植物营养与肥料学报   2018, Vol. 24  Issue (3): 676-684 
0
PDF 
紫云英与化学氮肥配施对双季稻田CH4与N2O排放的影响
聂江文, 王幼娟, 田媛, 彭传华, 王欢, 刘章勇, 朱波    
长江大学湿地生态与农业利用教育部工程研究中心/湖北省涝渍灾害与湿地农业重点实验室,湖北荆州 434025
摘要: 【目的】 冬季种植紫云英翻压还田对促进稻田养分循环和提高氮素利用效率具有重要意义,本文重点研究了紫云英还田与氮肥配施对稻田温室气体排放的影响。【方法】 盆栽试验条件下,设置紫云英与氮肥配施6个处理:不施肥 (CK);单施尿素 (CF);单施紫云英 (MV);1/4紫云英+3/4尿素 (1/4 MV+3/4 CF);1/2紫云英+1/2尿素 (1/2 MV+1/2 CF) 和3/4紫云英+1/4尿素 (3/4 MV+1/4 CF),除CK外,所有处理的施氮 (N) 量均为111.4 mg/kg干土。采用静态暗箱–气相色谱法,监测双季稻季节内稻田CH4和N2O排放特征及其全球增温潜势 (GWP) 与单位粮食产量温室气体排放强度 (GHGI)。【结果】 1) 不同处理稻季CH4排放规律基本一致,早稻和晚稻生长季各处理CH4排放均集中在分蘖期与抽穗期,其中早稻季CH4没有明显的排放峰,其最大值为5.69 mg/(m2·h);晚稻季有两个较为明显的排放峰,出现在水稻移栽初期以及晒田期,最大峰值分别为13.33 mg/(m2·h) 和8.83 mg/(m2·h);稻田CH4累积排放量随紫云英施用比例的增加而增加。2) 不同施肥处理下N2O排放通量有较为明显的季节变化规律。早稻季N2O最大峰值出现在播后第3天,为1092.2 μg/(m2·h);晚稻季N2O排放主要集中在分蘖期和后期干湿交替阶段,最大峰值为795.7 μg/(m2·h);N2O累积排放量随紫云英施用比例的增加而减小,且MV的N2O累积排放量为负值。3) CF处理双季稻产量最高,显著高于CK、1/4 MV+3/4 CF和MV;1/2 MV+1/2 CF处理双季稻产量显著高于CK和1/4 MV+3/4 CF;各处理对稻田GWP及GHGI的影响均不显著。【结论】 通过不同配比紫云英与氮肥配施盆栽试验发现,与CF相比,紫云英与氮肥不同配比对于稻田GWP及GHGI并无显著影响。
关键词: 紫云英     全球增温潜势     双季稻     N2O     CH4    
Effects of combined applying Chinese milk vetch and chemical fertilizers on CH4 and N2O emissions from double cropping paddy fields
NIE Jiang-wen, WANG You-juan, TIAN Yuan, PENG Chuan-hua, WANG Huan, LIU Zhang-yong, ZHU Bo    
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
Abstract: 【Objectives】 Winter planting of Chinese milk vetch (Astragalus sinicus L.) for returning to fields is of significance for promoting paddy nutrient cycle and improving nitrogen use efficiency. The purpose of this paper was to investigate the greenhouse gas emissions in paddy fields of Astragalus sinicus straw and nitrogen fertilizers. 【Methods】 A pot experiment was conducted, and there were 6 Chinese milk vetch and fertilizer treatments, no fertilizer (CK), single urea (CF), single application of Chinese milk vetch (MV), 1/4 Chinese milk vetch + 3/4 urea (1/4 MV + 3/4 CF), 1/2 Chinese milk vetch +1/2 urea (1/2 MV + 1/2 CF) and 3/4 Chinese milk vetch +1/4 urea (3/4 MV +1/4 CF). Except for the CK, the nitrogen rate of other treatments was 111.4 mg/kg dry soil. Chromatographic determination of CH4 and N2O emission characteristics in double cropping rice season paddy field, global warming potential (GWP) and greenhouse gas emissions intensity per unit grain yield (GHGI) were measured using the static chamber gas method. 【Results】 1) The CH4 emission in different rice seasons was basically consistent in early rice and late rice growing seasons, and the CH4 emissions were concentrated in the tillering stage and the heading stage of early rice and late rice. The early rice season CH4 emission has no obvious emission peak, with the maximum value of 5.69 mg/(m2·h), and the late rice season emission had two obvious emission peaks, appeared at the early rice transplanting and field drying, with the maximum peak values of 13.33 mg/(m2·h) and 8.83 mg/(m2·h). The cumulative CH4 emission was increased with the increase of milk vetch ratio. 2) Under different fertilization treatments, the N2O emission flux had obvious seasonal variation pattern. The maximum peak value of N2O at the early season appeared in the third day after the sowing, and was 1092.2 μg/(m2·h). The late rice season N2O emissions mainly concentrated in the tillering stage and the late stage of alternative drying and wetting, with the peak value of 795.7 μg/(m2·h), the cumulative N2O emission was decreased with the increase of the with milk vetch ratio, and the N2O cumulative emission of MV was negative. 3) The double rice total yield of the CF treatment was the highest, and significantly higher than those of the CK, 1/4 MV+3/4 CF and MV, and the double rice total yield of the 1/2 MV+1/2 CF was significantly higher than those of the CK and 1/4MV+3/4 CF. The effects of treatments on GWP and GHGI in paddy fields were not significant. 【Conclusions】 Compared with the CF, different ratios of Chinese milk vetch and nitrogen fertilizer had no significant effects on GWP and GHGI in paddy fields.
Key words: Chinese milk vetch     global warming potential     rice paddy field     N2O     CH4    

甲烷 (CH4) 和氧化亚氮 (N2O) 是大气中两种重要的温室气体。在100年时间尺度下,CH4和N2O的全球增温潜势 (GWP) 分别是CO2的25倍和298倍[1]。稻田是CH4和N2O的重要排放源之一[2],据研究,稻田CH4排放量约占全球人为CH4总排放的12%~26%[3],稻田N2O排放量占我国农田总排放的7%~11%[4]。因此,如何科学合理地减少稻田CH4和N2O排放,发展高效减排的水稻生产模式已成为各界关注和研究的热点问题。

前人针对稻田CH4和N2O排放做了大量科学研究,除气候条件、土壤类型、耕作措施和水分管理外,农田养分管理措施也是影响稻田CH4和N2O排放的重要因素[510]。在当前高度集约化的农业生产模式下,大量单一投入化学氮肥不仅造成氮素利用率较低,还导致N2O的排放大幅增加[11],武文明等[12]发现,在氮肥投入量达150 kg/hm2和300 kg/hm2时,稻田N2O排放损失的氮量可分别占施入肥料N的1.28%和0.45%。研究表明,合理的有机无机肥配施可实现水稻高产[13],但对于稻田温室气体排放强度的研究结果还不统一[1415]。朱波等[16]发现黑麦草鲜草翻压还田虽然增加了稻田CH4排放,但能减少N2O排放;郭腾飞等[17]认为施用有机肥和氮肥均增加了CO2、CH4、N2O的排放,虽然秸秆还田 (有机肥) 增加了CO2和CH4排放,但是减少了N2O排放。前人研究主要侧重于比较有机肥和化学氮肥对稻田温室气体减排的差异,未能研究减排效果最好的有机无机配施的比例。紫云英 (Astragalus sinicusL.) 是我国南方稻区常见的冬季绿肥作物,翻压还田后可部分替代水稻季需要的氮素养分,并有助于提高氮素利用效率和水稻产量[18]。但目前关于不同紫云英与化学氮肥配比对稻田温室气体排放的研究较少。因此,研究南方双季稻区不同紫云英与化学氮肥配比对稻田温室气体排放的影响对于制定合理的温室气体减排施肥措施具有重要意义。

本研究拟通过盆栽试验比较等氮施用量条件下,不同紫云英与化学氮肥配比对稻田CH4和N2O排放特征及全球增温潜势 (GWP) 和单位粮食产量温室气体排放强度 (GHGI) 的影响,以期为制定双季稻区温室气体减排的施肥措施和种植制度提供科学依据。

1 材料与方法 1.1 试验设计

试验地位于湖南省华容县长江大学试验基地 (东经112°55′,北纬29°52′)。该区属于亚热带季风湿润气候,年均气温16~18℃,≥ 10℃积温5000~5800℃,无霜期260~310 d,年降雨量1200~1700 mm。试验土壤为长江沉积物发育的紫潮泥水稻土,土壤pH为7.7、有机质含量49.2 g/kg、全氮3.11 g/kg、碱解氮273 mg/kg、有效磷16.4 mg/kg、速效钾69 mg/kg。试验前将土壤晾干、整碎,拣出石块、根系等杂物,过2 mm筛。试验用盆为圆柱形塑料盆 (19 cm × 15 cm),每盆装2.5 kg风干土。盆栽试验于露天网室内进行。

试验设置6个处理:不施氮肥 (CK);单施尿素 (CF);单施紫云英 (MV);1/4紫云英+3/4尿素 (1/4 MV+3/4 CF);1/2紫云英+1/2尿素 (1/2 MV+1/2 CF) 和3/4紫云英+1/4尿素 (3/4 MV+1/4 CF)。除CK外,所有处理施氮量均为N 111.4 mg/kg干土,各处理重复4次。根据紫云英含氮量来确定紫云英鲜草施用量;另外每盆分别施用1.087 g过磷酸钙和0.543 g氯化钾,所有肥料均于4月8日作基肥施用,施用时与土壤充分混合均匀,晚稻生长期间与早稻施用等量尿素,但不施入紫云英。早稻供试品种“浙福7号”,4月16日播种,每盆播40粒种子,于三叶期间苗,每盆留10株,7月14日收获。晚稻供试品种“隆香优130”,6月21日播种,7月19日移栽,每盆3穴,每穴2苗,11月10日收获。

1.2 采样及测定方法

采用静态暗箱–气相色谱法测定CH4和N2O排放速率。箱体为高100 cm、长宽皆为45 cm的有机玻璃 (大于盆钵面积,不影响水稻生长),箱外部包有锡箔纸以防止太阳照射导致箱内温度变化过大。采样时间为上午9:00—11:00,采集罩箱后第0、5、10 min的气样,观测频率为每周1次。气样中CH4和N2O浓度由气相色谱Agilent 7890A分析测定。CH4检测器为FID (氢火焰离子化检测器),N2O检测器为ECD (电子捕获检测器)。温室气体排放速率由该气体在箱中浓度随时间的变化率计算得出,气体排放通量计算公式如下 :

$F = \frac{{dc}}{{dt}} \cdot h \cdot p \cdot \frac{{273}}{{273 + T}}$ (1)

式 (1) 中:F为排放速率,CH4单位为mg/(m2·h),N2O单位为μg/(m2·h);dc/dt为采样过程中箱内气体浓度随时间的变化率,CH4单位为mL/(m3·h),N2O单位为μL/(m3·h);h为箱体高度,1.0 m;p为标准状态下气体密度,CH4单位为0.714 kg/m3,N2O单位为1.964 kg/m3T为采样时箱内温度 (℃)。

1.3 数据处理

以100年为尺度,单位质量CH4和N2O的GWP分别是CO2的25倍和298倍,可计算其温室气体排放二氧化碳当量 (carbon dioxide equivalent,CDE,单位kg,以CO2计)。通过计算各处理CH4和N2O的GWP,结合水稻产量计算单位稻谷产量温室气体排放强度 (GHGI)[19]

${\rm GWP} = {\rm CDE}({\rm CH}_4)+ {\rm CDE}({\rm N}_2{\rm O})$ (2)
${\rm GHGI} = {\rm GWP}/水稻产量 $ (3)

式 (2) 中:GWP为CH4和N2O二者排放量的总二氧化碳当量 (kg),以CO2计。式 (3) 中,GHGI为温室气体排放强度,单位为kg/(kg·a)。

利用DPS对试验数据进行方差分析和显著性检验。

2 结果与分析 2.1 紫云英与氮肥配比对双季稻田CH4排放通量的影响

早稻季和晚稻季各处理CH4排放通量具有不同的特征 (图1),但都集中在分蘖期和抽穗期。其中早稻季CH4没有明显的排放峰,最大峰值出现在CF处理,为5.69 mg/(m2·h);晚稻季各处理CH4排放趋势大体一致,有两个较为明显的排放峰,分别出现在水稻移栽后以及晒田期,其中最大峰值出现在晚稻移栽后第2天,为1/4 MV+3/4 CF处理的13.33 mg/(m2·h)。

图1 不同处理双季稻田CH4排放速率 Fig. 1 Seasonal dynamic of CH4 emission rate from paddy soil under different treatments [注(Note):CF—化肥Chemical fertilizer; MV—紫云英Milk vetch; ERS—早稻直播Early rice seeding; ERH—早稻收获Early rice harvest; LRT—晚稻移栽Late rice transplanting; LRH—晚稻收获Late rice harvest.]
2.2 紫云英与氮肥配比对双季稻田N2O排放通量的影响

各处理N2O排放通量有较明显的季节变化规律 (图2)。早稻季N2O排放峰集中在早稻播种后的无淹水状态以及分蘖初期,最大峰值出现在播种后第3天的CF处理,为1092.2 μg/(m2·h);晚稻N2O排放峰主要集中在水稻分蘖期和后期干湿交替阶段,最大峰值出现在CK处理后期干湿交替阶段,为795.7 μg/(m2·h)。

图2 不同处理双季稻田N2O排放速率 Fig. 2 Seasonal dynamic of N2O emission rate from paddy soil under different treatments [注(Note):CF—化肥Chemical fertilizer; MV—紫云英Milk vetch; ERS—早稻直播Early rice seeding; ERH—早稻收获Early rice harvest; LRT—晚稻移栽Late rice transplanting; LRH—晚稻收获Late rice harvest.]
2.3 紫云英与氮肥配比对双季稻田CH4和N2O累积排放量的影响

根据双季稻生长季CH4和N2O的排放通量计算各处理的累积排放量。从表1可以看出,早稻季CH4排放量以MV处理最高,为43.7 kg/hm2,与1/4 MV+3/4 CF处理有显著差异 (P < 0.05),其他处理间差异均不显著。晚稻季CH 4排放量以1/4 MV+3/4 CF处理最高,CK最低,分别为54.5 kg/hm2和40.5 kg/hm2。从两季累积排放量来看,各处理CH4排放量为MV > 3/4 MV+1/4 CF > 1/2 MV+1/2 CF > CK > 1/4 MV +3/4 CF > CF,以MV处理最高,CF处理最低,分别为91.0 kg/hm 2和66.2 kg/hm2,CF、MV处理间有显著差异 (P < 0.05)。各处理CH 4累积排放量主要出现在晚稻季,占双季稻的比例为51.9%~79.7%。

表1可知,N2O的排放量远低于CH4的排放量。早稻和晚稻季节内N2O排放量均以CF最高,分别为3.5 kg/hm2和2.2 kg/hm2。早稻季CF的N2O排放显著高于CK和MV;晚稻季各处理间无显著差异。其中早稻季CK以及晚稻季MV的N2O排放量为负值,表现为N2O的汇。从双季稻累积排放量来看,各处理N2O排放量为CF > 1/4 MV+3/4 CF > 3/4 MV+ 1/4 CF > 1/2 MV+ 1/2 CF > CK > MV,其中CF排放量最高,为5.7 kg/hm 2;MV排放量最低,为–2.5 kg/hm2;CF和MV差异显著 (P < 0.05)。

表1 不同处理双季稻田CH4与N2O累计排放量 Table 1 Seasonal emission of CH4 and N2O from double rice system under different treatments
2.4 紫云英与氮肥配比对双季稻田GWP和GHGI的影响

以100年尺度计算,单位质量的CH4和N2O增温效应分别是CO2的25倍和298倍。表2所示,各处理双季稻GWP的范围为1524.5~3340.1 kg/hm2,以CF最高,MV最低。除MV外,其他各处理GWP均高于CK,即CF、1/4 MV+ 3/4 CF、3/4 MV+ 1/4 CF和1/2 MV+ 1/2 CF均导致双季稻GWP升高。本研究中各处理CH4对GWP的贡献占49.5%~84.1%,而N2O对GWP的贡献占15.9%~50.5%,除CF外,其余处理CH4对GWP的贡献均高于N2O对GWP的贡献。

各处理双季稻产量可达10868~20532 kg/hm2。与CK相比,除1/4 MV+3/4 CF处理外,各紫云英与氮肥配比处理均增加了双季稻产量,其中CF与1/2 MV+1/2 CF处理显著高于CK;但各紫云英与氮肥配比处理双季稻产量均低于CF处理,其中1/4 MV+3/4 CF处理和MV处理显著低于CF处理。结合水稻产量计算100年尺度上的温室气体排放强度GHGI。可以得出,各处理GHGI最高的是CF和3/4 MV+1/4 CF处理,为0.12 kg/(kg·a),最低为MV处理,为0.08 kg/(kg·a)。相比CK,施用1/2比例以上的尿素处理均增加了温室气体排放强度。

表2 不同处理对双季稻田综合温室效应 (100年) 的影响 Table 2 GWP in 100 years time frame from double rice system under different treatments
3 讨论 3.1 紫云英与氮肥配比对双季稻田CH4排放的影响

CH4排放主要集中在水稻生长初期,这与其他研究结果相一致[1622]。由于绿肥还田后有机物的大量分解,在产CH4菌的参与下产生大量CH4[23];晚稻CH4排放的营养物质主要来源于早稻根茬,在厌氧条件下被产CH4菌利用,产生CH4。本研究中CH4排放总量高低顺序为MV > 3/4 MV+ 1/4 CF > 1/2 MV+ 1/2 CF > CK > 1/4 MV+ 3/4 CF > CF,CH 4排放总量随紫云英施用比例的增加而增加,这与刘红江等[13]研究结果相一致,主要原因是紫云英增加了产CH4菌的营养物质,进而导致CH4的排放总量增加。但相比于CK,单施尿素减少了CH4的排放,可能是由于增施氮肥,稻田耕层土壤中的亚硝酸根高于不施氮肥处理,进而导致土壤CH4被亚硝酸根氧化而消耗,这是土壤CH4氧化的另一种途径[24],最终导致CH4的排放降低。

3.2 紫云英与氮肥配比对双季稻田N2O排放的影响

田间水分管理和肥料施用是影响稻田土壤N2O排放的两个主要因素[25]。从稻田土壤N2O排放通量特征可以看出,本研究各处理的N2O排放规律相似,N2O排放主要在早稻播种—生长前期与晚稻生长后期,此时稻田土壤处于有氧状态,有利于N2O的产生,这与张岳芳等[26]研究结果一致。本研究中稻田土壤N2O排放总量高低顺序为CF > 1/4 MV+3/4 CF > 3/4 MV+1/4 CF > 1/2 MV+1/2 CF > CK > MV,同等施氮量下,紫云英替代尿素的比例越大,稻田土壤N 2O排放量越低,紫云英的施入降低了N2O排放,可能由于N2O排放主要是受外源碳、氮营养物质供应水平的限制,而紫云英替换无机氮肥提高了土壤中的C/N,有机碳的大量投入促进了微生物的活动,同时也提高了微生物对氮素的固定作用[27]。此外,本研究中MV处理的N2O排放总量低于CK,主要是由于有机绿肥的养分释放速度较慢,可以降低土壤中的速效氮素含量,减弱了土壤微生物的活动,抑制了土壤的硝化和反硝化作用,从而导致N2O的排放量减少[28]。MV处理的N2O排放总量为负值,说明紫云英还田可以降低稻田N2O排放,甚至使稻田土壤从大气中吸收一定量的N2O,从而成为N2O的汇。Goldberg等[29]认为,当土壤处于较为干旱或者有氧的条件下时,也会出现N2O负排放;而Wu等[30]也发现土壤中氮素含量处于较低水平时,反硝化细菌能够利用土壤中的N2O来代替NO3作为电子受体,可将更多N2O还原为N2,导致土壤对N2O的消耗增加,甚至出现净吸收。在仅施用紫云英绿肥处理中,土壤的氮素含量处于较低水平,且当土壤处于干旱条件下时出现N2O负排放,与Wu等[30]的研究结果相吻合。

3.3 紫云英与氮肥配比对双季稻田GWP和GHGI的影响

有研究表明,稻田生态系统中CH4与N2O的排放具有一定的互为消长关系[3132],但在一些其他生态系统中,CH4与N2O的排放并不具有消长关系。Zhang等[33]发现在连续蔬菜种植系统中,有机肥对CH4与N2O的排放均无显著影响。因此需要通过CH4与N2O的综合效应来评价对温室效应的贡献。相比CK,MV处理可以显著降低GWP,虽然增加了CH4排放,但稻田N2O排放显著降低,甚至在晚稻季为负值。CH4的增温效应要远高于N2O,稻田增温潜势主要取决于稻田CH4的排放,这与朱波等[16]、郭腾飞等[17]研究结果相同。虽然稻田N2O排放量较低,但秦晓波等[34]认为,虽然在短时间内N2O的增温效应要小于CH4,但在长时间尺度下,N2O在大气中的存在时间更为久远,而且随着时间增长其对温室效应的影响会越来越大;但也有学者认为稻田产生的N2O都会存在后续效应,需要考虑周年的N2O排放来科学评估CH4与N2O的增温效应[35]。因此,在研究稻田等湿地生态系统温室气体排放的过程中,既不能忽视N2O的排放,也要从周年试验进行考虑。此外,本试验是在盆栽条件下进行,具有一定的局限性,但可以更好地控制在田间条件下难以控制的因素。

4 结论

1) 不同处理稻季CH4、N2O排放规律基本一致,在等氮量施用条件下,稻田CH4累积排放量随紫云英施用比例的增加而增加;稻田N2O累积排放量随紫云英施用比例的增加而减小。

2) 与CK相比,各施肥处理对于稻田GWP及GHGI的影响均不显著。

3) 除单施尿素处理CH4对全球增温潜势的贡献率略低于N2O,其余处理CH4对全球增温潜势的贡献率均大于N2O,故双季稻田减排措施应着重于减少CH4排放;此外,观测发现单施紫云英处理晚稻季N2O负排放,下一步需要开展深入研究。

参考文献
[1] Knoblauch C, Maarifat A A, Pfeiffer E M, et al. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils[J]. Soil Biology & Biochemistry, 2011, 43(9): 1768–1778.
[2] Melollo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601): 2173–2176. DOI:10.1126/science.1074153
[3] 魏海苹, 孙文娟, 黄耀. 中国稻田CH4排放及其影响因素的统计分析 [J]. 中国农业科学, 2012, 45(17): 3531–3540.
Wei H P, Sun W J, Huang Y. Statistical analysis of methane emission from rice fields in China and the driving factors[J]. Scientia Agricultura Sinica, 2012, 45(17): 3531–3540.
[4] Zou J W, Huang Y, Zheng X H, et al. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime [J]. Atomspheric Environment, 2007, 41: 8030–8042. DOI:10.1016/j.atmosenv.2007.06.049
[5] 董文军, 来永才, 孟英, 等. 稻田生态系统温室气体排放影响因素的研究进展[J]. 黑龙江农业科学, 2015, 37(5): 145–148.
Dong W J, Lai Y C, Meng Y, et al. Research progress of greenhouse gases emission in paddy field ecosystems[J]. Heilongjiang Agricultural Sciences, 2015, 37(5): 145–148.
[6] 张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体 (CO2、CH4、N2O) 的源/汇强度及其温室效应研究进展 [J]. 中国生态农业学报, 2011, 19(4): 966–975.
Zhang Y M, Hu C S, Zhang J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils [J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966–975.
[7] 伍芬琳, 张海林, 李琳, 等. 保护性耕作下双季稻农田甲烷排放特征及温室效应[J]. 中国农业科学, 2008, 41(9): 2703–2709.
Wu F L, Zhang H L, Li L, et al. Advances in research on the effects of irrigation on the greenhouse gases emission and soil carbon sequestration in agro-ecosystem[J]. Scientia Agricultura Sinica, 2008, 41(9): 2703–2709.
[8] 汪婧, 蔡立群, 张仁陟, 等. 耕作措施对温带半干旱地区土壤温室气体 (CO2、CH4、N2O) 通量的影响 [J]. 中国生态农业学报, 2011, 19(6): 1295–1300.
Wang J, Cai L Q, Zhang R Z, et al. Effect of tillage pattern on soil greenhouse gases (CO2, CH4 and N2O) fluxes in semi-arid temperate regions [J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1295–1300.
[9] 刘爽, 严昌荣, 何文清, 等. 不同耕作措施下旱地农田土壤呼吸及其影响因素[J]. 生态学报, 2010, 30(11): 2919–2924.
Liu S, Yan C R, He W Q, et al. Soil respiration and its affected factors under different tillage systems in dryland production system[J]. Acta Ecologica Sinicsa, 2010, 30(11): 2919–2924.
[10] 王斌, 李玉娥, 万运帆, 等. 控释肥和添加剂对双季稻温室气体排放影响和减排评价[J]. 中国农业科学, 2014, 47(2): 314–323.
Wang B, Li Y E, Wan Y F, et al. Effect and assessment of controlled release fertilizer and additive treatments on greenhouse gases emission from a double rice field[J]. Scientia Agricultura Sinica, 2014, 47(2): 314–323. DOI:10.3864/j.issn.0578-1752.2014.02.011
[11] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041. DOI:10.1073/pnas.0813417106
[12] 武文明, 杨光明, 沙丽清. 氮肥对西双版纳地区稻田N2O排放通量的影响 [J]. 农业环境科学学报, 2008, 27(5): 1876–1881.
Wu W M, Yang G M, Sha L Q. Impact of nitrogen fertilizer on N2O flux from a paddy soil in Xishuangbanna, Southwest China [J]. Journal of Agro-Environment Science, 2008, 27(5): 1876–1881.
[13] 刘红江, 郭智, 张丽萍, 等. 有机-无机肥不同配施比例对稻季CH4和N2O排放的影响 [J]. 生态环境学报, 2016, 25(5): 808–814.
Liu H J, Guo Z, Zhang L P, et al. Effects of different combined application ratio of organic-inorganic fertilization on CH4 and N2O emissions in paddy season [J]. Ecology and Environment, 2016, 25(5): 808–814.
[14] Yang B, Xiong Z, Wang J, et al. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: A 3-year field experiment[J]. Ecological Engineering, 2015, 81: 289–297. DOI:10.1016/j.ecoleng.2015.04.071
[15] Liu Y, Zhou Z, Zhang X, et al. Net global warming potential and greenhouse gas intensity from the double rice system with integrated soil-crop system management: A three-year field study[J]. Atmospheric Environment, 2015, 116: 92–101. DOI:10.1016/j.atmosenv.2015.06.018
[16] 朱波, 易丽霞, 胡跃高, 等. 黑麦草鲜草翻压还田对双季稻CH4与N2O排放的影响 [J]. 农业工程学报, 2011, 27(12): 241–245.
Zhu B, Yi L X, Hu Y G, et al. Effects of ryegrass incorporation on CH4 and N2O emission from double rice paddy soil [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 241–245. DOI:10.3969/j.issn.1002-6819.2011.12.045
[17] 郭腾飞, 梁国庆, 周卫, 等. 施肥对稻田温室气体排放及土壤养分的影响[J]. 植物营养与肥料学报, 2016, 22(2): 337–345.
Guo T F, Liang G Q, Zhou W, et al. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 337–345. DOI:10.11674/zwyf.14557
[18] Zhu B, Yi L X, Hu Y G, et al. Nitrogen release from incorporated 15N-labelled Chinese milk vetch (Astragalus sinicus L.) residue and its dynamics in a double rice cropping system [J]. Plant and Soil, 2014, 374(1): 331–344.
[19] 秦晓波, 李玉娥, Wang Hong, 等. 生物质炭添加对华南双季稻田碳排放强度的影响[J]. 农业工程学报, 2015, 31(5): 226–233.
Qin X B, Li Y E, Wang H, et al. Impact of biochar amendment on carbon emissions intensity in double rice field in South China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 226–233.
[20] Chang H L, Ki D P, Ki Y J, et al. Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil [J]. Agriculture Ecosystems & Environment, 2010, 138(3-4): 343–347.
[21] Li D, Liu M Q, Cheng Y H, et al. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China[J]. Soil & Tillage Research, 2011, 113(2): 77–81.
[22] Ma J, Ma E, Xu H, et al. Wheat straw management affects CH4, and N2O emissions from rice fields [J]. Soil Biology & Biochemistry, 2009, 41(5): 1022–1028.
[23] Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25–50. DOI:10.1016/S1164-5563(01)01067-6
[24] Ettwing K F, Butler M K, Le P D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464: 543–548. DOI:10.1038/nature08883
[25] Schuster M, Conrad R. Metabolism of nitric oxide and nitrous oxide during nitrification and denitrification in soil at different incubation conditions[J]. Fems Microbiology Letters, 1992, 101(2): 133–143.
[26] 张岳芳, 周炜, 陈留根, 等. 太湖地区不同水旱轮作方式下稻季甲烷和氧化亚氮排放研究[J]. 中国生态农业学报, 2013, 21(3): 290–296.
Zhang Y F, Zhou W, Chen L G, et al. Methane and nitrous oxide emission under different paddy-upland crop rotation systems during rice growth season in Taihu Lake Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 290–296.
[27] Huang Y, Zou J, Zheng X, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J]. Soil Biology & Biochemistry, 2004, 36(6): 973–981.
[28] Azam F, Muller C, Weiske A, et al. Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and applied nitrogen[J]. Biology and Fertility of Soils, 2002, 35(1): 54–61. DOI:10.1007/s00374-001-0441-5
[29] Goldberg S D, Gebauer G. N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought [J]. Soil Biology & Biochemistry, 2009, 41(9): 1986–1995.
[30] Wu D, Dong W, Oenema O, et al. N2O consumption by low-nitrogen soil and its regulation by water and oxygen [J]. Soil Biology & Biochemistry, 2013, 60(1): 165–172.
[31] 谢义琴, 张建峰, 姜慧敏, 等. 不同施肥措施对稻田土壤温室气体排放的影响[J]. 农业环境科学学报, 2015, 34(3): 578–584.
Xie Y Q, Zhang J F, Jiang H M, et al. Effect of different fertilization practice on greenhouse gas emission from paddy soil[J]. Journal of Agro-Environment Science, 2015, 34(3): 578–584. DOI:10.11654/jaes.2015.03.022
[32] 易琼, 逄玉万, 杨少海, 等. 施肥对稻田甲烷与氧化亚氮排放的影响[J]. 生态环境学报, 2013, 22(8): 1432–1437.
Yi Q, Pang Y W, Yang S H, et al. Methane and nitrous oxide emissions in paddy field as influenced by fertilization[J]. Ecology and Environment, 2013, 22(8): 1432–1437.
[33] Zhang M, Li B, Xiong Z Q. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study[J]. Atmospheric Environment, 2016, 145: 92–103. DOI:10.1016/j.atmosenv.2016.09.024
[34] 秦晓波, 李玉娥, 万运帆, 等. 免耕条件下稻草还田方式对温室气体排放强度的影响[J]. 农业工程学报, 2012, 28(6): 210–216.
Qin X B, Li Y E, Wan Y F, et al. Effects of straw mulching on greenhouse gas intensity under no-tillage conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 210–216.
[35] 商庆银, 杨秀霞, 成臣, 等. 秸秆还田条件下不同水分管理对双季稻田综合温室效应的影响[J]. 中国水稻科学, 2015, 29(2): 181–190.
Shang Q Y, Yang X X, Cheng C, et al. Effect of water regime on yield-scaled global warming potential under double rice-cropping system with straw returning[J]. Chinese Journal of Rice Science, 2015, 29(2): 181–190.