矿物岩石地球化学通报  2016, Vol. 35 Issue (2): 205-211   PDF    
蛇纹石化作用与地球生命起源/演化的痕迹
王先彬    
甘肃省油气资源研究重点实验室, 中国科学院油气资源研究重点实验室, 兰州 730000
摘要: 对蛇纹石化超基性岩寄主生物圈的研究,有望获得地球上古老而独特的前生命/生命有机质成因和演化的重要信息。本文综述了探索火星过去生命和地球古老沉积岩生命起源/演化证据的质疑和争论、相关分析方法和技术的应用。论述了超基性岩蛇纹石化作用生成分子氢,并通过费-托聚合反应生成烷烃的基础理论及其与生命起源/演化的相关性,简述了鉴别蛇纹石化超基性岩中有机质来源的烷烃的碳、氢同位素组成和分布模式,有机质的同位素和分子生物学特征。超基性岩蛇纹石化生成非生物成因烷烃与其他有机化合物,为化能自养微生物群落提供了所需要的能量和初始物质,是生命起源最重要的变质水化反应。超基性岩蛇纹石化作用通常发生在缓慢扩张洋中脊系统、大陆蛇绿岩系统等构造环境。生物过程和非生物过程的叠加,给鉴别蛇纹岩寄主生态系统的生物成因有机质带来严峻挑战。
关键词: 蛇纹石化作用     非生物成因     生物成因     有机化合物     生命起源/演化    
Serpentinization and the Traces of Origin and Evolution of Life in the Earth
WANG Xian-bin    
Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract: The origin and evolution of life is the most important and disputable scientific question. Important information about pre-life and life organic compounds in early Earth history could be deduced through the study on the microbial communities in serpentinized ultramafic rocks. This paper has comprehensively reviewed the questions and arguments on evidences for exploring origin and evolution of ancient life of Mars and sedimentary rocks on earth, and the related analytical methods and technological applications, discussed basic theories on the generation of molecular hydrogen through the serpentinization of ultramafic rocks and the generation of alkane through the Fischer-Tropsch Type polymerization of the molecular hydrogen and their relationship to the life's origin and evolution, and briefly discribed the compositions and distribution patterns of carbon and hydrogen isotopes of alkane for identifying source of the organic matters in the serpentinized ultramafic rocks, as well as the isotopic and molecular biological characteristics of the organic matters. The abiogenic hydrocarbons and other organic compounds formed through the serpentinization of ultramafic rocks could provide necessary energy and raw materials for supporting chemosynthetic microbial communities, which probably was the most important hydration reaction for the origin and early evolution of life. Serpentinization generally occurs in slow expanding mid-ocean ridges and continental ophiolites tectonic environment, etc. The overprint of biological and abiological processes will create a big challenge to identify the biogenic organic materials in serpentinite-hosted ecosystem.
Key words: serpentinization     abiogenic     biogenic     organic compounds     origin and evolution of life    

生命起源/演化是重大而又最具争议的科学问题。寻找地球和地外生命起源/演化的痕迹是现代科学久远和必然的追求目标。从19世纪末和20世纪初至今,寻找地球最早生命形式证据,地质学家和古生物学家已经花费了数十年的时间。为实现此目标,面临的核心挑战是寻找和鉴别往昔生命残存有机质。为此,需要评估生命环境的可居性,前生命支撑环境对有机体残骸,特别是大有机分子的保存性。从极为稀少的早期生命记录中寻求答案需要:①寻找可保存生物学信息的时间和空间场所;②研究可最大限度保存原始有机质的岩石类型及其矿物学组合;③防止和鉴别人为和近代生物质的污染;④鉴别复杂有机分子的非生物/或生物成因特征,探索其最佳賦存条件。

地球最古老沉积岩、海底热液系统、蛇纹石化超基性岩以及地外星体是学术界关注的主要领域。近年来诸多新技术新方法的应用,提供了研究地球最古老碳质残留物以及寻觅地外生命证据的至关重要的工具,拓展了寻觅生命证据的途径和对象,获得了生命起源/演化的信息(Wang et al.,2014)。格陵兰岛西部37亿年生物成因石墨(Ohtomo et al.,2014),澳大利亚西部34.8亿年砂岩中的微生物垫化石(Noffke et al.,2013)提供了地球生命起源/演化证据。地球早期生命信息的微体化石记录可延伸到~35亿年(Awramik,1992),化学化石记录为~38.3亿年(Mojzsis et al.,1996; McKeegan et al.,2007)。最新研究表明,地球上的生命至少起源于41亿年前,较早期的研究提前了300万年(Bell et al.,2015)。Morrill等(2013)研究了现代蛇纹石化作用的地球化学和微生物地质学特征。地外生命探测则集中在对火星陨石(Martel et al.,2012)和火星遙测数据的研究。

1 寻找火星过去生命残存有机质痕迹的启迪 1.1 “好奇号”生命探测

2004年“好奇号”探测火星的目标是:探测原位古水文环境和生命(微生物)的可居性;探测是否记录了构建生命的化学成分(C、H、N、O、P、S)和/或氧化-还原梯度的矿物学证据。后者将激活微生物的代谢机制,如化能自养微生物;探测有机碳的来源和成因特征。2014年1月《SCIENCE》发表数篇论文,报道了相关研究成果。“好奇号”探测揭示了早期火星气候和环境特征,适合微生物寄居的可能性。“好奇号”探测结果,将有助于了解岩石对有机化合物的保存性,警示了寻觅化石物质的时间、空间和有效技术途径。

1.2 关于ALH 84001陨石的争论

自1996年8月7日发布了火星陨石ALH 84001存在古老微观生命的信悉以来,火星生命问题成为科学界长期争论的焦点(McKay et al.,1996)。该陨石来自火星,含有类似于地球的生物碳酸盐矿物、多环芳烃、磁铁矿矿物和似棒状微化石(McKay et al.,1996Becker et al.,1999)。但对这些证据,诸多学者提出了多种不同的解释。Martel等(2012)审查了与火星陨石ALH84001过去生命有关的赞成和反对假说。指出该陨石的主要数据提供了支持存在过去生命的见解,包括,多环芳烃、磁铁矿晶体、碳酸盐小球体和类似于地球生命形式的纳米细菌结构(代表寄居微生物化石残存物)。鉴于其非凡的科学意义,发现和证实火星生命尚需要更多确凿证据。众多的学者仍坚持在该领域不懈地探索(Ehlmann et al.,2011; Lineweaver and Chopra,2012; Smith et al.,2014; Hausrath and Tschauner,2013; Chatzitheodoridis et al.,2014)。更寄望于人类登陆火星获得更直接和更充分的证据。

2 探索地球古老沉积岩生命起源/演化的证据 2.1 残存有机质的生物成因性和同生性

生物成因性(biogenicity)系指保存在岩石、矿物空间尺度内,过去和现在生物体内独特的,具生命特征的有机化学、元素/同位素和形貌特征信息。这些信息可能是伴随生物体生长或衰退产生的独特结果(形态、定向、分布和丰度),并被保存在生物体组织结构中。评估地球或地外样品中残存有机质的生物成因性和同生性,是探索生命起源至关重要的科学问题和必须遵从的科学准则。生物成因性涉及岩石中生命形态有机残留物的成因问题。一种有机残留物如果类似于其他沉积有机残留物,具有被广泛认同的生物成因形貌和/或地球化学特征,则它可能是生物成因,而不是已知非生物过程的残留物。关于生命物质的生物成因性研究,通常需要综合探寻生命信息的化学、同位素、分子信号和矿物的生物学特征,或有机残渣的结构特征。氨基酸、基因序列和蛋白质折叠等的物理性质之间的密切联系,是构件地球最早生命至生物进化的关键因素(Carter Jr and Wolfenden,2015; Wolfenden et al.,2015)。这些相关联的实验技术,将提高对有机质残存物性质、起源、结构和物质类型等问题的理解。同生性(syngenicity)系指有机残留物与其赋存岩石年龄相比的同生特征。一种有机残留物如果被认为与其寄主岩有相同的年龄,则认为是同生的。同生性是评估生物成性的一个重要环节。古生物学家和地球化学家早就认可这些问题,并制定了可用来真正识别形貌或化学化石的定义标准(Oehler and Cady,2014)。

2.2 质疑和挑战

尽管评估残存有机质的生物成因性和同生性具有严格的科学准则,但在实际研究中仍会遇到种种质疑和挑战。以大于32亿年的太古代沉积岩为例:①太古代岩石有机质通常比年轻的岩石经历了更强烈的蚀变(van Zuilen et al.,2007; Summons and Hallmann,2014),在数十亿年地质历程中,多次沉积期后过程将降解并最终毁坏大部分有机质残留物。因此,所保存的有机结构形貌,可能缺乏能独立支持生物解释的详细信息(如,细胞特征、群体结构)。②化学成分有助于评估生物成因性。尚需进行与亚微米尺度空间分辨率形貌学特征相关联的原位分子化学分析。③几代有机质可能共存,给处于蚀变状态太古代样品研究带来特殊风险,受污染有机质可积累在后生沉积物中(Oehler et al.,2009; Lepot et al.,2013)。④来自古老生物源有机质可能与非生物过程可能产生的有机质共存。比如,菱铁矿分解和地幔碳酸流体(van Zuilen et al.,2003),以及费托反应产物(McCollom,1999)或碳质陨石带入的地球早期非生物成因物质(Pizzarello and Shock,2010)。为了应对这些质疑,尚需不断开发新的分析技术。

2.3 分析方法和成像技术的应用

过去10年,评估沉积岩残存有机质生物成因性和同生性的实验技术显著增长。各种新技术出现,有助于实现原位有机质分析,评价高度分散干酪根和可溶性有机物。先进的干酪根和可溶性有机物分析方法,可揭示潜在的、此前未确定的同生生物标志物,为研究早期地球生命的新陈代谢和演化关系,提供新的见解。拉曼光谱和荧光光谱/成像、共焦激光扫描显微镜、二次离子/激光质谱、透射电子显微镜和X射线吸收显微镜/光谱等技术,特别是SIMS同位素、L2MS干酪根热解、同步加速扫描-透射X射线显微镜干酪根分析等的进展,将为研究地球最古老和有疑问的碳质残留物提供了有效技术支撑。也为了解地球初期阶段生物学演化和寻觅地外生命证据,提供了至关重要的工具。

3 超基性岩蛇纹石化作用与生命起源/演化

超基性岩蛇纹石化生成分子氢、烷烃与其他有机化合物,为化能自养微生物群落提供了所需要的能量和初始物质,是生命起源最重要的变质水化反应。对蛇纹石化超基岩寄主生物圈的研究,有望获得地球上古老而独特的前生命/生命有机质成因和演化的重要信息。

过去20年,学术界对超基性岩蛇纹石化作用的科学研究迅速增加。其关键原因之一是蛇纹石化期间产生的分子氢和CH4,可以被多种类型微生物群落用作代谢能量。这些生物通过化学能,而不是太阳能来维持整个微生物群落的发展(McCollom and Seewald,2013)。这类微生物群落可能存在于早期地球,也有可能存在于太阳系中其他天体(如火星和木卫二)。丰富的化学能源和有利的有机化合物合成条件,使得蛇纹石化超基性岩系统成为研究地球生命起源的理想场所,也是研究太阳系其他场所生命起源的主要目标之一。

3.1 蛇纹石化作用与费-托聚合反应

蛇纹石化作用是发生在下洋壳和上地幔超基性岩中的蚀变过程。这些富含橄榄石和辉石矿物的岩石,在低温(<150℃)、极高的pH值(>10)条件下,发生水—岩反应,导致橄榄石和辉石中的Fe2+被氧化成Fe3+,形成磁铁矿(Fe3O4)和其他矿物,同时释放分子氢(H2)。并进而在还原条件下,H2和CO2通过费-托聚合反应(FTT)生成烷烃与其他有机化合物(Proskurowski et al.,2008McCollom et al.,2010; McCollom and Seewald,2013)。反应方程如下:

FTT反应被认为是地热系统和超基性岩中常见的无机化学反应,是生物学临界分子前躯物,非生物形成作用研究的焦点(Holm and Andersson,1998; Charlou et al.,19982002)。地球早期历史阶段的蛇纹石化作用可能导致生命起源和早期演化。蛇纹石化为前生命有机质的化学演化奠定了基础,也为微生物生态系统提供能量和碳。蛇纹石化作用是太阳系最常见和最重要的蚀变反应。

3.2 早期地球超基性岩的蛇纹石化作用

早期地球在岩石圈分异之前,超基性岩出露可能比现在更普遍(Sleep et al.,2004)。整个太古宙地壳可能比现代地壳存有更多的超基性岩,更可能发生蛇纹石化作用(Arndt,1983Nisbet and Fowler,1983Nna-Mvondo and Martinez-Frias,2007)。西格陵兰 Isua 超地壳带,出露的变质岩系(~3.8 Ga)与蛇纹石化作用相关(Friend et al.,2002Sleep et al.,2011)。芬兰 Kuhmo 太古宙绿岩带的科马提岩(>2.5 Ga)也明显地发生了蛇纹石化作用(Blais and Auvray,1990)。

3.3 研究生命起源的重要场所

许多古老的蛇纹岩提供了微生物群落生存的有利环境(Morita,1999)。生命起源的关键场所常具有多种多样的催化矿物表面。它们与热液循环动力学混合作用所产生的地质、物理、化学梯度相关联(Baross and Hoffman,1985Martin et al.,2008)。特别是寄主蛇纹岩热液系统的温度、氧化-还原、地球化学、孔隙度和pH值的特征梯度,对前生命和早期生命演化具独特的优势。铁硫化物“泡沫”被认为是现代类脂膜的前躯物(Russell and Hall,1997),它们产生的质子(H)化学梯度,将促进酶催化燃料氢的固碳作用(Lane et al.,2010)。氢的化学梯度是早期代谢过程的重要特征(Sleep et al.,2011)。

3.4 蛇纹石化环境生态系统

蛇纹石化生态系统,虽然仅寄主了低丰度和低多样性的微生物群落,然而这些生态环境均与非生物成因碳的转化有关。超基性岩蛇纹石化仅仅与小于10%的热液循环有关,却提供了洋中脊高达75%的非生物成因CH4(Cannat et al.,2010Keir,2010)。值得关注的是,非生物聚合反应可生成CH4和高碳数烷烃,而沉积有机质热变质作用亦可产生CH4和高碳数烷烃(Hosgormez et al.,2008)。如何鉴别生物过程/非生物过程和微生物种群复杂生理适应性等诸多因素的叠加,将是研究寄主蛇纹岩生态系统面临的难题(Bradley et al.,2009)。

3.5 地球极端环境微生物研究

地球极端环境微生物研究表明,自养微生物群落可能存在于玄武岩和超基性岩水热体系。在这些环境中,自养微生物群落可获取橄榄石蚀变释放的化学能而生存(McCollom and Seewald,2007Oze and Sharma et al.,2007Amend et al.,2011Edwards et al.,2011Lang et al.,2012)。当代地球极端环境与早期地球生态系统和火星环境的强烈相似性,使之成为对比研究生命起源和演化的重要场所。

4 蛇纹石化超基性岩中有机化合物来源鉴别

蛇纹石化超基性岩体系中,有机化合物可能有多种来源:①蛇纹石化相关过程产生的非生物成因短链烃(Proskurowski et al.,2008);②赋存在超基性岩流体包裹体和晶格边界的幔源碳(Kelley and Früh-Green,1999);③同蛇纹石化流体混合的下降流体贡献的光合作用衍生有机碳(Abrajano et al.,1990);④深海海底和大陆地下自养微生物贡献的生物质和代谢产物中的有机碳。如何准确地鉴别诸类有机化合物的来源和特征,是研究蛇纹石化超基性岩系中有机化合物面临的一个巨大挑战。

4.1 CH4的碳、氢同位素组成

通过CH4的碳同位素δ13 C值和氢同位素δD值探讨其来源和成因特征(McCollom and Seewald,2006)。然而单一的稳定同位素证据,可能会产生误解和不确定性。FTT合成的非生物成因CH4,有远大于生物成因CH4的分馏系数(Sherwood Lollar et al.,2006)。此外,大多数蛇纹石化环境中的CH4,由于受碳源供给限制,δ13 C值并没有反映出完全的分馏系数(Proskurowski et al.,2008)。对近地表可能混入的(小于50000年)生物成因有机质,14 C数据或许可用以鉴别其碳源和生物成因特征(Lang et al.,2012)。

4.2 烷烃的碳、氢同位素组成和分布模式

进一步研究烷烃分布模式与同位素体系的耦合关系,可更有效地鉴别小有机分子的来源和特征。例如,非生物成因CH4及其同系物碳同位素组成和分布特征:δ13 C1值>-30‰,烷烃碳同位素分布模式为δ13 C1>δ13 C2>δ13 C3>δ13nC4。细菌成因CH4δ13 C1值<-55‰,烷烃碳同位素分布模式为δ13 C1<δ13 C2<δ13 C3<δ13nC4(Sherwood Lollar et al.,2006; Wang et al.,2009)。

4.3 蛇纹石化相关流体的同位素组成特征

Lost City热液活动区,甲酸、乙酸和溶解有机碳与蛇纹石化作用的相关性和碳同位素组成,显示了非生物成因特征(Lang et al.,2010)。墨西哥Socorro岛的非生物成因烷烃显然与蛇纹石化作用相关,其富H2和CH4流体的气体和同位素组成特征与MORB流体相似。其碳、氦同位素比值和丰度分别为:δ13 CCO2~-5‰,3He/4He=7.6Ra,CO2 /3He=(2-3)×109,它们的C1/C2+=~1000,δ13 CCH4=-15‰~-20‰,δD=-80‰~-120‰,且烷烃碳、氢同位素δ13 C和δD值具反序分布特征(Taran et al.,2010)。

4.4 微生物体系有机质的同位素和分子生物学特征

迄今,尚不清楚何时、何地微生物群落有助于CH4的生成作用/或消耗作用。研究这些系统中有机质的同位素特征和微生物的分子生物学特征,或许可提供相关线索。分子生物学研究发现,许多环境中存在产CH4微生物群落,包括Del Puerto蛇绿岩和Lost City热液活动区。进一步研究生物催化过程和它们的生理机能,可以确证该过程存在的事实(Kelley et al.,2005; Blank et al.,2009)。生物质和生物标记物的同位素特征,可提供探索蛇纹岩中深部生命碳源和维持细胞生长的生物化学途径线索(Bradley and Summons,2010)。

许多化合物可能同时具有生物成因和非生物成因特征,再加上沉积有机质热变质组分的贡献,将使得这种解释更为复杂和困难(Hosgormez et al.,2008; Bradley et al.,2009; Szponar et al.,2013)。多数情况下,鉴别地幔、热成因和生物过程的产物是模棱两可的。

5 结 论

早期地球历史阶段的蛇纹石化作用可能导致生命起源和早期演化。超基性岩蛇纹石化生成非生物成因烷烃与其他有机化合物,为化学自养微生物群落提供了所需要的能量和初始物质。蛇纹石化超基性岩体系中,有机化合物可能有多种来源。如何准确地鉴别诸类有机化合物的来源和特征,是研究蛇纹石化超基性岩系中有机化合物面临的一个巨大挑战。碳、氢同位素可鉴别CH4和正烷烃的来源和成因特征。微生物体系有机质同位素和分子生物学特征可提供强有力的鉴别线索。

致谢: 欧阳自远先生对该项研究工作给予了大力支持,谨致深切的谢忱。

参考文献
[1] Abrajano T A, Sturchio N C, Kennedy B M, Lyon G L, Muehlenbachs K, Bohlke J K. 1990. Geochemistry of reduced gas related to serpentinization of the Zambales Ophiolite, Philippines. Applied Geochemistry, 5(5-6):625-630
[2] Amend J P, McCollom T M, Hentscher M, Hentscher M, Bach W. 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta, 75(19):5736-5748
[3] Arndt N T. 1983. Role of a thin, komatiite-rich oceanic crust in the Archean plate-tectonic process. Geology, 11(7):372-375
[4] Awramik S M. 1992. The oldest records of photosynthesis. Photosynthesis Research, 3(2)3:75-89
[5] Baross J A, Hoffman S E. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of life and evolution of the biosphere, 15(4):327-345
[6] Becker L, Popp B, Rust T, Bada J L. 1999. The origin of organic matter in the Martian meteorite ALH84001. Earth and Planetary Science Letters, 167(1-2):71-79
[7] Bell E A, Boehnke P, Harrison T M, Mao W L. 2015. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences of the United States of America, 112(47):14518-14521
[8] Blais S, Auvray B. 1990. Serpentinization in the Archean komatiitic rocks of the Kuhmo greenstone belt, eastern Finland. Canadian Mineralogist, 28(1):55-66
[9] Blank J G, Green S J, Blake D, Valley J W, Kita N T, Treiman A, Dobson P F. 2009. An alkaline spring system within the Del Puerto Ophiolite(California, USA):A Mars analog site. Planetary and Space Science, 57(5-6):533-540
[10] Bradley A S, Hayes J M, Summons R E. 2009. Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem. Geochimica et Cosmochimica Acta, 73(1):102-118
[11] Bradley A S, Summons R E. 2010. Multiple origins of methane at the Lost City Hydrothermal Field. Earth and Planetary Science Letters, 297(1-2):34-41
[12] Cannat M, Fontaine F, Escartín J. 2010. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In:Rona P A, Devey C W, Dyment J, Murton B J, eds. Diversity of hydrothermal systems on slow spreading ocean ridges. Washington, DC:American Geophysical Union, 241-264
[13] Carter Jr C W, Wolfenden R. 2015. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proceedings of the National Academy of Sciences of the United States of America, 112(24):7489-7494
[14] Charlou J L, Fouquet Y, Bougault H, Donval J P, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P, Rona P A. 1998. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 62(13):2323-2333
[15] Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field(36°14'N, MAR). Chemical Geology, 191(4):345-359
[16] Chatzitheodoridis E, Haigh S, Lyon I. 2014. A conspicuous clay ovoid in Nakhla:Evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. Astrobiology, 14(8):651-693
[17] Edwards K J, Wheat C G, Sylvan J B. 2011. Under the sea:Microbial life in volcanic oceanic crust. Nature Reviews Microbiology, 9(10):703-712
[18] Ehlmann B L, Mustard J F, Murchie S L, Bibring J P, Meunier A, Fraeman A A, Langevin Y. 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature, 479(7371):53-60
[19] Friend C R L, Bennett V C, Nutman A P. 2002. Abyssal peridotites >3, 800 Ma from southern West Greenland:Field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contributions to Mineralogy and Petrology, 143(1):71-92
[20] Hausrath E M, Tschauner O. 2013. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars. Astrobiology, 13(11):1049-1064
[21] Holm N G, Andersson E M. 1998. Organic molecules on the primitive Earth:Hydrothermal systems. In:Brack A, ed. The molecular origins of life:Assembling pieces of the puzzle. Cambridge:Cambridge University Press, 86-99
[22] Hosgormez H, Etiope G, Yalçin M N. 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire(Turkey):A large onshore seepage of abiogenic gas. Geofluids, 8(4):263-273
[23] Keir R S. 2010. A note on the fluxes of abiogenic methane and hydrogen from mid-ocean ridges. Geophysical Research Letters, 37(24):L24609
[24] Kelley D S, Früh-Green G L. 1999. Abiogenic methane in deep-seated mid-ocean ridge environments:Insights from stable isotope analyses. Journal of Geophysical Research, 104(B5):10439-10460
[25] Kelley D S, Karson J A, Früh-Green G L,Yoerger D R, Shank,T M, Butterfield D A, Hayes J M,Schrenk M O, Olson E J, Proskurowski G, Jakuba M, Bradley A, Larson B,Ludwig K,Glickson D, Buckman K, Bradley A S, Brazelton W J, Roe K, Elend M J, Delacour A, Bernasconi S M, Lilley M D, Baross J A, Summons R E, Sylva S P. 2005. A serpentini te-hosted ecosystem:The Lost City hydrothermal field. Science, 307:1428-1434
[26] Lane N, Allen J F, Martin W. 2010. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32(4):271-280
[27] Lang S Q, Butterfield D A, Schulte M, Kelley D S, Lilley M D. 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochimica et Cosmochimica Acta, 74(3):941-952
[28] Lang S Q, Früh-Green G L, Bernasconi S M, Lilley M D, Proskurowski G, Méhay S, Butterfield D A. 2012. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system. Geochimica et Cosmochimica Acta, 92:82-99
[29] Lepot K, Williford K H, Ushikubo T, Sugitani K, Mimura K, Spicuzza M J, Valley J W. 2013. Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures. Geochimica et Cosmochimica Acta, 112:66-86
[30] Lineweaver C H, Chopra A. 2012. The Habitability of our earth and other earths:Astrophysical, geochemical, geophysical, and biological limits on planet habitability. Annual Review of Earth and Planetary Sciences, 40(1):597-623
[31] Martel J, Young D, Peng H H, Wu C Y, Young J D. 2012. Biomimetic properties of minerals and the search for life in the martian meteorite ALH84001. Annual Review of Earth and Planetary Sciences, 40(1):167-193
[32] Martin W, Baross J, Kelley D, Russell M J. 2008. Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6(11):805-814
[33] McCollom T M, Ritter G, Simoneit B R T. 1999. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch type reactions. Origins Life Evolution of the Biosphere, 29(2):153-166
[34] McCollom T M, Seewald J S. 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Science Letters, 243(1-2):74-84
[35] McCollom T M, Seewald J S. 2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chemical Reviews, 107(2):382-401
[36] McCollom T M, Lollar B S, Lacrampe-Couloume G, Seewald J S. 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochimica et Cosmochimica Acta, 74(9):2717-2740
[37] McCollom T M, Seewald J S. 2013. Serpentinites, hydrogen, and life. Elements, 9(2):129-134
[38] McKay D S, Gibson E K, Thomas-Keprta K L, Vali H, Romanek C S, Clemett S J, Chillier X D F, Maechling C R, Zare R N. 1996. Search for past life on Mars:Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273(5277):924-930
[39] McKeegan K D, Kudryavtsev A B, Schopf J W. 2007. Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, West Greenland. Geology, 35(7):591-594
[40] Mojzsis S J, Arrhenius G, McKeegan K D, Harrison T M, Nutman A P, Friend C R L. 1996. Evidence for life on Earth before 3, 800 million years ago. Nature, 384(6604):55-59
[41] Morita R Y. 1999. Is H2 the universal energy source for long-term survival? Microbial Ecology, 38(4):307-320
[42] Morrill P L, Kuenen J G, Johnson O J, Suzuki S, Rietze A, Sessions A L, Fogel M L, Nealson K H. 2013. Geochemistry and geobiology of a present-day serpentinization site in California:The Cedars. Geochimica et Cosmochimica Acta, 109:222-240
[43] Nisbet E G, Fowler C M R. 1983. Model for Archean plate tectonics. Geology, 11(7):376-379
[44] Nna-Mvondo D, Martinez-Frias J. 2007. Review komatiites:From Earth's geological settings to planetary and astrobiological contexts. Earth, Moon, and Planets, 100(3-4):157-179
[45] Noffke N, Christian D, Wacey D, Hazen R M. 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13(12):1103-1124
[46] Oehler D Z, Robert F, Walter M R, Sugitani K, Allwood A, Meibom A, Mostefaoui S, Selo M, Thomen A, Gibson E K. 2009. NanoSIMS:Insights to biogenicity and syngeneity of Archaean carbonaceous structures. Precambrian Research, 173(1-4):70-78
[47] Oehler D Z, Cady S L. 2014. Biogenicity and syngeneity of organic matter in ancient sedimentary rocks:Recent advances in the search for evidence of past life. Challenges, 5(2):260-283
[48] Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing M T. 2014. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nature Geoscience, 7(1):25-28
[49] Oze C, Sharma M. 2007. Serpentinization and the inorganic synthesis of H2 in planetary surfaces. Icarus, 186(2):557-561
[50] Pizzarello S, Shock E. 2010. The organic composition of carbonaceous meteorites:The evolutionary story ahead of biochemistry. Cold Spring Harbor Perspectives in Biology, 2(3):1-19
[51] Proskurowski G, Lilley M D, Seewald J S, Früh-Green G L, Olson E J, Lupton J E, Sylva S P, Kelley D S. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science, 319(5863):604-607
[52] Russell M J, Hall A J. 1997. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society, 154(3):377-402
[53] Sherwood, Lollar B, Lacrampe-Couloume G, Slater G F, Ward J, Moser D P, Gihring T M, Lin L H, Onstott T C. 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology, 226(3-4):328-339
[54] Sleep N H, Meibom A, Fridriksson T, Coleman R G, Bird D K. 2004. H2-rich fluids from serpentinization:Geochemical and biotic implications. Proceedings of the National Academy of Sciences of the United States of America, 101(35):12818-12823
[55] Sleep N H, Bird D K, Pope E C. 2011. Serpentinite and the dawn of life. Philosophical Transactions of the Royal Society B:Biological Sciences, 366(1580):2857-2869
[56] Smith H D, McKay C P, Duncan A G, Sims R C, Anderson A J, Grossl P R. 2014. An instrument design for non-contact detection of biomolecules and minerals on Mars using fluorescence. Journal of Biological Engineering, 8:16
[57] Summons R E, Hallmann C. 2014. Chapter 12.2-Organic geochemical signatures of early life on Earth. In:Turekian K K, Holland H D, eds. Treatise on geochemistry. 2nd ed. Amsterdam, The Netherlands:Elsevier, 12:33-46
[58] Szponar N, Brazelton W J, Schrenk M O, Bower D M, Steele A, Morrill P L. 2013. Geochemistry of a continental site of serpentinization in the tablelands ophiolite, Gros Morne National Park:A Mars analogue. Icarus, 224(2):286-296
[59] Taran Y A, Kliger G A, Cienfuegos E, Shuykin A N. 2010. Carbon and hydrogen isotopic compositions of products of open-system catalytic hydrogenation of CO2:Implications for abiogenic hydrocarbons in Earth's crust. Geochimica et Cosmochimica Acta, 74(21):6112-6125
[60] van Zuilen M A, Lepland A, Teranes J, Finarelli J, Wahlen M, Arrhenius G. 2003. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern west Greenland. Precambrian Research, 126(3-4):331-348
[61] van Zuilen M A, Chaussidon M, Rolliion-Bard C, Marty B. 2007. Carbonaceous cherts of the Barberton Greenstone Belt, South Africa:Isotopic, chemical and structural characteristics of individual microstructures. Geochimica et Cosmochimica Acta, 71(3):655-669
[62] Wang X B, Guo Z Q, Tuo J C, Guo H Y, Li Z X, Zhuo S G, Jiang H L, Zeng L W, Zhang M J. 2009. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China. Science in China Series D:Earth Sciences, 52(2):213-226
[63] Wang X B, Ouyang Z Y, Zhuo S G, Zhang M F, Zheng G D, Wang Y L. 2014. Serpentinization, abiogenic organic compounds, and deep life. Science China Earth Sciences, 57(5):878-887
[64] Wolfenden R, Lewis Jr C A, Yuan Y, Carter Jr C W. 2015. Temperature dependence of amino acid hydrophobicities. Proceedings of the National Academy of Sciences of the United States of America, 112(24):7484-7488