] Alroy J, Aberhan M, Bottjer D J, Foote M, Fürsich F T, Harries P J, Hendy A J, Holland S M, Ivany L C, Kiessling W, Kosnik M A, Marshall C R, McGowan A J, Miller A I, Olszewski T D, Patzkowsky M E, Peters S E, Villier L, Wagner P J, Bonuso N, Borkow P S, Brenneis B, Clapham M E, Fall L M, Ferguson C A, Hanson V L, Krug A Z, Layou K M, Leckey E H, Nürnberg S, Powers C M, Sessa J A, Simpson C, Tomasovych A, Visaggi C C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321(5885): 97–100. DOI:10.1126/science.1156963
[] Bambach R K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences, 34: 127–155. DOI:10.1146/annurev.earth.33.092203.122654
[] Barnosky A D, Matzke N, Tomiya S, Wogan G O U, Swartz B, Quental T B, Marshall C, McGuire J L, Lindsey E L, Maguire K C, Mersey B, Ferrer E A. 2011. Has the Earth's sixth mass extinction already arrived?. Nature, 471(7336): 51–57. DOI:10.1038/nature09678
[] Barron E J, Fawcett P J. 1995. The climate of pangaea: A review of climate model simulations of the permian. In: Scholle P A, Peryt T M, Ulmer-Scholle D S, eds. The Permian of Northern Pangea: Volume 1: Paleogeography, Paleoclimates, Stratigraphy. Berlin, Heidelberg: Springer, 37-52
[] Beatty T W, Zonneveld J P, Henderson C M. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: A case for a shallow-marine habitable zone. Geology, 36(10): 771–774. DOI:10.1130/G24952A.1
[] Bergquist R A, Blum J D. 2009. The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation. Elements, 5(6): 353–357. DOI:10.2113/gselements.5.6.353
[] Berner R A. 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426(6964): 323–326. DOI:10.1038/nature02131
[] Berner R A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653–5664. DOI:10.1016/j.gca.2005.11.032
[] Berner R A. 2009. Phanerozoic atmospheric oxygen: New results using the geocarbsulf model. American Journal of Science, 309(7): 603–606. DOI:10.2475/07.2009.03
[] Birgenheier L P, Frank T D, Fielding C R, Rygel M C. 2010. Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the late Palaeozoic Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 286(3-4): 178–193. DOI:10.1016/j.palaeo.2010.01.008
[] Black B A, Elkins-Tanton L T, Rowe M C, Peate I U. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth and Planetary Science Letters, 317-318: 363–373. DOI:10.1016/j.epsl.2011.12.001
[] Blum J D, Sherman L S, Johnson M W. 2014. Mercury isotopes in earth and environmental sciences. Annual Review of Earth and Planetary Sciences, 42(1): 249–269. DOI:10.1146/annurev-earth-050212-124107
[] Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122(7-8): 1265–1279. DOI:10.1130/B30042.1
[] Bond D P G, Wignall P B, Wang W, Izon G, Jiang H S, Lai X L, Sun Y D, Newton R J, Shao L Y, Véedrine S, Cope H. 2010. The mid-Capitanian(Middle Permian)mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1-2): 282–294. DOI:10.1016/j.palaeo.2010.03.056
[] Bond D P G, Wignall P B. 2014. Large igneous provinces and mass extinctions: An update. Geological Society of America Special Papers, 505: 29–55. DOI:10.1130/2014.2505(02)
[] Bowring S A, Erwin D H, Jin Y G, Martin M W, Davidek K, Wang W. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 280(5366): 1039–1045. DOI:10.1126/science.280.5366.1039
[] Brand U, Posenato R, Came R, Affek H, Angiolini L, Azmy K, Farabegoli E. 2012. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322-323: 121–144. DOI:10.1016/j.chemgeo.2012.06.015
[] Brennecka G A, Herrmann A D, Algeo T J, Anbar A D. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 108(43): 17631–17634. DOI:10.1073/pnas.1106039108
[] Bryan S E, Ernst R E. 2008. Revised definition of large igneous provinces(LIPs). Earth-Science Reviews, 86(1-4): 175–202. DOI:10.1016/j.earscirev.2007.08.008
[] Burgess S D, Bowring S A, Shen S Z. 2014. High-precision timeline for Earth's most severe extinction. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3316–3321. DOI:10.1073/pnas.1317692111
[] Burgess S D, Bowring S A. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Science Advances, 1(7): E1500470. DOI:10.1126/sciadv.1500470
[] Campbell I H, Czamanske G K, Fedorenko V A, Hill R I, Stepanov V. 1992. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science, 258(5089): 1760–1763. DOI:10.1126/science.258.5089.1760
[] Cao C Q, Love G D, Hays L E, Wang W, Shen S Z, Summons R E. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters, 281(3-4): 188–201. DOI:10.1016/j.epsl.2009.02.012
[] Chen B, Joachimski M M, Sun Y D, Shen S Z, Lai X L. 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: Climatic or sea-level signal?. Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145–153. DOI:10.1016/j.palaeo.2011.08.016
[] Chen B, Joachimski M M, Shen S Z, Lambert L L, Lai X L, Wang X D, Chen J, Yuan D X. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 24(1): 77–89. DOI:10.1016/j.gr.2012.07.007
[] Chen B, Joachimski M M, Wang X D, Shen S Z, Qi Y P, Qie W K. 2016a. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing(Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151–161. DOI:10.1016/j.palaeo.2016.01.002
[] Chen J, Shen S Z, Li X H, Xu Y G, Joachimski M M, Bowring S A, Erwin D H, Yuan D X, Chen B, Zhang H, Wang Y, Cao C Q, Zheng Q F, Mu L. 2016b. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26–38. DOI:10.1016/j.palaeo.2015.11.025
[] Chen Z Q, Benton M J. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5(6): 375–383. DOI:10.1038/ngeo1475
[] Chumakov N M, Zharkov M A. 2002. Climate during permian-triassic biosphere reorganizations, article 1: Climate of the early permian. Stratigraphy and Geological Correlation, 10(6): 586–602.
[] Clapham M E, Bottjer D J. 2007. Prolonged Permian-Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences of the United States of America, 104(32): 12971–12975. DOI:10.1073/pnas.0705280104
[] Clapham M E, Shen S Z, Bottjer D J. 2009. The double mass extinction revisited: Reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis(Late Permian). Paleobiology, 35(1): 32–50. DOI:10.1666/08033.1
[] Clarkson M O, Kasemann S A, Wood R A, Lenton T M, Daines S J, Richoz S, Ohnemueller F, Meixner A, Poulton S W, Tipper E T. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science, 348(6231): 229–232. DOI:10.1126/science.aaa0193
[] Coffin M F, Eldholm O. 1994. Large igneous provinces-crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1): 1–36. DOI:10.1029/93RG02508
[] Courtillot V, Fluteau F. 2014. A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses. Geological Society of America Special Papers, 505: 301–317. DOI:10.1130/2014.2505(15)
[] Courtillot V E, Renne P R. 2003. On the ages of flood basalt events: Sur l'âge des trapps basaltiques. Comptes Rendus Geoscience, 335(1): 113–140. DOI:10.1016/S1631-0713(03)00006-3
[] Crowley J C. 1999. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. Earth & Space Science News, 2000, 81(7): 570.
[] Crowley T J, Baum S K. 1991. Estimating carboniferous sea-level fluctuations from gondwanan ice extent. Geology, 19(10): 975–977. DOI:10.1130/0091-7613(1991)019<0975:ECSLFF>2.3.CO;2
[] Ehiro M, Shen S Z. 2008. Permian ammonoid Kufengoceras from the uppermost Maokou Formation(earliest Wuchiapingian)at Penglaitan, Laibin Area, Guangxi Autonomous Region, South China. Paleontological Research, 12(3): 255–259. DOI:10.2517/1342-8144-12.3.255
[] Ehiro M, Shen S Z. 2010. Ammonoid succession across the Wuchiapingian/Changhsingian boundary of the northern Penglaitan Section in the Laibin area, Guangxi, South China. Geological Journal, 45(2-3): 162–169. DOI:10.1002/gj.v45:2/3
[] Ernst R E. 2014. Large Igneous Provinces.Cambridge, UK: Cambridge University Press: 666.
[] Fan W M, Zhang C H, Wang Y J, Guo F, Peng T P. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-litho sphere interaction. Lithos, 102(1-2): 218–236. DOI:10.1016/j.lithos.2007.09.019
[] Fielding C R, Frank T D, Isbell J L. 2008. The late Paleozoic ice age-A review of current understanding and synthesis of global climate patterns. Geological Society of America Special Papers, 441: 343–354.
[] Font E, Adatte T, Sial A N, De Lacerda L D, Keller G, Punekar J. 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, 44(2): 171–174. DOI:10.1130/G37451.1
[] Ganino C, Arndt N T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37(4): 323–326. DOI:10.1130/G25325A.1
[] Gao Q L, Zhang N, Xia W C, Feng Q L, Chen Z Q, Zheng J P, Griffin W L, O'Reilly S Y, Pearson N J, Wang G Q, Wu S, Zhong W L, Sun X F. 2013. Origin of volcanic ash beds across the Permian-Triassic boundary, Daxiakou, South China: Petrology and U-Pb age, trace elements and Hf-isotope composition of zircon. Chemical Geology, 360-361: 41–53. DOI:10.1016/j.chemgeo.2013.09.020
[] Garbelli C, Angiolini L, Brand U, Shen S Z, Jadoul F, Posenato R, Azmy K, Cao C Q. 2016. Neotethys seawater chemistry and temperature at the dawn of the end Permian mass extinction. Gondwana Research, 35: 272–285. DOI:10.1016/j.gr.2015.05.012
[] Garbelli C, Angiolini L, Shen S Z. 2017. Biomineralization and global change: A new perspective for understanding the end-Permian extinction. Geology, 45(1): 19–22. DOI:10.1130/G38430.1
[] Golonka J, Ford D. 2000. Pangean(Late Carboniferous-Middle Jurassic)paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(1-2): 1–34. DOI:10.1016/S0031-0182(00)00115-2
[] Grasby S E, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience, 4(2): 104–107. DOI:10.1038/ngeo1069
[] Grasby S E, Sanei H, Beauchamp B, Chen Z H. 2013. Mercury deposition through the Permo-Triassic Biotic Crisis. Chemical Geology, 351: 209–216. DOI:10.1016/j.chemgeo.2013.05.022
[] Grasby S E, Beauchamp B, Bond D P G, Wignall P B, Sanei H. 2016. Mercury anomalies associated with three extinction events(Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction)in NW Pangea. Geological Magazine, 153(2): 285–297. DOI:10.1017/S0016756815000436
[] Grasby S E, Shen W J, Yin R S, Gleason J D, Blum J D, Lepak R F, Hurley J P, Beauchamp B. 2017. Isotopic signatures of mercury contamination in latest Permian oceans. Geology, 45(1): 55–58. DOI:10.1130/G38487.1
[] Grice K, Cao C Q, Love G D, Böttcher M E, Twitchett R J, Grosjean E, Summons R E, Turgeon S C, Dunning W, Jin Y G. 2005a. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307(5710): 706–709. DOI:10.1126/science.1104323
[] Grice K, Twitchett R J, Alexander R, Foster C B, Looy C. 2005b. A potential biomarker for the Permian-Triassic ecological crisis. Earth and Planetary Science Letters, 236(1-2): 315–321. DOI:10.1016/j.epsl.2005.05.008
[] Groves J R, Wang Y. 2009. Foraminiferal diversification during the late Paleozoic ice age. Paleobiology, 35(3): 367–392. DOI:10.1666/0094-8373-35.3.367
[] Groves J R, Wang Y. 2013. Timing and size selectivity of the Guadalupian(Middle Permian)fusulinoidean extinction. Journal of Paleontology, 87(2): 183–196. DOI:10.1666/12-076R.1
[] Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322(5898): 64–68. DOI:10.1126/science.1161648
[] He B, Xu Y G, Chung S L, Xiao L, Wang Y M. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391–405. DOI:10.1016/S0012-821X(03)00323-6
[] He B, Xu Y G, Huang X L, Luo Z Y, Shi Y R, Yang Q J, Yu S Y. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters, 255(3-4): 306–323. DOI:10.1016/j.epsl.2006.12.021
[] He B, Zhong Y T, Xu Y G, Li X H. 2014. Triggers of Permo-Triassic boundary mass extinction in South China: The Siberian Traps or Paleo-Tethys ignimbrite flare-up?. Lithos, 204: 258–267. DOI:10.1016/j.lithos.2014.05.011
[] Hinojosa J L, Brown S T, Chen J, DePaolo D J, Paytan A, Shen S Z, Payne J L. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology, 40(8): 743–746. DOI:10.1130/G33048.1
[] Iacono-Marziano G, Gaillard F, Scaillet B, Polozov A G, Marecal V, Pirre M, Arndt N T. 2012a. Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments. Earth and Planetary Science Letters, 357-358: 319–326. DOI:10.1016/j.epsl.2012.09.052
[] Iacono-Marziano G, Marecal V, Pirre M, Gaillard F, Arteta J, Scaillet B, Arndt N T. 2012b. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: Gas dispersion and environmental consequences. Earth and Planetary Science Letters, 357-358: 308–318. DOI:10.1016/j.epsl.2012.09.051
[] Isbell J L, Henry L C, Gulbranson E L, Limarino C O, Fraiser M L, Koch Z J, Ciccioli P L, Dineen A A. 2012. Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22(1): 1–19. DOI:10.1016/j.gr.2011.11.005
[] Isozaki Y. 1997. Permo-triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 276(5310): 235–238. DOI:10.1126/science.276.5310.235
[] Isozaki Y, Kawahata H, Minoshima K. 2007a. The Capitanian(Permian)Kamura cooling event: The beginning of the Paleozoic-Mesozoic transition. Palaeoworld, 16(1-3): 16–30. DOI:10.1016/j.palwor.2007.05.011
[] Isozaki Y, Kawahata H, Ota A. 2007b. A unique carbon isotope record across the Guadalupian-Lopingian(Middle-Permian)boundary in mid-oceanic paleo-atoll carbonates: The high-productivity "Kamura event" and its collapse in Panthalassa. Global and Planetary Change, 55(1-3): 21–38. DOI:10.1016/j.gloplacha.2006.06.006
[] Isozaki Y. 2009a. Illawarra Reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian(Permian)mass extinction. Gondwana Research, 15(3-4): 421–432. DOI:10.1016/j.gr.2008.12.007
[] Isozaki Y. 2009b. Integrated "plume winter" scenario for the double-phased extinction during the Paleozoic-Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective. Journal of Asian Earth Sciences, 36(6): 459–480. DOI:10.1016/j.jseaes.2009.05.006
[] Isozaki Y, Aljinovié D, Kawahata H. 2011. The Guadalupian(Permian)Kamura event in European Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 12–21. DOI:10.1016/j.palaeo.2010.09.034
[] Ivanov A V, He H Y, Yan L K, Ryabov V V, Shevko A Y, Palesskii S V, Nikolaeva I V. 2013. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Science Reviews, 122: 58–76. DOI:10.1016/j.earscirev.2013.04.001
[] Jin Y G, Zhang J, Shang Q H. 1994. Two phases of the end-Permian mass extinction. Pangea: Global environments and resources. Canadian Society of Petroleum Geologists. Canadian Society of Petroleum Geologists, Memoir(17): 813–822.
[] Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289(5478): 432–436. DOI:10.1126/science.289.5478.432
[] Jin Y G, Shen S Z, Henderson C M, Wang X D, Wang W, Wang Y, Cao C Q, Shang Q H. 2006. The Global Stratotype Section and Point(GSSP)for the boundary between the Capitanian and Wuchiapingian stage(Permian). Episodes, 29(4): 253–262.
[] Joachimski M M, Lai X L, Shen S Z, Jiang H S, Luo G M, Chen B, Chen J, Sun Y D. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40(3): 195–198. DOI:10.1130/G32707.1
[] Jost A B, Mundil R, He B, Brown S T, Altiner D, Sun Y D, DePaolo D J, Payne J L. 2014. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth and Planetary Science Letters, 396: 201–212. DOI:10.1016/j.epsl.2014.04.014
[] Kamo S L, Czamanske G K, Amelin Y, Fedorenko V A, Davis D W, Trofimov V R. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters, 214(1-2): 75–91. DOI:10.1016/S0012-821X(03)00347-9
[] Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256(3-4): 295–313. DOI:10.1016/j.epsl.2007.02.018
[] Lai X L, Wang W, Wignall P B, Bond D G, Jiang H S, Ali J R, John E H, Sun Y D. 2008. Palaeoenvironmental change during the end-Guadalupian(Permian)mass extinction in Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(1-2): 78–93. DOI:10.1016/j.palaeo.2008.08.005
[] Lau K V, Maher K, Altiner D, Kelley B M, Kump L R, Lehrmann D J, Silva-Tamayo J C, Weaver K L, Yu M Y, Payne J L. 2016. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proceedings of the National Academy of Sciences of the United States of America, 113(9): 2360–2365. DOI:10.1073/pnas.1515080113
[] Li D X, Yang S F, Chen H L, Cheng X G, Li K, Jin X L, Li Z L, Li Y Q, Zou S Y. 2014. Late Carboniferous crustal uplift of the Tarim plate and its constraints on the evolution of the Early Permian Tarim Large Igneous Province. Lithos, 204: 36–46. DOI:10.1016/j.lithos.2014.05.023
[] Li H B, Zhang Z C, Santosh M, Lü L S, Han L, Liu W. 2017. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction. Journal of Asian Earth Sciences, 134: 293–308. DOI:10.1016/j.jseaes.2016.11.029
[] Li Z L, Chen H L, Song B, Li Y Q, Yang S F, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. Journal of Asian Earth Sciences, 42(5): 917–927. DOI:10.1016/j.jseaes.2011.05.009
[] Liao S Y, Wang D B, Tang Y, Yin F G, Cao S N, Wang L Q, Wang B D, Sun Z M. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana's northern margin. Geological Society of America Bulletin, 127(9-10): 1313–1330. DOI:10.1130/B31210.1
[] Liao Z W, Hu W X, Cao J, Wang X L, Yao S P, Wu H G, Wan Y. 2016. Heterogeneous volcanism across the Permian-Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Cambrian Yangtze Region. Journal of Asian Earth Sciences, 127: 197–210. DOI:10.1016/j.jseaes.2016.06.003
[] Mason R P, Sheu G R. 2002. Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4): 40-1–40-14.
[] Mattinson J M. 2005. Zircon U-Pb chemical abrasion(″CA-TIMS″)method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1-2): 47–66. DOI:10.1016/j.chemgeo.2005.03.011
[] Mei S L, Jin Y G, Wardlaw B R. 1998. Conodont succession of the Guadalupian-Lopingian boundary strata in Laibin of Guangxi, China and west Texas, USA. Palaeoworld(9): 53–76.
[] Metcalfe I, Crowley J L, Nicoll R S, Schmitz M. 2015. High-precision U-Pb CA-TIMS calibration of Middle Permian to Cambrian Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research, 28(1): 61–81. DOI:10.1016/j.gr.2014.09.002
[] Montañez I P, Tabor N J, Niemeier D, DiMichele W A, Frank T D, Fielding C R, Isbell J L, Birgenheier L P, Rygel M C. 2007. CO2-forced climate and vegetation instability during late paleozoic deglaciation. Science, 315(5808): 87–91. DOI:10.1126/science.1134207
[] Montañez I P, Poulsen C J. 2013. The late paleozoic ice age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41(1): 629–656. DOI:10.1146/annurev.earth.031208.100118
[] Mundil R, Metcalfe I, Ludwig K R, Renne P R, Oberli F, Nicoll R S. 2001. Timing of the Permian-Triassic biotic crisis: Implications from new zircon U/Pb age data(and their limitations). Earth and Planetary Science Letters, 187(1-2): 131–145. DOI:10.1016/S0012-821X(01)00274-6
[] Mundil R, Ludwig K R, Metcalfe I, Renne P R. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305(5691): 1760–1763. DOI:10.1126/science.1101012
[] Parrish J T. 1995. Geologic evidence of permian climate. In: Scholle P A, Peryt T M, Ulmer-Scholle D S(eds). The Permian of Northern Pangea: Volume 1: Paleogeography, Paleoclimates, Stratigraphy. Berlin Heidelberg: Springer, 53-61
[] Payne J L, Turchyn A V, Paytan A, DePaolo D J, Lehrmann D J, Yu M Y, Wei J Y. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8543–8548. DOI:10.1073/pnas.0914065107
[] Percival L M E, Witt M L I, Mather T A, Hermoso M, Jenkyns H C, Hesselbo S P, Al-Suwaidi A H, Storm M S, Xu W, Ruhl M. 2015. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428: 267–280. DOI:10.1016/j.epsl.2015.06.064
[] Polozov A G, Svensen H H, Planke S, Grishina S N, Fristad K E, Jerram D A. 2016. The basalt pipes of the Tunguska Basin(Siberia, Russia): High temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 51–64. DOI:10.1016/j.palaeo.2015.06.035
[] Proemse B C, Grasby S E, Wieser M E, Mayer B, Beauchamp B. 2013. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology, 41(9): 967–970. DOI:10.1130/G34466.1
[] Ramezani J, Schmitz M D, Davydov V I, Bowring S A, Snyder W S, Northrup C J. 2007. High-precision U-Pb zircon age constraints on the Carboniferous-Permian boundary in the southern Urals stratotype. Earth and Planetary Science Letters, 256(1-2): 244–257. DOI:10.1016/j.epsl.2007.01.032
[] Rampino M R, Prokoph A, Adler A. 2000. Tempo of the end-Permian event: High-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, 28(7): 643–646. DOI:10.1130/0091-7613(2000)28<643:TOTEEH>2.0.CO;2
[] Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215(4539): 1501–1503. DOI:10.1126/science.215.4539.1501
[] Reichow M K, Pringle M S, Al'Mukhamedov A I, Allen M B, Andreichev V L, Buslov M M, Davies C E, Fedoseev G S, Fitton J G, Inger S, Medvedev A Y, Mitchell C, Puchkov V N, Safonova I Y, Scott R A, Saunders A D. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters, 277(1-2): 9–20. DOI:10.1016/j.epsl.2008.09.030
[] Renne P R, Basu A R. 1991. Rapid eruption of the siberian traps flood basalts at the Permo-Triassic boundary. Science, 253(5016): 176–179. DOI:10.1126/science.253.5016.176
[] Renne P R, Black M T, Zhang Z C, Richards M A, Basu A R. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 269(5229): 1413–1416. DOI:10.1126/science.269.5229.1413
[] Rigo M, Trotter J A, Preto N, Williams I S. 2012. Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys. Geology, 40(6): 515–518. DOI:10.1130/G32792.1
[] Robock A. 2000. Volcanic eruptions and climate. Reviews of Geophysics, 38(2): 191–219. DOI:10.1029/1998RG000054
[] Romano C, Goudemand N, Vennemann T W, Ware D, Schneebeli-Hermann E, Hochuli P A, Brühwiler T, Brinkmann W, Bucher H. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience, 6(1): 57–60.
[] Ross C A, Ross J R P. 1987. Late Paleozoic sea levels and depositional sequences. Cushman Foundation for Foraminiferal Research, 24: 137–149.
[] Saitoh M, Isozaki Y, Ueno Y, Yoshida N, Yao J, Ji Z. 2013a. Middle-Permian Permian carbon isotope stratigraphy at Chaotian, South China: Pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf. Journal of Asian Earth Sciences, 67-68: 52–62.
[] Saitoh M, Isozaki Y, Yao J X, Ji Z S, Ueno Y, Yoshida N. 2013b. The appearance of an oxygen-depleted condition on the Capitanian disphotic slope/basin in South China: Middle-Permian Permian stratigraphy at Chaotian in northern Sichuan. Global and Planetary Change, 105: 180–192. DOI:10.1016/j.gloplacha.2012.01.002
[] Saitoh M, Ueno Y, Isozaki Y, Nishizawa M, Shozugawa K, Kawamura T, Yao J, Ji Z S, Takai K, Yoshida N, Matsuo M. 2014. Isotopic evidence for water-column denitrification and sulfate reduction at the end-Guadalupian(Middle Permian). Global and Planetary Change, 123: 110–120. DOI:10.1016/j.gloplacha.2014.10.014
[] Sanei H, Grasby S E, Beauchamp B. 2012. Latest Permian mercury anomalies. Geology, 40(1): 63–66. DOI:10.1130/G32596.1
[] Saunders A D. 2005. Large igneous provinces: Origin and environmental consequences. Elements, 1(5): 259–263. DOI:10.2113/gselements.1.5.259
[] Schmitz M D, Davydov V I. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian-early permian(Cisuralian)time scale and pan-Euramerican chronostratigraphic correlation. Geological Society of America Bulletin, 124(3-4): 549–577. DOI:10.1130/B30385.1
[] Schobben M, Joachimski M M, Korn D, Leda L, Korte C. 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Research, 26(2): 675–683. DOI:10.1016/j.gr.2013.07.019
[] Scotese C R, Langford R P. 1995. Pangea and the paleogeography of the permian. In: Scholle P A, Peryt T M, Ulmer-Scholle D S, Eds. The Permian of Northern Pangea: Volume 1: Paleogeography, Paleoclimates, Stratigraphy. Berlin Heidelberg: Springer, 3-19
[] Self S, Schmidt A, Mather T A. 2014. Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth. Geological Society of America Special Papers, 505: 319–337. DOI:10.1130/2014.2505(16)
[] Sepkoski J J. 1981. A factor analytic description of the phanerozoic marine fossil record. Paleobiology, 7(1): 36–53. DOI:10.1017/S0094837300003778
[] Shangguan S M, Peate I U, Tian W, Xu Y G. 2016. Re-evaluating the geochronology of the Permian Tarim magmatic province: Implications for temporal evolution of magmatism. Journal of the Geological Society, 173(1): 228–239. DOI:10.1144/jgs2014-114
[] Shellnutt J G, Bhat G M, Brookfield M E, Jahn B M. 2011. No link between the Panjal Traps(Kashmir)and the Late Permian mass extinctions. Geophysical Research Letters, 38(19): L19308.
[] Shellnutt J G, Bhat G M, Wang K L, Brookfield M E, Dostal J, Jahn B M. 2012a. Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India. Chemical Geology, 334: 154–170. DOI:10.1016/j.chemgeo.2012.10.022
[] Shellnutt J G, Denyszyn S W, Mundil R. 2012b. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province(SW China). Gondwana Research, 22(1): 118–126. DOI:10.1016/j.gr.2011.10.009
[] Shellnutt J G, Bhat G M, Wang K L, Brookfield M E, Jahn B M, Dostal J. 2014. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle. Lithos, 204: 159–171. DOI:10.1016/j.lithos.2014.01.008
[] Shellnutt J G. 2014. The Emeishan large igneous province: A synthesis. Geoscience Frontiers, 5(3): 369–394. DOI:10.1016/j.gsf.2013.07.003
[] Shen S Z, Zhang H, Li W Z, Mu L, Xie J F. 2006. Brachiopod diversity patterns from Carboniferous to Triassic in South China. Geological Journal, 41(3-4): 345–361. DOI:10.1002/(ISSN)1099-1034
[] Shen S Z, Wang Y, Henderson C M, Cao C Q, Wang W. 2007a. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld, 16(1-3): 120–139. DOI:10.1016/j.palwor.2007.05.005
[] Shen S Z, Shi G R. 2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld, 18(2-3): 152–161. DOI:10.1016/j.palwor.2009.04.010
[] Shen S Z, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C Q, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y N, Wang X D, Wang W, Mu L, Li W Z, Tang Y G, Liu X L, Liu L J, Zeng Y, Jiang Y F, Jin Y G. 2011. Calibrating the End-Permian mass extinction. Science, 334(6061): 1367–1372. DOI:10.1126/science.1213454
[] Shen S Z, Cao C Q, Zhang H, Bowring S A, Henderson C M, Payne J L, Davydov V I, Chen B, Yuan D X, Zhang Y C, Wang W, Zheng Q F. 2013a. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375: 156–165. DOI:10.1016/j.epsl.2013.05.020
[] Shen S Z, Zhang H, Shi G R, Li W Z, Xie J F, Mu L, Fan J X. 2013b. Early Permian(Cisuralian)global brachiopod palaeobiogeography. Gondwana Research, 24(1): 104–124. DOI:10.1016/j.gr.2012.05.017
[] Shen S Z, Bowring S A. 2014. The end-Permian mass extinction: A still unexplained catastrophe. National Science Review, 1(4): 492–495. DOI:10.1093/nsr/nwu047
[] Shen W J, Lin Y T, Xu L, Li J F, Wu Y S, Sung Y G. 2007b. Pyrite framboids in the Pennian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(3-4): 323–331. DOI:10.1016/j.palaeo.2007.06.005
[] Shi G R, Waterhouse J B. 2010. Late Palaeozoic global changes affecting high-latitude environments and biotas: An introduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(1-2): 1–16. DOI:10.1016/j.palaeo.2010.07.021
[] Sial A N, Gaucher C, Da Silva Filho M A, Ferreira V P, Pimentel M M, Lacerda L D, Silva Filho E V, Cezario W. 2010. C-, Sr-isotope and Hg chemostratigraphy of Neoproterozoic cap carbonates of the Sergipano Belt, Northeastern Brazil. Precambrian Research, 182(4): 351–372. DOI:10.1016/j.precamres.2010.05.008
[] Sial A N, Lacerda L D, Ferreira V P, Frei R, Marquillas R A, Barbosa J A, Gaucher C, Windmöller C C, Pereira N S. 2013. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous-Paleogene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 387: 153–164. DOI:10.1016/j.palaeo.2013.07.019
[] Sial A N, Chen J B, Lacerda L D, Peralta S, Gaucher C, Frei R, Cirilli S, Ferreira V P, Marquillas R A, Barbosa J A, Pereira N S, Belmino I k C. 2014. High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous-Paleogene Boundary impact event. Palaeogeography, Palaeoclimatology, Palaeoecology, 414: 98–115. DOI:10.1016/j.palaeo.2014.08.013
[] Sial A N, Chen J B, Lacerda L D, Frei R, Tewari V C, Pandit M K, Gaucher C, Ferreira V P, Cirilli S, Peralta S, Korte C, Barbosa J A, Pereira N S. 2016. Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous Research, 66: 60–81. DOI:10.1016/j.cretres.2016.05.006
[] Sobolev S V, Sobolev A V, Kuzmin D V, Krivolutskaya N A, Petrunin A G, Arndt N T, Radko V A, Vasiliev Y R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477(7364): 312–316. DOI:10.1038/nature10385
[] Song H J, Wignall P B, Tong J N, Yin H F. 2013. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience, 6(1): 52–56.
[] Song H J, Wignall P B, Chu D L, Tong J N, Sun Y D, Song H Y, He W H, Tian L. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, 4: 4132.
[] Stanley S M, Yang X N. 1994. A double mass extinction at the end of the Paleozoic era. Science, 266(5189): 1340–1344. DOI:10.1126/science.266.5189.1340
[] Stanley S M, Powell M G. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: A new state for the global marine ecosystem. Geology, 31(10): 877–880. DOI:10.1130/G19654R.1
[] Stanley S M. 2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences of the United States of America, 113(42): E6325–E6334. DOI:10.1073/pnas.1613094113
[] Stojanovic D, Aitchison J C, Ali J R, Ahmad T, Dar R A. 2016. Paleomagnetic investigation of the Early Permian Panjal Traps of NW India; regional tectonic implications. Journal of Asian Earth Sciences, 115: 114–123. DOI:10.1016/j.jseaes.2015.09.028
[] Sun Y D, Lai X L, Wignall P B, Widdowson M, Ali J R, Jiang H S, Wang W, Yan C B, Bond D P G, Védrine S. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos, 119(1-2): 20–33. DOI:10.1016/j.lithos.2010.05.012
[] Sun Y D, Joachimski M M, Wignall P B, Yan C B, Chen Y L, Jiang H S, Wang L N, Lai X L. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338(6105): 366–370. DOI:10.1126/science.1224126
[] Sun Y D, Liu X T, Yan J X, Li B, Chen B, Bond D P G, Joachimski M M, Wignall P B, Wang X, Lai X L. 2017. Permian(Artinskian to Wuchapingian)conodont biostratigraphy in the Tieqiao section, Laibin area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 42–63. DOI:10.1016/j.palaeo.2016.10.013
[] Svensen H, Planke S, Polozov A G, Schmidbauer N, Corfu F, Podladchikov Y Y, Jamtveit B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters, 277(3-4): 490–500. DOI:10.1016/j.epsl.2008.11.015
[] Svensen H, Corfu F, Polteau S, Hammer Ø, Planke S. 2012. Rapid magma emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters, 325-326: 1–9. DOI:10.1016/j.epsl.2012.01.015
[] Thibodeau A M, Ritterbush K, Yager J A, West A J, Ibarra Y, Bottjer D J, Berelson W M, Bergquist B A, Corsetti F A. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 7: 11147. DOI:10.1038/ncomms11147
[] Thibodeau A M, Bergquist B A. 2017. Do mercury isotopes record the signature of massive volcanism in marine sedimentary records?. Geology, 45(1): 95–96. DOI:10.1130/focus012017.1
[] Tian X S, Shi Z J, Yin G, Long H Y, Wang K. 2016. A correlation between the Large Igneous Provinces and mass extinctions: Constraint on the end-Guadalupian mass extinction and the Emeishan LIP in South China, eastern Tethys. International Geology Review, 58(10): 1215–1233. DOI:10.1080/00206814.2016.1147384
[] Trotter J A, Williams I S, Barnes C R, Lécuyer C, Nicoll R S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321(5888): 550–554. DOI:10.1126/science.1155814
[] Trotter J A, Williams I S, Nicora A, Mazza M, Rigo M. 2015. Long-term cycles of Triassic climate change: A new δ18O record from conodont apatite. Earth and Planetary Science Letters, 415: 165–174. DOI:10.1016/j.epsl.2015.01.038
[] Trotter J A, Williams I S, Barnes C R, Männik P, Simpson A. 2016. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 34–48. DOI:10.1016/j.palaeo.2015.11.011
[] Usui Y, Tian W. 2017. Paleomagnetic directional groups and paleointensity from the flood basalt in the Tarim large igneous province: Implications for eruption frequency. Earth, Planets and Space, 69(1): 14. DOI:10.1186/s40623-016-0595-x
[] Veevers J J, Powell C M. 1987. Late paleozoic glacial episodes in gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin, 98(4): 475–487. DOI:10.1130/0016-7606(1987)98<475:LPGEIG>2.0.CO;2
[] Wang J, Pfefferkorn H W, Zhang Y, Feng Z. 2012. Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences of the United States of America, 109(13): 4927–4932. DOI:10.1073/pnas.1115076109
[] Wang W, Cao C Q, Wang Y. 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters, 220(1-2): 57–67. DOI:10.1016/S0012-821X(04)00033-0
[] Wang X D, Sugiyama T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia, 33(4): 285–294. DOI:10.1080/002411600750053853
[] Wang Y, Sadler P M, Shen S Z, Erwin D H, Zhang Y C, Wang X D, Wang W, Crowley J L, Henderson C M. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology, 40(1): 113–129. DOI:10.1666/13022
[] Wei X, Xu Y G, Feng Y X, Zhao J X. 2014. Plume-lithosphere interaction in the generation of the Tarim Large Igneous Province, Nw China: Geochronological and geochemical constraints. American Journal of Science, 314(1): 314–356. DOI:10.2475/01.2014.09
[] Wheeley J R, Smith M P, Boomer I. 2012. Oxygen isotope variability in conodonts: Implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. Journal of the Geological Society, 169(3): 239–250. DOI:10.1144/0016-76492011-048
[] White R V, Saunders A D. 2005. Volcanism, impact and mass extinctions: Incredible or credible coincidences?. Lithos, 79(3-4): 299–316. DOI:10.1016/j.lithos.2004.09.016
[] Wignall P B, Hallam A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: Facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1-2): 21–46. DOI:10.1016/0031-0182(92)90182-5
[] Wignall P B, Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155–1158. DOI:10.1126/science.272.5265.1155
[] Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1–33. DOI:10.1016/S0012-8252(00)00037-4
[] Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183–188. DOI:10.1016/j.palaeo.2004.10.009
[] Wignall P B, Sun Y D, Bond D P G, Izon G, Newton R J, Védrine S, Widdowson M, Ali J R, Lai X L, Jiang H S, Cope H, Bottrell S H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324(5931): 1179–1182. DOI:10.1126/science.1171956
[] Wu Q, Ramezani J, Zhang H, Wang T T, Yuan D X, Mu L, Zhang Y C, Li X H, Shen S Z. 2017. Calibrating the Guadalupian series(middle permian)of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 361–372. DOI:10.1016/j.palaeo.2016.11.011
[] Xiang L, Schoepfer S D, Zhang H, Yuan D X, Cao C Q, Zheng Q F, Henderson C M, Shen S Z. 2016. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 59–71. DOI:10.1016/j.palaeo.2015.10.046
[] Xie S C, Pancost R D, Yin H F, Wang H M, Evershed R P. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434(7032): 494–497. DOI:10.1038/nature03396
[] Xie S C, Algeo T J, Zhou W F, Ruan X Y, Luo G M, Huang J H, Yan J X. 2017. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth and Planetary Science Letters, 460: 180–191. DOI:10.1016/j.epsl.2016.12.015
[] Xu Y G, Wei X, Luo Z Y, Liu H Q, Cao J. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204: 20–35. DOI:10.1016/j.lithos.2014.02.015
[] Yeh M W, Shellnutt J G. 2016. The initial break-up of Pangaea elicited by Late Palaeozoic deglaciation. Scientific Reports, 6: 31442. DOI:10.1038/srep31442
[] Yin H F, Huang S, Zhang K X, Hansen H J, Yang F Q, Ding M H, Bie X M, 1992. The effects of volcanism on the Permo-Triassic mass extinction in South China. In: Sweet W C, Yang Z Y, Dickins J M, Ying H F, eds. Permo-Triassic events in the eastern Tethys. Cambridge: Cambridge University Press, 146-157
[] Yin H F, Feng Q L, Lai X L, Baud A, Tong J N. 2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change, 55(1-3): 1–20. DOI:10.1016/j.gloplacha.2006.06.005
[] Yin H F, Xie S C, Luo G M, Algeo T J, Zhang K X. 2012. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Science Reviews, 115(3): 163–172. DOI:10.1016/j.earscirev.2012.08.006
[] Yin R S, Feng X B, Hurley J P, Krabbenhoft D P, Lepak R F, Hu R Z, Zhang Q, Li Z G, Bi X W. 2016. Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites. Scientific Reports, 6: 18686. DOI:10.1038/srep18686
[] Yu X, Yang S F, Chen H L, Chen Z Q, Li Z L, Batt G E, Li Y Q. 2011. Permian flood basalts from the Tarim Basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics. Gondwana Research, 20(2-3): 485–497. DOI:10.1016/j.gr.2010.11.009
[] Zhai Q G, Jahn B M, Su L, Ernst R E, Wang K L, Zhang R Y, Wang J, Tang S H. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28–43. DOI:10.1016/j.lithos.2012.10.018
[] Zhang C L, Zou H B, Li H K, Wang H Y. 2013a. Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306–1315. DOI:10.1016/j.gr.2012.05.009
[] Zhang D Y, Zhang Z C, Santosh M, Cheng Z G, Huang H, Kang J L. 2013b. Perovskite and baddeleyite from kimberlitic intrusions in the Tarim large igneous province signal the onset of an end-Carboniferous mantle plume. Earth and Planetary Science Letters, 361: 238–248. DOI:10.1016/j.epsl.2012.10.034
[] Zhang G J, Zhang X L, Li D D, Farquhar J, Shen S Z, Chen X Y, Shen Y N. 2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian(Permian)mass extinction. Geology, 43(12): 1091–1094.
[] Zhang H, Cao C Q, Liu X L, Mu L, Zheng Q F, Liu F, Xiang L, Liu L J, Shen S Z. 2016. The terrestrial end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 108–124. DOI:10.1016/j.palaeo.2015.07.002
[] Zhang Y, Ren Z Y, Xu Y G. 2013c. Sulfur in olivine-hosted melt inclusions from the Emeishan picrites: Implications for S degassing and its impact on environment. Journal of Geophysical Research-Solid Earth, 118(8): 4063–4070. DOI:10.1002/jgrb.50324
[] Zhang Y X, Zhang K J. 2017. Early permian Qiangtang flood basalts, northern Tibet, China: A mantle plume that disintegrated northern Gondwana?. Gondwana Research, 44: 96–108. DOI:10.1016/j.gr.2016.10.019
[] Zhang Z C, Mahoney J J, Mao J W, Wang F H. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997–2019. DOI:10.1093/petrology/egl034
[] Zhang Z C, Zhi X C, Chen L, Saunders A D, Reichow M K. 2008. Re-Os isotopic compositions of picrites from the Emeishan flood basalt province, China. Earth and Planetary Science Letters, 276(1-2): 30–39. DOI:10.1016/j.epsl.2008.09.005
[] Zharkov M A, Chumakov N M. 2001. Paleogeography and sedimentation settings during Permian-Triassic reorganizations in biosphere. Stratigraphy & Geological Correlation, 9(4): 340–363.
[] Zhong Y T, He B, Xu Y G. 2013. Mineralogy and geochemistry of claystones from the Guadalupian-Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events. Journal of Asian Earth Sciences, 62: 438–462. DOI:10.1016/j.jseaes.2012.10.028
[] Zhong Y T, He B, Mundil R, Xu Y G. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos, 204: 14–19. DOI:10.1016/j.lithos.2014.03.005
[] Zhou M F, Malpas J, Song X Y, Robinson P T, Sun M, Kennedy A K, Lesher C M, Keays R R. 2002. A temporal link between the Emeishan large igneous province(SW China)and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113–122. DOI:10.1016/S0012-821X(01)00608-2
[] 戎嘉余, 黄冰. 2014. 生物大灭绝研究三十年. 中国科学(D辑), 44(3): 377–404.
[] 徐义刚, 何斌, 罗震宇, 刘海泉. 2013. 中国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25–39.
[] 杨树锋, 陈汉林, 厉子龙, 励音骐, 余星, 李东旭, 孟立丰. 2014. 塔里木早二叠世大火成岩省. 中国科学(D辑), 44(2): 187–199.
[] 殷鸿福, 黄思骥, 张克信, 杨逢清, 丁梅华, 毕先梅, 张素新. 1989. 华南二叠纪-三叠纪之交的火山活动及其对生物绝灭的影响. 地质学报, 63(2): 169–180.
[] 朱江, 张招崇. 2013. 大火成岩省与二叠纪两次生物灭绝关系研究进展. 地质论评, 59(1): 137–148.