植物营养与肥料学报   2017, Vol. 23  Issue (6): 1505-1513 
0
PDF 
杂交稻高产高效施氮研究进展与展望
任万军    
四川农业大学农学院/农业部西南作物生理生态耕作重点实验室,四川成都 611130
摘要: 【目的】 在杂交稻育种工作不断取得突破的同时,杂交稻高产高效栽培技术也得到不断创新发展,确保了杂交稻品种高产潜力的发挥。本文总结了杂交稻氮素吸收利用特点和高产高效施氮技术的研究进展,以便在新形势下为杂交稻的生产提供技术支撑。【主要进展】 杂交稻每生产100 kg籽粒约需氮1.4~2.0 kg,总体上低于常规稻,但因其生物量大、产量潜力高,单位种植面积的需氮量仍然高于常规稻。杂交稻的氮肥利用率高于常规稻,在精确定量施氮等栽培技术配合下高产品种的氮素当季利用率已达到40%~45%。与早期三系杂交稻品种相比,两系和超级杂交稻品种进一步提高了生物量和氮素吸收能力,稳定了氮素利用率,为高产奠定了营养基础。与常规稻相比,杂交稻叶片叶绿素含量高,颜色深绿,基于叶色与氮代谢的相关性,建立了叶绿素计法、光谱监测法和叶色差法等氮素营养诊断方法。为提高杂交稻产量和氮素利用效率,开发应用了缓控释肥、聚天门冬氨酸尿素等增效肥和添加硝化抑制剂等的新型高效肥料,建立了以“实时实地氮肥管理理论”和“氮肥后移”为核心的不同生育时期氮肥运筹比例和施肥方法,其中精确定量施氮、“三定”栽培施氮、规律性适期施氮等氮肥管理技术更能适应大面积生产需要,也开发了氮肥与其他肥料的配施技术。【展望】 在强化以提高氮肥利用率为核心的减施增效管理技术研究和氮肥施用的机械化技术开发的同时,加强氮高效杂交稻品种的“因种施氮”和新型肥料的“因肥施技”研究,是杂交稻高产高效施氮技术的发展方向。
关键词: 水稻     氮肥     肥料利用率     施肥     高产栽培    
The research progress and prospects of high yield and high efficiency nitrogen application for hybrid rice
REN Wan-jun    
College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China
Abstract: 【Objectives】 Along with the breakthrough in hybrid rice breeding, the development in the high yield and high efficiency cultivation techniques has given full play to the potential of hybrid rice varieties. In this study, research progress of the nitrogen (N) absorption and utilization characteristics, as well as the high yield and high efficiency N application techniques was summarized, which could promote the popularization and application of hybrid variety in rice production. 【Main advances】 The N absorption of 100 kg seeds of hybrid rice is from 1.4 to 2.0 kg, which is generally lower than that of inbred rice. However, due to the high biomass and yield potential, the N requirement per unit area of hybrid rice is still higher than inbred rice. Unlike inbred rice, hybrid rice possesses higher N use efficiency, such as N recovery efficiency of high yield hybrid rice with precise and quantitative N application has reached to 40%–45%. Compared to the early three-line hybrid rice varieties, both biomass and N absorption capacity are improved while N use efficiency is stabilized by the two-line hybrid rice and super hybrid rice varieties, which has contributed to the high production of rice by establishing a better nutrition foundation. Hybrid rice, compared to inbred rice, has more chlorophyll content, leading to deeper green of the leaf lamina. Based on the close relationship between the leaf color and N metabolism in the leaf lamina, a lot of N diagnostic methods, such as the method of SPAD, spectral monitoring, and leaf color difference were founded. New and high efficiency fertilizers (e.g. slow/controlled release fertilizer, polyaspartic acid urea, and fertilizer with nitrification inhibitor) were used to enhance both yield and N use efficiency of hybrid rice. N management methods based on the real-time and site-specific N managements and postponing N application theories were established, in which precise and quantitative N application, N application of ‘San-ding’ cultivation, and regular nitrogen application were better adapt to large area production. Moreover, the combined use technique of N fertilizer and other fertilizers was developed. 【Prospectives】 High N efficiency management techniques focus on reducing N amount and improving N use efficiency, as well as the mechanization of N application are the core of the future research. Meanwhile, method specific to variety and new fertilizer is a development direction for the high yield and high N use efficiency application technique for hybrid rice.
Key words: rice     nitrogen     fertilizer use efficiency     fertilizer application     high yielding cultivation    

我国是世界上第一个推广杂交稻的国家[1],从1964年袁隆平开始水稻雄性不育的研究[2],到目前中国杂交水稻年种植面积已维持在1600万公顷左右,占我国水稻种植总面积的53%,产量约占水稻总产量的58%[34],杂交稻种植对保障我国和世界粮食安全做出了巨大的贡献。在杂交稻育种工作不断取得突破的同时,以模式栽培[5]、多蘖壮秧优化稀植、强化栽培、抛秧栽培、精确定量栽培、机械化插秧等为代表的杂交稻高产高效栽培技术也得到不断创新和发展,确保了杂交稻品种高产潜力的发挥,也保证了大面积生产的均衡增产。在栽培技术中,施肥尤其是氮肥施用,是实现作物增产最快、最有效、最重要的关键措施。杂交稻因其根系发达、总生物量和经济产量高,养分吸收利用和施肥技术均与常规稻不同。杂交稻大面积应用的40多年来,我国面向生产一线,深入开展了杂交稻高产高效施氮理论和技术研究,取得了一大批理论和应用成果。近20年来,笔者一直从事杂交籼稻的养分高效管理和高产高效栽培工作,在此简要概述在杂交稻氮素吸收利用和高产高效施氮技术的研究进展,对推动杂交稻生产具有重要意义。

1 杂交稻氮素吸收利用特点 1.1 杂交稻氮素吸收

杂交稻具有根系发达、分蘖力强、足穗大穗、源库协调、耐肥抗倒的优点,前期能早发和后期抗早衰是其潜在高产优势[6]。在高产栽培条件下,杂交中籼稻每生产100 kg籽粒约需氮1.4~2.0 kg[710],双季杂交早晚稻需氮1.7~1.9 kg[11],杂交粳稻需氮1.5~1.9 kg[12],籼粳杂交稻需氮1.5~1.6 kg[13],而常规籼稻需氮2.4 kg左右[14],常规粳稻需氮1.9~2.3 kg[1113],从数据和生产实践来看,杂交稻的单位产量吸氮量低于常规稻。但也有研究得出了相反结论,如与广选三号相比,南优2号需多吸收12.3%[15]。总体上,杂交稻虽然单位产量吸氮量较低,但植株具有生长优势,根系营养吸收能力较常规稻强,并与干物质积累和总糖生产量呈显著正相关[6],加之抗倒伏能力强,产量潜力高,因而单位种植面积的需氮量仍然高于常规稻。水稻在生长初期对氮的吸收量较少,而在营养生长与生殖生长并进时期其吸收数量和强度最大,移栽后至拔节期、拔节至抽穗期、抽穗至成熟期吸氮比例大致占一生吸氮总量的30%、50%和20%[16]。高产杂交稻比常规水稻具有前中期干物质生产量大的优势[6],因而早期研究认为至齐穗后氮的吸收已达92%[15],但随着产量水平的提高和施肥技术的优化,杂交稻抽穗后积累的氮素量已提高到15%~20%[8, 12]

在我国,水稻杂交育种和杂种优势利用经历了三系杂交稻、两系杂交稻和超级杂交稻等发展阶段[4]。截至2016年,在现存125个有效认定的超级稻品种 (组合) 中,有100个为超级杂交稻品种[23],这些品种中,既有三系杂交稻,又有两系杂交稻。不同类型杂交稻其植株生长和氮素吸收存在差异 (表1),但因每个类型品种繁多,特性差异大,研究结果也存在不一致的地方,如与三系杂交稻比较,两系杂交早稻需氮高出9.60%,而两系杂交晚稻需氮却低25.70%[21],这与试验条件和品种产量潜力得到发挥与否有关。

表1 不同类型杂交稻植株生长与氮素吸收利用特征 Table 1 Plant growth and nitrogen utilization characteristics of different type hybrid rice
1.2 杂交稻氮素利用

在稻田中,由于土壤–水系统中氨的挥发、反硝化、表面流失以及渗漏作用等造成氮素的损失,常常影响氮素利用率[26],因此,在水稻生产中提高氮素利用率十分重要。早期用差值法测得杂交稻对尿素氮的表观回收率是35%~46%[27]。杂交稻的高产建立在较高的干物质积累量和养分吸收量的基础上,因而其肥料利用效率高于常规稻[17],杂交稻氮肥的农学利用率、偏生产力和吸收效率与抽穗前、后和整个生育期的氮积累量、产量、生物量显著正相关,即要提高杂交水稻的氮素利用效率必须提高其干物质积累、氮素积累量[18]。近年在精确定量施氮等栽培技术配合下,高产杂交稻品种的氮素当季利用率 (回收效率) 已提高到40%~45%,高的甚至超过50%[11, 28]15N示踪表明,基肥和蘖肥氮的总体回收利用效率不高,杂交稻Y两优2号高于武运粳23,穗肥的回收效率最高,在54.0%~82.1%之间,武运粳23低于Y两优2号[29]

植株氮素利用率在三系、两系和超级杂交稻品种类型间存在差异 (表1),同时,在同一类型的不同品种间也存在差异。水稻氮素利用率存在着显著的基因型差异[30],研究者筛选出了徽两优6号、广两优35、天优华占、F优498、德香4103等高产氮高效品种[8, 3132],经过筛选后的高产氮高效品种既可以高效利用介质中的氮素转化为籽粒产量,也能保持较高的产量水平。

1.3 杂交稻氮素代谢及诊断

碳氮代谢在植株体内的动态变化直接影响着光合产物的形成、转化以及矿质营养的吸收、蛋白质的合成[33]。植物从土壤中吸收氮素的主要形态有硝态氮、铵态氮和氨基酸态氮,水稻是少数几种能够适应高浓度NH4+积累的作物[34]。谷氨酰胺合成酶 (GS) 是水稻氮素同化利用的关键酶,叶片衰老时,GS1mRNA、蛋白质丰度和活性上升,GS2则降低[35]。氮代谢为碳代谢提供酶和光合色素,氮素是叶绿素的主要组分之一,杂交稻与常规稻相比,氮素吸收能力不同,因此通常叶片叶绿素含量高,颜色深绿[36]

依据碳氮代谢与叶片颜色的关系,建立了多种基于叶色的水稻氮素营养诊断方法,典型的有3种 (表2)。因杂交稻的叶片颜色 (SPAD值) 在品种间、同一品种的不同生育期间和不同生态条件下差异均会很大,用SPAD的固定值来诊断,常常会影响诊断的准确性。顶3叶与顶4叶的叶色差作为诊断指标,既可以用SPAD计准确测量,也可用肉眼直观观察,是当前生产上简便可行的方法。

表2 基于叶色的水稻氮素营养诊断方法 Table 2 Nitrogen nutrition diagnosis of rice based on leaf color
2 杂交稻高产高效施氮技术 2.1 高效氮肥的应用

杂交稻高产高效是品种、生态环境和栽培技术三者有效结合的结果,氮高效品种培育、新型高效肥料的应用和合理的氮肥管理是提高杂交稻氮素利用效率,实现高产优质的重要手段。生产中,无论是尿素、碳铵,还是磷铵都因其肥效持续时间短而不能满足杂交稻整个生育期对氮素的需求。因此,如何延长肥效成为了近年研发高效氮肥的关键。缓释/控释肥开发应用是提高肥料利用效率的重要途径[43]。除尿素缩合物类缓释肥料 (如尿素–甲醛缩合物、尿素–乙醛缩合物) 和涂层或包膜类控释肥 (如硫包膜控释肥、聚合物包膜控释肥) 这两类主要的缓释/控释肥外,缓释/控释肥还包括草酰胺、三聚氰胺等有机物,磷酸铵盐等无机化合物,以及水不溶性树脂等材料为养分载体的肥料[44]。大量研究表明,与普通化肥相比,各类缓控释肥均能在不同程度上减少氮素的淋溶损失[45]、氨的挥发损失[46]和土壤反硝化氮损失[47],从而有效提高氮肥利用效率,也相应提高了水稻生长中后期干物质积累量和产量[48]。但现有缓控释肥料包衣、结构物质等的价格普遍较高,且硫、聚烯烃等包衣或甲醛等结构物质流入土壤后易对生态环境及人类健康带来不利影响[49]

脲酶抑制剂、硝化抑制剂和氨稳定剂等氮肥增效剂也能对延长肥效、增加氮肥吸收利用效率起到一定作用[43]。硝化抑制剂能抑制土壤微生物的硝化作用,降低N2O的挥发,减少氮肥的流失;脲酶抑制剂则能抑制脲酶活性,阻止或抑制酰胺态氮转化为铵态氮,从而降低铵态氮的挥发,减少氮肥损失[50],常被用来提高氮素利用效率和作物产量。在尿素中添加1%的NBPT,可在提高产量的同时,将传统施氮量减少25%[51]。然而因为抑制剂的作用效果不稳定,土壤中残留的增效剂可能污染环境等原因,限制了肥料增效剂的应用[52]

近年来,聚天门冬氨酸 (polyaspartate,简称PASP) 同源多肽被作为一种无毒性、可生物降解的环境友好型增效剂应用于氮肥,主要生产PASP尿素。我们将PASP尿素引入到杂交稻生产中,试验表明PASP尿素能调节整个生育期稻田的氮素供给平衡,减少氮素流失,调节叶片氮素代谢,促进植株对氮素的吸收,提高氮素利用效率[53],延缓叶片衰老进程,促进叶片含氮量、叶绿素含量和叶片净光合速率的增加,从而有效提高抽穗后的光合生产能力[54],促进抽穗后 (特别是灌浆—成熟阶段) 茎鞘非结构碳水化合物 (nonstructural carbohydrate, NSC)向籽粒的转运,通过增加单位面积群体颖花量进而提高杂交稻产量[5556]

2.2 氮肥高效运筹方法

合理的氮肥管理主要通过满足整个生育期植株对营养的需求,保证养分的有效性来提高养分利用效率和产量,氮素供给过剩往往导致氮素的流失,而氮素供给不足则会导致产量的降低[64],这就需要有效协调整个生育期内植株对氮素营养的需求与氮素供给 (特别是土壤氮素营养和氮肥施用) 之间的平衡关系[65]。围绕水稻高产高效氮肥管理,各地通过试验和生产实践,研究开发出了一系列技术,典型的归纳如表3。这些技术,在施氮量的确定方面,除农民习惯施氮法外,主要依据斯坦福方程 (Stanford) 求取[57],其公式为:

氮素施用量 (kg/hm2) = (目标产量需氮量 –土壤供氮量)/氮肥当季利用率

因公式中3个参数存在因品种、地域、年际、栽插方式,甚至氮肥施用量的不同而变幅太大的问题,围绕求取3个参数值和梯度施氮量,涌现出了大量研究结果,其中以凌启鸿等在精确定量施氮研究中提出的3个参数的求取方法具有普遍指导意义而被广泛应用[11, 16]

鉴于氮素养分吸收的阶段性,分别建立了以“实时实地氮肥管理理论”和“氮肥后移”为核心的不同生育时期氮肥运筹比例和施肥方法 (表3)。结合杂交稻的生长发育特点和水稻生产区域农民的需求实际,精确定量施氮法[16]、“三定”栽培施氮法[62]和规律性适期施氮法[28]是既能提高杂交稻氮素利用效率,又能实现高产优质的氮肥管理技术。

表3 杂交稻氮肥运筹方法 Table 3 Methods of nitrogen fertilizer application on hybrid rice
2.3 氮肥与其他肥料的配施

氮肥与其他肥料 (特别是磷、钾肥) 的配合施用能有效地提高水稻产量及氮肥利用效率[66]。高产水稻对氮 (N)、磷 (P2O5)、钾 (K2O) 的吸收比例为 2∶1∶2~3或1∶0.45∶1.2,这是反映三要素营养平衡协调的生理指标,但这并不能直接应用于指导田间施肥,田间施肥需要根据当地土壤特性和肥力,通过农业部推荐的测土配方施肥试验来确定[11, 57]。在四川等地通过研究,结合杂交稻种植区土壤基础地力、农民施肥习惯和成本效益等因素,提出了在超高产栽培条件下适宜施肥配比为N∶P2O5∶K2O为 2∶1∶1.6,在大面积高产栽培条件下为N∶P2O5∶K2O为 2∶1∶1[67]。并依据杂交稻特性,明确了全田50%稻株主茎第一节间伸长为1 cm左右时施用的钾肥中移技术[67]

除氮磷钾肥配施外,有机无机肥配施、大量元素和中微量元素配施也是研究和关注的热点。氮肥与硅肥、锌肥等微量肥料的配施能延缓叶片衰老,改善叶片光合特性,提高水稻籽粒的含氮量和粗蛋白含量[6869]。有机肥与无机氮肥配施提高了水稻功能叶净光合速率,促进了水稻对氮肥的吸收利用,提高水稻产量,改良稻米品质及土壤理化特性[7071]。微生物肥能提高氮素的农学利用率,实现减肥增产,且随着施氮量下降,氮素利用率呈升高趋势[72]。农作物秸秆的合理处理是现今农业生产中面临的严峻问题,秸秆还田与配施化肥是未来农业持续发展的方向。秸秆还田能有效降低水稻生产中氮肥的投入,协调群体和库–源关系,促进同化物向籽粒的运转,增加水稻产量,改良稻米品质,提高氮收获指数、氮肥吸收利用率、氮肥农学利用率、氮肥生理利用率和氮肥偏生产力[7374]。在秸秆还田条件下,秸秆分解产生有机酸易对水稻造成毒害,也要与植株争氮,造成水稻发根发苗迟缓,植株前期生长缓慢,因此,除掌握好秸秆还田量外,还要增加氮肥前期比例,基蘖肥和穗肥的比例以7∶3为宜[73]

3 研究展望 3.1 加强以提高氮肥利用率为核心的减施增效管理技术研究

在国家“化肥农药零增长”行动和“化学肥料和农药减施增效”的大背景下,杂交稻氮肥减施技术研究也不断加强,一些技术实现了产量和氮效率的协同增长。但也有许多试验是以牺牲产量来达到减施化肥的目的,从而导致杂交稻的产量优势没有得到发挥。杂交稻的氮肥减施技术研究应以在不降低产量的前提下,通过提高氮肥利用率来实现。首先需精确区分麦–稻、油–稻、菜–稻、冬闲–稻等不同种植模式下,前茬留给水稻生长的养分,在此基础上统筹周年制定施肥方案;其次是综合利用大气沉降、灌溉水源、秸秆残茬等提供的养分;最后应根据杂交稻阶段吸氮规律,配合田间诊断,分次精确施氮,同时优化有机肥、微生物肥和微肥配施技术,协调元素平衡,提高肥料效率。

3.2 加强氮高效杂交稻品种的“因种施氮”研究

氮高效杂交稻的培育是提高氮素利用率的重要途径,前人关于如何提高水稻的氮效率做了大量探索,也得到了大量结果,但整体上主要采用比较品种间氮素利用率和产量的相对高低来建立指标体系。但实际上,育种家面对着大量的氮效率不明确的育种材料,复杂的测定项目、较大的工作量以及时效的滞后性都使其指标体系难以被育种家直接应用。因此,需要探明杂交稻最易在田间获取信息的农艺性状与氮效率的关系,找到其中关联度较大的几个指标供育种家参考尤为紧要。同时,对筛选出来的应用潜力大的氮高效品种,应研究其氮素需求特性,建立能发挥品种氮高效潜力的施氮量、施肥时期、施肥方式及其与其他肥料配施等“因种施氮”的栽培技术。

3.3 加强新型肥料的“因肥施技”研究

近年来,随着化肥研发与生产技术的不断改进,氮肥种类不断更新。大颗粒肥料、长效肥料 (缓溶性肥料和缓释性肥料)、多肽增效肥、复合肥料或在肥料中添加各种抑制剂等被逐步应用,有效地减缓或控制了肥料的溶解和释放速度,减少了氮肥的损失,大大提高了氮肥的吸收利用效率,同时可提高产量。目前新型肥料与土壤、气候和杂交稻品种间的互作机理研究还较薄弱,同时,缓释肥料的养分吸收规律相对单一和杂交稻因品种、地域、气候造成的生长多样性之间的矛盾还难以协调。因此,要加强新型肥料的基础研究,建立依据新型肥料特点和与肥料、品种、气候等相匹配的“因肥栽培”技术。

3.4 加强秸秆还田条件下的氮素养分管理研究

目前,对稻米的需求已经逐步从数量型向质量型转变,在供给侧改革背景下,杂交稻绿色高产高效栽培势在必行。秸秆还田替代部分化学肥料,有利于改良稻田土壤结构,平衡土壤矿质营养元素,是绿色生产的有效途径。但秸秆分解产生有机酸,前期易对水稻造成毒害,也要与植株争氮,后期秸秆腐解后可提供大量养分。因此,在秸秆还田,特别是全量秸秆机械翻埋条件下,要加强秸秆分解与土壤、氮素和水稻植株生长互作机制的研究,建立秸秆还田配合氮素营养管理的关键技术。

3.5 加强氮肥施用的机械化技术研究

杂交稻分次施肥是协调高产和氮素高效利用的有效措施,但人工施用肥料不仅劳动强度大、效率低、成本高,而且肥料的均匀度也很差,是当前影响我国水稻生产现代化的重要技术因素。目前,在机械化施肥方面,开发出了专用基肥撒施机、耕作施肥联合作业机、施肥播种联合作业机和插秧施肥作业机,在基肥的施用方面取得了很大进展,今后重点需要开展追肥的机械化和肥药一体化研究,引进、筛选适合水稻基肥、分蘖肥、穗肥和主要病虫害药剂施用的机械,力争水稻关键时期实现肥药施用机械化或无人机作业,形成相应的机械化施肥技术,提高肥药施用效率和利用率。

致谢:四川农业大学教师邓飞、博士研究生周伟和硕士毕业生田青兰承担了部分文献资料查阅和整理的工作,在此表示感谢!

参考文献
[1] 任光俊, 颜龙安, 谢华安. 三系杂交水稻育种研究的回顾与展望[J]. 科学通报, 2016, 61(35): 3748–3760.
Ren G J, Yan L A, Xie H A. Retrospective and perspective on indica three-line hybrid rice breeding research in China [J]. Chinese Science Bulletin, 2016, 61(35): 3748–3760.
[2] 袁隆平. 水稻的雄性不孕性[J]. 科学通报, 1966, 11(4): 185–188.
Yuan L P. Male sterility in rice[J]. Chinese Science Bulletin, 1966, 11(4): 185–188.
[3] 胡忠孝, 田妍, 徐秋生. 中国杂交水稻推广历程及现状分析[J]. 杂交水稻, 2016, 31(2): 1–8.
Hu Z X, Tian Y, Xu Q S. Review of extension and analysis on current status of hybrid rice in China[J]. Hybrid Rice, 2016, 31(2): 1–8.
[4] 余四斌, 熊银, 肖景华, 等. 杂交稻与绿色超级稻[J]. 科学通报, 2016, 61(35): 3797–3803.
Yu S B, Xiong Y, Xiao J H, et al. Hybrid rice and green super rice[J]. Chinese Science Bulletin, 2016, 61(35): 3797–3803.
[5] 娄希祉, 毛昌祥, 李馨. 我国杂交稻的新进展[J]. 中国农业科学, 1988, 21(6): 3–8.
Lou X Z, Mao C X, Li X. New progress on hybrid rice in China[J]. Scientia Agricultura Sinica, 1988, 21(6): 3–8.
[6] 邹应斌. 籼型超级杂交水稻高产栽培研究进展[J]. 沈阳农业大学学报, 2007, 38(5): 707–713.
Zou Y B. Development of high yielding cultivation researches in Indica super hybrid rice [J]. Journal of Shenyang Agricultural University, 2007, 38(5): 707–713.
[7] 邓飞, 王丽, 任万军, 等. 不同生态条件下栽植方式对中籼迟熟杂交稻组合Ⅱ优498氮素积累与分配的影响[J]. 中国农业科学, 2012, 45(20): 4310–4325.
Deng F, Wang L, Ren W J, et al. Effects of planting methods on nitrogen accumulation and distribution of mid-late indica hybrid rice combination Ⅱ you 498 under different ecological conditions[J]. Scientia Agricultura Sinica, 2012, 45(20): 4310–4325.
[8] 赵敏, 胡剑锋, 钟晓媛, 等. 不同基因型机插稻植株氮素积累运转特性[J]. 植物营养与肥料学报, 2015, 21(2): 277–287.
Zhao M, Hu J F, Zhong X Y, et al. Differences in N accumulation and translocation in the machine transplanted rice genotypes[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 277–287.
[9] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响[J]. 植物营养与肥料学报, 2017, 23(2): 342–350.
Jiang P, Xiong H, Zhang L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342–350.
[10] 敖和军, 王淑红, 邹应斌, 等. 不同施氮水平下超级杂交稻对氮、磷、钾的吸收积累[J]. 中国农业科学, 2008, 41(10): 3123–3132.
Ao H J, Wang S H, Zou Y B, et al. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates[J]. Scientia Agricultura Sinica, 2008, 41(10): 3123–3132.
[11] 凌启鸿. 水稻精确定量栽培理论与技术[M]. 北京: 中国农业出版社, 2007.
Ling Q H. Rice precise quantitative cultivation theory and technology [M]. Beijing: China Agriculture Press, 2007.
[12] 霍中洋, 李杰, 张洪程, 等. 不同种植方式下水稻氮素吸收利用的特性[J]. 作物学报, 2012, 38(10): 1908–1919.
Huo Z Y, Li J, Zhang H C, et al. Characterization of nitrogen uptake and utilization in rice under different planting methods[J]. Acta Agronomica Sinica, 2012, 38(10): 1908–1919.
[13] 韦还和, 孟天瑶, 李超, 等. 籼粳交超级稻甬优538花后氮素积累模型与特征分析[J]. 作物学报, 2016, 42(4): 540–550.
Wei H H, Meng T Y, Li C, et al. Dynamic model and its characteristics analysis for nitrogen accumulation after heading in Yongyou 538[J]. Acta Agronomica Sinica, 2016, 42(4): 540–550.
[14] 莫家让. 杂交稻生理基础[M]. 北京: 农业出版社, 1982.
Bo J R. Physiological basis of hybrid rice [M]. Beijing: Agriculture Press, 1982.
[15] 肖恕贤, 覃步生, 陈盛球, 等. 杂交早稻需肥特性和施肥技术研究[J]. 作物学报, 1982, 8(1): 23–32.
Xiao S X, Qin B S, Chen S Q, et al. Studies on the characteristics of fertilizer requirement of hybrid rice and the application technique[J]. Acta Agronomica Sinica, 1982, 8(1): 23–32.
[16] 凌启鸿, 张洪程, 戴其根, 等. 水稻精确定量施氮研究[J]. 中国农业科学, 2005, 38(12): 2457–2467.
Ling Q H, Zhang H C, Dai Q G, et al. Study on precise and quantitative N application in rice[J]. Scientia Agricultura Sinica, 2005, 38(12): 2457–2467.
[17] 李小坤, 李云香, 鲁剑巍, 等. 杂交水稻需要比常规稻投入更多的肥料吗[J]. 杂交水稻, 2014, 29(2): 68–71.
Li X K, Li Y X, Lu J W, et al. Does hybrid rice need more fertilizer than inbred rice[J]. Hybrid Rice, 2014, 29(2): 68–71.
[18] 王丹英, 徐春梅, 袁江, 等. 不同时期三系杂交稻主栽品种对氮肥用量的响应[J]. 作物学报, 2010, 36(2): 354–360.
Wang D Y, Xu C M, Yuan J, et al. The response of indica hybrid rice released at different periods to nitrogen application level[J]. Acta Agronomica Sinica, 2010, 36(2): 354–360.
[19] 单玉华, 王余龙, 山本由德, 等. 不同类型水稻在氮素吸收及利用上的差异[J]. 扬州大学学报(自然科学版), 2001, 4(3): 42–45.
Shan Y H, Wang Y L, Yamamoto, et al. Study on the differences of nitrogen uptake and use efficiency in different types of rice[J]. Journal of Yangzhou University (Natural Science Edition), 2001, 4(3): 42–45.
[20] 牟同敏. 中国两系法杂交水稻研究进展和展望[J]. 科学通报, 2016, 61(35): 3761–3769.
Mou T M. The research progress and prospects of two-line hybrid rice in China[J]. Chinese Science Bulletin, 2016, 61(35): 3761–3769.
[21] 李祖章, 陶其骧, 刘光荣, 等. 双季两系杂交稻高产营养特性和施肥技术[J]. 江西农业学报, 1998, 10(4): 29–37.
Li Z Z, Tao Q X, Liu G R, et al. Nutritional characteristics and fertilizer techniques in high-yield double-cropping biliner hybrid rice[J]. Acta Agriculturae Jiangxi, 1998, 10(4): 29–37.
[22] 吴昊, 王绍华, 李刚华, 等. 不同类型水稻品种对稻田土壤基础供氮量的响应[J]. 土壤通报, 2007, 38(2): 281–285.
Wu H, Wang S H, Li G H, et al. Response of different types of rice plants to the basic soil nitrogen supply[J]. Chinese Journal of Soil Science, 2007, 38(2): 281–285.
[23] 吴俊, 邓启云, 袁定阳, 等. 超级杂交稻研究进展[J]. 科学通报, 2016, 61(35): 3787–3796.
Wu J, Deng Q Y, Yuan D Y, et al. Progress of super hybrid rice research in China[J]. Chinese Science Bulletin, 2016, 61(35): 3787–3796.
[24] 夏冰, 蒋鹏, 谢小兵, 等. 超级杂交稻与常规稻产量形成及养分吸收利用的比较研究[J]. 中国稻米, 2015, 21(4): 38–43.
Xia B, Jiang P, Xie X B, et al. Comparative study on yield formation and nutrient uptake and utilization between super hybrid rice and conventional rice[J]. China Rice, 2015, 21(4): 38–43.
[25] 朱德峰, 张玉屏, 陈惠哲, 等. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学, 2015, 48(17): 3404–3414.
Zhu D F, Zhang Y P, Chen H Z, et al. Innovation and practice of high yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404–3414.
[26] Zhou W, Lü T F, Chen Y, et al. Soil physicochemical and biological properties of paddy-upland rotation: a review[J]. The Scientific World Journal, 2014, 2: 856352. doi: 10.1155/2014/856352.
[27] 戈乃鈖, 张道勇, 马淑芳, 等. 杂交稻氮素营养和氮肥效应的研究 I. 氮肥的增产效果和杂交稻的需氮规律[J]. 南京农业大学学报, 1986, (4): 55–61.
Ge N F, Zhang D Y, Ma S F, et al. Study on nitrogen nutrition and yield response to nitrogen fertilizer application for hybrid rice. I. the yield response to nitrogen fertilizer application and the nitrogen requirement of hybrid rice[J]. Journal of Nanjing Agricultural University, 1986, (4): 55–61.
[28] Zhou W, Lü T F, Zhang P P, et al. Regular nitrogen application increases nitrogen utilization efficiency and grain yield in Indica hybrid rice[J]. Agronomy Journal, 2016, 108(5): 1951–1961.
[29] 林晶晶, 李刚华, 薛利红, 等. 15N 示踪的水稻氮肥利用率细分 [J]. 作物学报, 2014, 40(8): 1418–1428.
Lin J J, Li G H, Xue L H, et al. Subdivision of nitrogen use efficiency of rice based on 15N tracer [J]. Acta Agronomica Sinica, 2014, 40(8): 1418–1428.
[30] Broadbent F E, Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice gene types[J]. Agronomy Journal, 1987, 79(5): 786–791.
[31] 冯洋, 陈海飞, 胡孝明, 等. 我国南方主推水稻品种氮效率筛选及评价[J]. 植物营养与肥料学报, 2014, 20(5): 1051–1062.
Feng Y, Chen H F, Hu X M, et al. Nitrogen efficiency screening of rice cultivars popularized in South China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051–1062.
[32] 孙永健, 孙园园, 蒋明金, 等. 施肥水平对不同氮效率水稻氮素利用特征及产量的影响[J]. 中国农业科学, 2016, 49(24): 4745–4756.
Sun Y J, Sun Y Y, Jiang M J, et al. Effects of fertilizer levels on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J]. Scientia Agricultura Sinica, 2016, 49(24): 4745–4756.
[33] 阳剑, 时亚文, 李宙炜, 等. 水稻碳氮代谢研究进展[J]. 作物研究, 2011, 25(4): 383–387.
Yang J, Shi Y W, Li Z W, et al. The recent progress of research on carbon and nitrogen metabolism in rice[J]. Crop Research, 2011, 25(4): 383–387.
[34] Lea P J, Azevedo R A. Nitrogen use efficiency. 1. Uptake of nitrogen from the soil[J]. Annals of Applied Biology, 2006, 149(3): 243–247.
[35] Bernard S M, Moller A L B, Dionisio G, et al. Gene expression, cellular localisation and function of glutamine synthetaseisozymes in wheat (Triticum aestivum L. ) [J]. Plant Molecular Biology, 2008, 67: 89–105.
[36] 王建林, 徐正进, 高峰. 杂交稻与常规稻叶绿素变化规律的研究[J]. 辽宁农业科学, 2001, (5): 18–21.
Wang J L, Xu Z J, Gao F. Variation regulations of the chlorophyll of hybrid rice and normal rice[J]. Liaoning Agricultural Sciences, 2001, (5): 18–21.
[37] Ghosh M, Swain D K, Jha M K, et al. Precision nitrogen management using chlorophyll meter for improving growth, productivity and N use efficiency of rice in subtropical climate[J]. Journal of Agricultural Science, 2013, 5(2): 254–266.
[38] 李刚华, 丁艳锋, 薛利红, 等. 利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J]. 植物营养与肥料学报, 2005, 11(3): 412–416.
Li G H, Ding Y F, Xue L H, et al. Research progress on diagnosis of nitrogen nutrition and fertilization recommendation for rice by use chlorophyll meter[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 412–416.
[39] 徐富贤, 熊洪, 朱永川, 等. 利用杂交中稻齐穗期剑叶叶绿素计读数(SPAD 值)预测再生稻促芽肥高效施用量[J]. 中国水稻科学, 2009, 23(1): 51–56.
Xu F X, Xiong H, Zhu Y C, et al. Estimation of efficient rate of nitrogen application for promoting ratooning bud development using chlorophyll meter reading(SPAD value) of flag leaf at the full heading stage of main crop in mid-season hybrid rice[J]. Chinese Journal of Rice Science, 2009, 23(1): 51–56.
[40] 周冬琴, 朱艳, 田永超, 等. 以冠层反射光谱监测水稻叶片氮积累量的研究[J]. 作物学报, 2006, 32(9): 1316–1322.
Zhou D Q, Zhu Y, Tian Y C, et al. Monitoring leaf nitrogen accumulation with canopy spectral reflectance in rice[J]. Acta Agronomica Sinica, 2006, 32(9): 1316–1322.
[41] 覃夏, 王绍华, 薛利红. 江西鹰潭地区早稻氮素营养光谱诊断模型的构建与应用[J]. 中国农业科学, 2011, 44(4): 691–698.
Qin X, Wang S H, Xue L H. Nitrogen nutrition diagnosis of early rice with NDVI and its application for nitrogen topdressing recommendation at Yingtan, Jiangxi Province[J]. Scientia Agricultura Sinica, 2011, 44(4): 691–698.
[42] 王绍华, 曹卫星, 王强盛, 等. 水稻叶色分布特点与氮素营养诊断[J]. 中国农业科学, 2002, 35(12): 1461–1466.
Wang S H, Cao W X, Wang Q S, et al. Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant[J]. Scientia Agricultura Sinica, 2002, 35(12): 1461–1466.
[43] Shaviv A. Advances in controlled-release fertilizers [J]. Advanced Agronomy, 2000, 71: 1–49.
[44] Heinrich D, Manfred D, Ralf V, et al. Fertilizers, 2. Types. Ullmann's encyclopedia of industrial chemistry [M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2009. 47–62.
[45] Yang S, Xu J, Luo Y, et al. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements[J]. Paddy Water Environment, 2011, 9(3): 333–342.
[46] 卢艳艳, 宋付朋. 不同包膜控释尿素对农田土壤氨挥发的影响[J]. 生态学报, 2011, 31(23): 7133–7140.
Lu Y Y, Song F P. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland[J]. Acta Ecologica Sinica, 2011, 31(23): 7133–7140.
[47] 丁洪, 王跃思, 秦胜金, 等. 控释肥对土壤氮素反硝化损失和N2O排放的影响 [J]. 农业环境科学学报, 2010, 29(5): 1015–1019.
Ding H, Wang Y S, Qin S J, et al. Effects of controlled release fertilizers on nitrogen loss by denitrification and N2O emission [J]. Journal of Agro-Environment Science, 2010, 29(5): 1015–1019.
[48] Ye Y S, Liang X Q, Chen Y X, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144: 212–224.
[49] 奚振邦. 缓释化肥再认识[J]. 植物营养与肥料学报, 2006, 12(4): 578–583.
Xi Z B. Review on slow release fertilizer[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 578–583.
[50] Scheer C, Rowlings D W, Firrel M, et al. Impact of nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive broccoli production system in sub-tropical Australia[J]. Soil Biology and Biochemistry, 2014, 77: 243–251.
[51] 张文学, 孙刚, 何萍, 等. 双季稻田添加脲酶抑制剂NBPT氮肥的最高减量潜力研究[J]. 植物营养与肥料学报, 2014, 20(4): 821–830.
Zhang W X, Sun G, He P, et al. Highest potential of subtracting nitrogen fertilizer through addition of urease inhibitor NBPT in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 821–830.
[52] Abalos D, Jeffery S, Sanz-Cobena A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems and Environment, 2014, 189: 136–144.
[53] Deng F, Wang L, Ren W J, et al. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea[J]. Field Crops Research, 2014, 169: 30–38.
[54] Deng F, Wang L, Mei X F, et al. Morphological and physiological characteristics of rice leaves in response to PASP-urea and optimized nitrogen management[J]. Archives of Agronomy and Soil Science, 2017, 63: 1582–1596.
[55] Deng F, Wang L, Ren W J, et al. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice[J]. Soil Tillage Research, 2015, 145: 1–9.
[56] Deng F, Wang L, Mei X F, et al. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice[J]. Crop Science, 2016, 56: 3272–3285.
[57] 杨文钰, 屠乃美. 作物栽培学各论[M]. 北京: 中国农业出版社, 2005. 39–40.
Yang W Y, Tu N M. All of crop cultivation[M]. Beijing: China Agricultural Press, 2005. 39–40.
[58] 张洪程, 吴桂成, 戴其根, 等. 水稻氮肥精确后移及其机制[J]. 作物学报, 2011, 37(10): 1837–1851.
Zhang H C, Wu G C, Dai Q G, et al. Precise postponing nitrogen application and its mechanism in rice[J]. Acta Agronomica Sinica, 2011, 37(10): 1837–1851.
[59] Peng S, Garcia F V, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J]. Field Crops Research, 1996, 47: 243–252.
[60] 刘立军, 桑大志, 刘翠莲, 等. 实时实地氮肥管理对水稻产量和氮素利用率的影响[J]. 中国农业科学, 2003, 36(12): 1456–1461.
Liu L J, Sang D Z, Liu C L, et al. Effects of real-time and site specific nitrogen managements on rice yield and nitrogen use efficiency[J]. Scientia Agricultura Sinica, 2003, 36(12): 1456–1461.
[61] Liu L J, Chen T T, Wang Z Q, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154: 226–235.
[62] 邹应斌. 超级稻 " 三定” 栽培技术的原理和要点[J]. 中国稻米, 2012, 18(5): 12–14.
Zou Y B. Principle and essential technology of " San-ding” cultivation method in super rice[J]. China Rice, 2012, 18(5): 12–14.
[63] 蒋鹏, 黄敏, Md. Ibrahim. " 三定” 栽培对双季超级稻养分吸收积累及氮肥利用率的影响[J]. 作物学报, 2011, 37(12): 2194–2207.
Jiang P, Huang M, Ibrahim M, et al. Effects of " San-ding” cultivation method on nutrient uptake and nitrogen use efficiency in double cropping super rice[J]. Acta Agronomica Sinica, 2011, 37(12): 2194–2207.
[64] Khanal S, Anex R P, Gelder B K, et al. Nitrogen balance in Iowa and the implications of corn-stover harvesting[J]. Agriculture, Ecosystems and Environment, 2014, 183: 21–30.
[65] Cui Z L, Zhang F S, Chen X P, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test [J]. Field Crops Research, 2008, 105: 48–55.
[66] 孙永健, 孙园园, 徐徽, 等. 水氮管理模式与磷钾肥配施对杂交水稻冈优725养分吸收的影响[J]. 中国农业科学, 2013, 46(7): 1335–1346.
Sun Y J, Sun Y Y, Xu H, et al. Effects of water- nitrogen management patterns and combined application of phosphorus and potassium fertilizers on nutrient absorption of hybrid rice Gangyou725[J]. Scientia Agricultura Sinica, 2013, 46(7): 1335–1346.
[67] 任万军, 钟晓媛, 邓飞, 等. 超级杂交稻宜香优2115 高产提质栽培技术[J]. 杂交水稻, 2016, 31(2): 38–40.
Ren W J, Zhong X Y, Deng F, et al. High-yielding and good-quality cultural technique of new super hybrid rice combination Yixiangyou 2115[J]. Hybrid Rice, 2016, 31(2): 38–40.
[68] Jafari H, Madani H, Dastan S, et al. Response of rice crop to nitrogen and silicon in two irrigation systems[J]. Scientia Agriculturae, 2013, 1(3): 76–81.
[69] 郭九信, 隋标, 商庆银, 等. 氮锌互作对水稻产量及籽粒氮、锌含量的影响[J]. 植物营养与肥料学报, 2012, 18(2): 185–192.
Guo J X, Sui B, Shang Q Y, et al. Effects of N and Zn interaction on yield and contents of N and Zn in grains of rice[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 185–192.
[70] Pan G, Zhou P, Li Z, et al. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China[J]. Agriculture, Ecosystems and Environment, 2009, 131: 274–280.
[71] 周江明. 有机–无机肥配施对水稻产量、品质及氮素吸收的影响[J]. 植物营养与肥料学报, 2012, 18(1): 234–240.
Zhou J M. Effect of combined application of organic and mineral fertilizers on yield, quality and nitrogen uptake of rice[J]. Plant Nutrition and Fertilizer Science, 2012, 18(1): 234–240.
[72] 陈惠哲, 朱德峰, 林贤青, 张玉屏. 微生物肥对水稻产量及氮肥利用的影响[J]. 核农学报, 2010, 24(5): 1051–1055.
Chen H Z, Zhu D F, Lin X Q, Zhang Y P. Effect of microbial fertilizer on yield and nitrogen use efficiency in rice[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(5): 1051–1055.
[73] 刘代银, 伍菊仙, 任万军, 等. 氮肥运筹对免耕高留茬抛秧稻氮素吸收、运转和品质的影响[J]. 植物营养与肥料学报, 2009, 15(3): 514–521.
Liu D Y, Wu J X, Ren W J, et al. Effects of nitrogen strategies on nitrogen uptake, utilization and grain quality of broadcasted rice under no tillage with high standing stubbles[J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 514–521.
[74] Yuan L, Zhang Z, Cao X, et al. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation[J]. Field Crops Research, 2014, 155: 164–171.