矿物岩石地球化学通报  2015, Vol. 34 Issue (6): 1254-1261   PDF    
西准噶尔玉依塔勒盆克提斑岩体中石榴子石的发现及地质意义
王冉, 张胜龙    
长安大学 地球科学与资源学院, 西部矿产资源与地质工程教育部重点实验室, 西安 710054
摘要: 为探讨位于新疆玉依塔勒盆克提一带的石榴子石花岗斑岩中石榴子石的成因类型,结合野外地质、岩相学、矿物学研究,分析了石榴子石的端元组分.结果表明,该区石榴子石为自形晶体,呈斑晶分布于整个花岗斑岩中,而非岩体边部,为岩浆结晶石榴子石,其中含有大量早期晶出的磷灰石.电子探针分析表明,石榴子石具有高铁、相对富钙而贫锰、镁特征.计算的主要端元组分为:铁铝榴石(62.36%~74.76% mol),钙铝榴石(10.90%~15.56% mol),镁铝榴石(6.78%~16.43% mol),锰铝榴石(4.08%~6.91% mol).综合区域岩浆活动和构造发展演化阶段的研究成果认为,该花岗岩的形成可能与俯冲作用有关.
关键词: 石榴子石     花岗岩     矿物化学     玉依塔勒盆克提     西准噶尔    
The Discovery of Garnet from Yuyitalepenketi Granite Porphyry in Western Junggar and its Geological Significances
WANG Ran, ZHANG Sheng-long    
Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Earth Science & Resources College of Chang'an University, Xi'an 710054, China
Abstract: In order to probe the genesis of garnet from the garnet-bearing granite porphyry in the Yuyitalepenketi area, Xinjiang, a study on mineralogy and chemical compositions of the garnet has been carried out in this paper based on its field geological and petrographic features. Results show that the garnet occurs as phenocrysts of euhedral crystal distributed in the whole body rather than in the rim of the granite porphyry body. It is believed that those garnets are magmatic ones which contain large amounts of needle or columnar-like apatite inclusions. EPMA analytical results indicate that all garnets are rich in Fe, relatively rich in Ca, but poor in Mn and Mg, with calculated compositions of almandine(62.36~74.76%mol), grossular(10.90~15.56%mol), pyrope(6.78~16.43%mol), and spessartine(4.08~6.91%mol). These results suggested that the garnets crystallized early and are magmatic in origin rather than being xenocrysts or restite phases. Combining with previous researches on magmatic activities and structural development evolutions of the region, it is believed that formation of the granite in the region could be associated with the subduction-related magmatism.
Key words: garnet     granite     mineral chemistry     Yuyitalepenketi     West Junggar    

石榴子石在自然界既可以产出于变质岩,也可以产出于岩浆岩。在花岗岩中,常常以副矿物的形式出现,其成因通常有以下几种认识:①捕获围岩而形成的捕虏晶(Warren,1970Allan and Clarke, 1981);②来自源区的残留相(Birch and Gleadow, 1974);③转熔(包晶反应)的产物(Zeng et al., 2005Stevens et al., 2007Villaros et al., 2009);④岩浆与围岩反应形成的矽卡岩矿物(张招崇,1995);⑤岩浆结晶的产物(Lackey et al., 20112012)。最近,Taylor和Stevens(2010)还提出岩浆中包含的石榴子石颗粒可通过自身的溶解-再沉淀机制发生重结晶作用,使新成的颗粒具有岩浆成因特征,并与岩浆达到平衡状态。

西准噶尔地区以广泛发育正εNd值的I型、A型花岗岩为特征。近年来笔者在该区实施的多幅1︰5万比例尺区域地质调查和岩浆带成矿研究中,在铁厂沟以南的玉依塔勒盆克提岩体中花岗岩中发现了石榴子石。那么,其中的石榴子石有何特点,是什么成因类型?通过显微镜下观察和电子探针研究,本文展示其岩相学特征和矿物化学成分特征,为揭示其成因意义提供矿物学依据。

1 区域地质概况

西准噶尔地体位于中亚造山带西南部,是中亚古生代俯冲-增生复合造山带的主要组成部分(Feng et al., 1989肖序常等,1992何国琦,2004李锦轶等,2006Xiao et al., 2009李锦轶等,2009Wilhem et al., 2012Choulet et al., 2013Zhu et al., 2013),发育多条蛇绿(混杂)岩带(Zhang et al., 2011Yang et al., 2013Zhu et al., 2013)和大量中酸性侵入岩。达尔布特断裂带和安齐断裂带两侧侵入岩尤其发育,包括克拉玛依、红山、铁厂沟、阿克巴斯陶等大岩基以及包古图、别鲁阿嘎希、玉依塔勒盆克提等小岩体(金成伟和张秀棋,1993)。西准噶尔南部的花岗岩时代多集中在晚石炭世—早二叠世(韩宝福等,2006),已有地球化学资料显示该区花岗岩为I-A型花岗岩,且具有正εNd值,极其年轻的Nd、Hf模式年龄(苏玉平等,2006贺敬博和陈斌,2011Tang et al., 2012a2012b2012cXu et al., 2012),与整个中亚造山带的花岗岩一致,说明中亚造山带主要由幔源的新生物质组成(Chen et al., 2000Wu et al., 2000Jahn,2004Chen and Jahn, 2004)。该区尚未有古老变质基底的报道。

玉依塔勒盆克提岩体位于西准噶尔铁厂沟岩体之南,安齐断裂之北(图 1),总面积约2.5km2(图 2)。岩体侵入于由火山碎屑岩-陆源细碎屑岩系组成的中泥盆统库鲁木迪组,且其中发育大量近东西向的闪长玢岩脉(图 2图 3a3b)。该岩体尚无精确的同位素年代学资料,该岩体西侧的别鲁阿嘎希岩体的时代为322±5Ma(王冉等,2015),而近期对中基性岩墙中的闪长岩类的全岩Ar-Ar法测年得出了292±3Ma的结果(尹继元等,2012)。

图 1 西准噶尔地质简图(修改自新疆维吾尔自治区地质矿产局,1993Chen et al., 2010Chen et al., 2014) Fig. 1 Geological map of the West Junggar region(modified from XJBGME,1993Chen et al., 2010Chen et al., 2014),with the location of Figure 2 JFS-加甫萨尔苏;XEP-夏尔蒲;WXE-夏尔蒲西;BGT-包古图;HS-红山;TCG-铁厂沟;HT-哈图;AKB-阿克巴斯套;MEG-庙尔沟;TEG-塔尔根;DLNL-多拉那勒;YGZ-也格孜卡拉;HGLL-洪古勒楞;N-TC-塔城北;TST-托斯特;KWSY-孔吾萨伊;KSB-卡桑布拉克;KYTS-阔依塔斯;KEJ-卡尔交;KLMS-库鲁木苏;SLK-赛力克;TLG-托洛盖;AL-阿腊散布拉克;BL-别鲁阿嘎希;YY-玉依塔勒盆克提;HLZ-黄梁子;GETS-加尔塔斯;LB-拉巴;DLH-都伦河东;TS-塔斯阔腊;BE-布尔科斯台; KZ-克孜勒巴斯陶;JW-吉乌尔沙克;AL-阿拉散布拉克
2 分析样品和分析方法

对玉依塔勒盆克提岩体进行了系统采样,其中花岗斑岩含有石榴子石,位于岩体中部,采样点经纬度为84°30′56.24″E,46°3′54.89″N,位置见图 2

图 2 别鲁阿嘎希至玉依塔勒盆克提一带地质略图(据金成伟和徐永生,1997修改,其中岩墙群年龄据尹继元等,2012) Fig. 2 Sketching geological map of the Bieluagaxi-Yuyitalepenkti region(modified from Jin and Xu, 1997; the chronology data of the mafic dykes from Yin et al., 2012)

显微观察和电子探针分析在长安大学的日本电子8100型电子探针仪上完成,分析电压和电流分别为l5kV和20 nA,对Na,Mg,A1,Si,K,Ca,Ti,P,Cr,Mn,Fe和Ni,其分析精度通常好于0.10%。端元组分计算方法和程序见Locock(2008)

3 石榴子石花岗岩的岩相学特征

该石榴子石花岗岩少量样品的岩相学观察显示(图 3c3d),其由长石、石英和白云母组成,并有副矿物石榴子石(<5%)产出。花岗闪长岩和闪长岩脉中均未见石榴子石,岩体边部也未见石榴子石。

石榴子石镜下显示为自形晶,特征十分相似,在岩石中呈斑晶分布,没有变形,没有定向排列。在石榴子石中,常见有针状磷灰石和钛铁矿包体,石榴石与周围矿物和玻璃之间无反应边(图 3c3d)。

图 3 (a)石榴子石花岗岩侵入于库鲁木迪组,并被闪长岩脉侵入;(b)闪长岩脉侵入于花岗岩;(c)石榴子石花岗岩中显微照片(单偏光); (d)石榴子石花岗岩中显微照片(正交偏光);Pl-斜长石;Grt-石榴子石;Ap-磷灰石;Ilm-钛铁矿;Ms-白云母 Fig. 3 玉依塔勒盆克提石榴子石花岗岩宏观露头和显微照片 The outcrops of the YY pluton(a, b)and the microscopic photos(c-Plane-polarized light, d-Cross-polarized light)
4 石榴子石的化学成分特征

总计分析了3个样品10粒石榴子石的化学成分,每颗石榴子石分析2个点以上,总计31个测点,石榴子石的主要元素含量见表 1

表 1 西准噶尔玉依塔勒盆克提花岗斑岩中石榴子石的主要元素含量及其端元组分 Table 1 Representative major element composition of garnet in the granitic porphyry from western Junggar

SiO2含量为36.10%~37.50%;A12O3含量为20.33%~21.27%;TFeO含量为28.95%~34.33%;MgO含量为1.69%~4.15%;CaO含量为4.37%~6.77%;MnO含量为1.79%~3.03%。其他氧化物含量偏低。

数据统计表明石榴子石的铁铝榴石端元最高。通过计算,其端元组分如表 1。铁铝榴石为62.36%~74.76% mol,钙铝榴石为10.90%~15.56% mol,镁铝榴石为6.78%~16.43% mol,锰铝榴石为4.08%~6.91% mol,钙铁榴石为0.67%~2.75% mol。另有少量钙铬榴石和钛榴石,通常小于1% mol。

5 讨论和结论

由于石榴子石成因类型复杂,必须从其产状、分布、成分以及岩石的结构构造等方面入手进行考虑。

从石榴子石在岩体的分布来看,石榴子石产于该岩体的中部,而非边部。且围岩为细碎屑岩,没有发生变质作用,此特点表明其来自于围岩的可能性不大,来自于和围岩的交代作用如矽卡岩化过程的可能性也不大。从石榴子石花岗岩的变质程度来看,石榴子石花岗岩仅有低级变质作用,表明其不可能由中高级变质作用过程而产生。从岩石的结构看,花岗岩为斑状结构,石榴子石多为自形晶体,且含有自形的针状磷灰石矿物包体,表明其最可能是早期晶出相。从西准噶尔地体的性质看,为岛弧增生作用形成的新生地壳,尚未发现古老的变质基地,因此不大可能是从深源捕获的捕虏晶。当然,也不排除有溶解再沉淀进一步结晶为自形晶体的可能性。

因此,本研究发现的花岗岩中的石榴子石可能为岩浆结晶石榴子石。对于这类石榴子石来说,可根据其化学成分探讨其形成的压力条件。

从石榴子石的成分来看,石榴子石主要为铁铝榴石,且富钙贫锰。在高压条件下(>0.7 GPa),石榴子石可以作为岩浆早期的结晶相,最终以斑晶的形式出现在花岗岩中(Green, 19761977),成分上具有富钙贫锰的特征(CaO>4%,MnO<4%)(Green, 19761977Conrad et al., 1988)。Hamer和Moyes(1982)也认为富铁贫锰的石榴子石从酸性岩浆中结晶需要0.7 GPa 以上的压力。在一些S 型花岗岩和流纹岩中常见的富铁石榴子石周围的黑云母+堇青石或者堇青石+斜方辉石反应边被认为是早期深部结晶的石榴子石随岩浆上升减压与剩余岩浆反应的结果(Phillips et al., 1981Clemens and Wall, 1984)。实验也显示在高压下(0.5 GPa),黑云母和石榴子石是先于长石和石英结晶的(Clemens and Wall, 1988)。

玉依塔勒盆克提岩体中的石榴子石为铁铝榴石,但相对富钙,CaO含量为4.37%~6.77%。相对贫锰,MnO含量为1.79%~3.03%。这非常类似于形成于相对高压环境的石榴子石(CaO>4%;MnO<4%;Green, 19771992Conrad et al., 1988)。在MnO-CaO 图解上(Harangi et al., 2001),成分投点更类似于高压环境下形成的石榴子石(图 4a)。

图 4 玉依塔勒盆克提岩体中石榴子石的成分图解 Fig. 4 Compositional diagrams of garnets from the Yuyitalepenketi pluon (a)CaO-MnO图解;(b)CaO-MgO图解

在中-低压条件下,石榴子石可以从过铝质岩浆中结晶形成(Cawthorn and Brown, 1976Allan and Clarke, 1981)。在岩浆演化后期,贫Mn矿物(如石英和长石)的分离结晶作用导致岩浆的Mn升高,促使石榴子石形成(Miller and Stoddard, 1981Abbott,1981于津海等,2004),实验也显示随着岩浆中Mn含量的增加,富Mn石榴子石(MnO>4%)可以在很低的压力下(≤0.3 GPa)从酸性岩浆中结晶(Green,1977Miller and Stoddard, 1981)。在低压下(0.1 GPa)斜长石和石英将早于石榴子石结晶(Clemens and Wall, 1988)。本研究的石榴子石不具有这些特征。

此外,玉依塔勒盆克提岩体中的石榴子石贫镁(<4.2%),这与幔源堆晶岩如榴辉岩残留和地幔橄榄岩中的石榴子石的高镁特征(一般大于8%,例如文献Lee et al., 2006及其引文)也明显不同(图 4b)。这意味着石榴子石结晶于长英质岩浆而不大可能来自镁铁质熔体。这与东昆仑英云闪长玢岩中的石榴子石(Yuan et al., 2009)以及在中欧东部Pannonian盆地钙碱性火山岩中的石榴子石(Harangi et al., 2001)较为相似。

从区域地质角度讲,西准噶尔地区以发育大量正εNd值的I型、A型花岗岩为特征。该区产出石榴子石花岗岩意味着特殊的地球动力学背景和岩浆过程,可能是来自于俯冲有关的岩浆作用,例如俯冲板片熔体。这已经为包古图等地的埃达克型闪长岩和石英闪长岩所证实(张连昌等,2006Geng et al., 2009Shen et al., 2010Tang et al., 2012a2012b)。

综上所述,玉依塔勒盆克提岩体中的石榴子石是来自长英质岩浆的早期结晶相,且富钙贫镁和锰,暗示岩浆形成时压力较高,为I型长英质岩浆,可能来自于俯冲有关的岩浆活动。

致谢:野外地质工作得到新疆地质矿产开发局第七地质大队的帮助,在此表示感谢。

参考文献
[1] Abbott R N Jr. 1981. The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman-Piute Range, California: A discussion. The Journal of Geology, 89(6): 767-769
[2] Allan B D, Clarke D B. 1981. Occurrence and origin of garnets in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 19: 19-24
[3] Birch W D, Gleadow A J W. 1974. The genesis of garnet and cordierite in acid volcanic rocks: Evidence from the Cerberean Cauldron, Central Victoria, Australia. Contributions to Mineralogy and Petrology, 45(1): 1-13
[4] Cawthorn R G, Brown P A. 1976. A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation. The Journal of Geology, 84(4): 467-476
[5] Chen B, Jahn B M, Wilde S, Xu B. 2000. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182
[6] Chen B, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23(5): 691-703
[7] Chen J F, Han B F, Ji J Q, Zhang L, Xu Z, He G Q, Wang T. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152
[8] Chen J F, Han B F, Zhang L, Xu Z, Liu J L, Qu W J, Li C, Yang J H, Yang Y H. 2014. Middle Paleozoic initial amalgamation and crustal growth in the West Junggar(NW China): Constraints from geochronology, geochemistry and Sr-Nd-Hf-Os isotopes of calc-alkaline and alkaline intrusions in the Xiemisitai-Saier Mountains. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2014.11.028
[9] Choulet F, Chen Y, Cogné J P, Rabillard A, Wang B, Lin W, Faure M, Cluzel D. 2013. First Triassic palaeomagnetic constraints from Junggar(NW China)and their implications for the Mesozoic tectonics in Central Asia. Journal of Asian Earth Sciences, 78: 371-394
[10] Clemens J D, Wall V J. 1984. Origin and evolution of a peraluminous silicic ignimbrite suite: The violet town volcanics. Contributions to Mineralogy and Petrology, 88(4): 354-371
[11] Clemens J D, Wall V J. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21(1): 53-66
[12] Conrad W K, Nicholls I A, Wall V J. 1988. Water-saturated and-undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. Journal of Petrology, 29(4): 765-803
[13] Feng Y, Coleman R G, Tilton G, Xiao X. 1989. Tectonic evolution of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 729-752
[14] Geng H Y, Sun M, Yuan C, Xiao W J, Xian W S, Zhao G C, Zhang L F, Wong K, Wu F Y. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chemical Geology, 266(3-4): 364-389
[15] Green T H. 1976. Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition. Geology, 4(2): 85-88
[16] Green T H. 1977. Garnet in silicic liquids and its possible use as a P-T indicator. Contributions to Mineralogy and Petrology, 65(1): 59-67
[17] Green T H. 1992. Experimental phase equilibrium studies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Geological Society of America Special Papers, 272: 429-438
[18] Hamer R D, Moyes A B. 1982. Composition and origin of garnet from the Antarctic Peninsula Volcanic Group of Trinity Peninsula. Journal of the Geological Society, 139(6): 713-720
[19] Harangi S Z, Downes H, Kósa L, Szabó C S, Thirlwall M F, Mason P R D, Mattey D. 2001. Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin(Eastern-Central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42(10): 1813-1843
[20] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100
[21] Lackey J S, Erdmann S, Hark J S, Nowak R M, Murray K E, Clarke D B, Valley J W. 2011. Tracing garnet origins in granitoid rocks by oxygen isotope analysis: Examples from the South Mountain Batholith, Nova Scotia. The Canadian Mineralogist, 49(2): 417-439
[22] Lackey J S, Romero G A, Bouvier A S, Valley J W. 2012. Dynamic growth of garnet in granitic magmas. Geology, 40(2): 171-174
[23] Lee C T A, Cheng X, Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology, 151(2): 222-242
[24] Locock A J. 2008. An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers & Geosciences, 34(12): 1769-1780
[25] Miller C F, Stoddard E F. 1981. The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman-Piute Range, California. The Journal of Geology, 89(2): 233-246
[26] Phillips G N, Wall V J, Clemens J D. 1981. Petrology of the Strathbogie batholith: A cordierite-bearing granite. The Canadian Mineralogist, 19(Part 1): 47-63
[27] Shen P, Shen Y C, Wang J B, Zhu H P, Wang L J, Meng L. 2010. Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China. Chemical Geology, 275(1-2): 78-98
[28] Stevens G, Villaros A, Moyen J F. 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 35(1): 9-12
[29] Tang G J, Wang Q, Wyman D A, Li Z X, Xu Y G, Zhao Z H. 2012a. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128-131: 73-83
[30] Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Yang Y H. 2012b. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140-141: 86-102
[31] Tang G J, Wyman D A, Wang Q, Li J, Li Z X, Zhao Z H, Sun W D. 2012c. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area(NW China). Earth and Planetary Science Letters, 329-330: 84-96
[32] Taylor J, Stevens G. 2010. Selective entrainment of peritectic garnet into S-type granitic magmas: Evidence from Archaean mid-crustal anatectites. Lithos, 120(3-4): 277-292
[33] Villaros A, Stevens G, Moyen J F, Buick I S. 2009. The trace element compositions of S-type granites: Evidence for disequilibrium melting and accessory phase entrainment in the source. Contributions to Mineralogy and Petrology, 158(4): 543-561
[34] Warren R C. 1970. Electron microprobe investigations of almandine garnets from a quartz diorite stock and adjacent metamorphic rocks, British Columbia. EOS, 51: 444
[35] Wilhem C, Windley B F, Stampfli G M. 2012. The altaids of central Asia: A tectonic and evolutionary innovative review. Earth-Science Reviews, 113(3-4): 303-341
[36] Wu F Y, Jahn B M, Wilde S, Sun D Y. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113
[37] Xiao X C, Tang Y Q, Feng Y M. 1992. Tectonic evolution of northern Xinjiang and its adjacent regions. Beijing: Geological Publishing House, 169
[38] Xiao W J, Windley B F, Yuan C, Sun M, Han C M, Lin S F, Chen H L, Yan Q R, Liu D Y, Qin K Z, Li J L, Sun S. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309(3): 221-270
[39] Xu Z, Han B F, Ren R, Zhou Y Z, Zhang L, Chen J F, Su L, Li X H, Liu D Y. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos, 132-133: 141-161
[40] Yang G X, Li Y J, Santosh M, Yang B K, Zhang B, Tong L L. 2013. Geochronology and geochemistry of basalts from the Karamay ophiolitic mélange in West Junggar(NW China): Implications for Devonian-Carboniferous intra-oceanic accretionary tectonics of the southern Altaids. Geological Society of America Bulletin, 125(3-4): 401-419
[41] Yin J Y, Yuan C, Sun M, Long X P, Zhao G C, Wong K P, Geng H Y, Cai K D. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research, 17(1): 145-152
[42] Yuan C, Sun M, Xiao W J, Wilde S, Li X H, Liu X H, Long X P, Xia X P, Ye K, Li J L. 2009. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone, 98(6): 1489-1510
[43] Zeng L S, Asimow P D, Saleeby J B. 2005. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochimica et Cosmochimica Acta, 69(14): 3671-3682
[44] Zhang J E, Xiao W J, Han C M, Mao Q G, Ao S J, Guo Q Q, Ma C. 2011. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos, 125(1-2): 592-606
[45] Zhu Y F, Chen B, Xu X, Qiu T, An F. 2013. A new geological map of the western Junggar, north Xinjiang(NW China): Implications for Paleoenvironmental reconstruction. Episodes, 36(3): 205-220
[46] 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086
[47] 何国琦. 2004. 中国新疆及邻区大地构造图说明书(1:2500000). 北京: 地质出版社
[48] 贺敬博, 陈斌. 2011. 西准噶尔克拉玛依岩体的成因: 年代学、岩石学和地球化学证据. 地学前缘, 18(2): 191-211
[49] 金成伟, 张秀棋. 1993. 新疆西准噶尔花岗岩类的时代及其成因. 地质科学, 28(1): 28-36
[50] 金成伟, 徐永生. 1997. 新疆托里别鲁阿嘎希地区花岗岩类的岩石学和成因. 岩石学报, 13(4): 529-537
[51] 李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168
[52] 李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605
[53] 苏玉平, 唐红峰, 侯广顺, 刘丛强. 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55-67
[54] 王冉, 李永军, 张胜龙, 孙勇. 2015. 西准噶尔别鲁阿嘎希小斑岩体年代学及地质成矿意义. 中国科技大学学报,(待发表)
[55] 肖序常, 汤耀庆, 冯益民, 朱宝清, 李锦轶, 赵民. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社, 169
[56] 新疆维吾尔自治区地质矿产局. 1993. 中华人民共和国地质矿产部地质专报-区域地质(第32号)新疆维吾尔自治区区域地质志. 北京: 地质出版社
[57] 尹继元, 袁超, 孙敏, 龙晓平, 邱华宁, 王毓婧, 任江波, 关义立. 2012. 新疆哈图早二叠世富镁闪长岩的时代、地球化学特征和可能的成因机制. 岩石学报, 28(7): 2171-2182
[58] 于津海, 赵蕾, 周旋. 2004. 闽东南含石榴子石Ⅰ型花岗岩的矿物学特征及成因. 高校地质学报, 10(3): 364-377
[59] 张连昌, 万博, 焦学军, 张锐. 2006. 西准包古图含铜斑岩的埃达克岩特征及其地质意义. 中国地质, 33(3): 626-631
[60] 张招崇. 1995. 冀北水泉沟偏碱性杂岩体中石榴石的特征及其地质意义. 矿物岩石, 15(2): 17-2