肿瘤防治研究  2023, Vol. 50 Issue (6): 628-633
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

头颈部肿瘤碳离子放疗中重度不良反应的类型和发生率
Types and Incidence of Moderate and Severe Toxic Effects of Carbon Ion Radiotherapy for Head and Neck Cancer
肿瘤防治研究, 2023, 50(6): 628-633
Cancer Research on Prevention and Treatment, 2023, 50(6): 628-633
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2023.22.1375
收稿日期: 2022-11-21
修回日期: 2023-03-29
头颈部肿瘤碳离子放疗中重度不良反应的类型和发生率
杨鹏程 ,    姚颐 ,    雷田雨 ,    胡钦勇     
430060 武汉,武汉大学人民医院肿瘤中心
摘要: 头颈部肿瘤往往解剖结构复杂且毗邻重要器官,常规放疗技术带来的放射性损伤是其主要剂量限制性因素。目前,碳离子束因其优秀的相对生物效应(RBE)和Bragg峰等物理特性成为取代光子射线最理想的肿瘤放疗射线。截至2019年,全球共约3.2万人接受了碳离子放射治疗(CIRT),尽管该技术具备更高效的肿瘤杀伤能力,但仍无法避免发生放射性损伤。本文就近年来CIRT在头颈部肿瘤应用中出现的中重度放射性损伤类型和发生率进行综述,旨在全面了解CIRT中潜在的危险。
关键词: 碳离子    放疗    头颈部肿瘤    放射性损伤    
Types and Incidence of Moderate and Severe Toxic Effects of Carbon Ion Radiotherapy for Head and Neck Cancer
YANG Pengcheng , YAO Yi , LEI Tianyu , HU Qinyong     
Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
Abstract: Head and neck tumors often have complex anatomical structures and are adjacent to important organs. Radiation injury caused by conventional radiotherapy technology is the main dose-limiting factor. Carbon ion beam has become the most ideal radiation to replace photon due to its excellent relative biological effect and Bragg peak. By 2019, 32 000 people worldwide have received carbon ion radiotherapy (CIRT). Despite the efficient tumor killing ability of this technology, radiation injury cannot be avoided. This article reviews the types and incidence of moderate to severe radiation injury caused by CIRT in head and neck cancer to provide a comprehensive understanding of the potential risks in CIRT.
Key words: Carbon ion    Radiotherapy    Head and neck cancer    Radiation-induced injury    
0 引言

接受放疗的头颈部肿瘤患者往往会发生明显的放射性不良反应,因此限制了放疗的最大有效剂量,尤其是当肿瘤临近重要器官或局部复发时[1]。近年来碳离子放射治疗(carbon ion radiotherapy, CIRT)因其良好的组织保护和较高的相对生物学效应(relative biological effectiveness, RBE)在头颈部肿瘤患者中的应用日益增多[2],有望在未来成为头颈部肿瘤放疗的主力。

与光子放疗相比,碳离子束具有更高的RBE和能量传递效率、独特的Bragg峰和不依赖氧浓度等特点,因而具有更强的癌细胞杀伤力和更好的剂量分布,并能在大量破坏DNA双链的同时,减少其自我修复[3]。然而,当射线侵及正常组织时,其不良反应同样不可避免。这些不良反应通常是由碳离子射线通过诱导细胞凋亡、自噬、加速细胞衰老和产生活性氧等机制产生的细胞损伤,严重者不仅会影响放疗的实施,甚至会危及患者生命[4-5]

CIRT的不良反应反应分为急性不良反应和远期不良反应。急性不良反应指放疗过程中及放疗结束后3月内发生的不良反应;而3个月后出现的不良反应则定义为远期不良反应。参照常见不良反应事件评价标准(CTCAE),CIRT的不良反应分级分为1~5级。本文综述了近年来头颈部肿瘤接受CIRT时出现中重度(≥3级)不良反应的临床表现和发生率,在了解CIRT的优势同时,对潜在的不良反应亦有足够的预见。

1 急性期不良反应 1.1 黏膜坏死和皮炎

黏膜坏死和皮炎是CIRT最常见的急性期不良反应,分别有73.08%(19/26)和42.31%(11/26)的研究报告了黏膜坏死和皮炎,在口咽肿瘤中,急性黏膜坏死的发生率甚至可达50.0%~61.0%[6-8],这与口咽部肿瘤受照射时,口腔黏膜无法避免高剂量辐射有关。其他部位肿瘤急性黏膜坏死总体发生率则差异较大,约2%~29.7%,并且在耐受的剂量范围内增加放射剂量并不会增加其发生率。然而,有报道称CIRT联合西妥昔单抗后,急性黏膜坏死的发生率可达25%~48%[9-10],但仍低于该药物联合光子放疗时的发生率(25%~48% vs. 59%~80.9%)[11-12]。另外,头颈部肿瘤患者CIRT期间较高的口腔细菌计数会促进口腔黏膜坏死的发生,因此早期预防性应用抗生素或许有利于减少口腔黏膜坏死的概率[13]

3级急性皮炎发生率约2%~10.14%[6, 8, 14-16],多数研究报告的皮炎发生率不超过5%,仅在1项纳入了10例肉瘤患者的研究中报告了20.0%的3级急性皮炎发生率,这可能与该研究中样本量较少有关[17]

以往研究显示,光子放疗后3级急性黏膜坏死的发生率约24.8%~69%,4级及以上黏膜坏死发生率可达15.1%~38%,放射性皮炎为5.5%~38%[18-21]。相比之下,尽管CIRT的3级急性黏膜坏死的发生率与光子放疗并无太大差异,却降低了严重(4~5级)黏膜坏死和皮炎的发生率。

1.2 其他急性不良反应

约三分之一(7/26)的研究报告了其他类型的CIRT相关急性不良反应,总患病率为0.4%~7%,包括瘘管、喉水肿、吞咽困难、听力障碍、血液和肝毒性等,其中血液和肝毒性更可能与同步化疗有关。上述急性不良反应中值得注意的是喉水肿[22],这是唯一被报告的4级急性不良反应,尽管发生率很低(2例,1%),如果不及时处理,仍可能导致窒息死亡。光子放疗(联合或不联合同步化疗)诱发的急性不良反应类型与CIRT并无明显差异,但4~5级的其他急性不良反应约6.5%,高于CIRT的1%[23]

2 远期不良反应 2.1 黏膜坏死

黏膜坏死在光子放疗的远期不良反应中普遍存在,≥3级不良反应的发病率为12%~28%,并可能引发出血死亡[24],因而该不良反应值得着重关注。CIRT相关远期黏膜坏死发生率为0.69%~16.02%,略低于光子放疗,大多数远期黏膜坏死的患者经对症处理后好转,仅极个别患者因黏膜坏死诱发了大出血或者死亡[10, 25-28]。研究发现[29],在经调强放射治疗(intensity-modulated radiation therapy, IMRT)后局部复发的头颈部肿瘤患者中,改用CIRT再次照射而导致的≥3级远期鼻黏膜坏死高达40.06%,致死率达34.7%,占所有死因的69.2%,其中最主要的因素也是黏膜坏死和(或)大出血。虽然这可能与患者高龄、一般状况不佳、合并症和肿瘤分期有关,但我们仍建议临床医生对这种并发症的体征和症状保持高度警惕,并在早期积极使用抗生素或内镜清创。此外,当前远期黏膜坏死的发病率还可能因为随访时间短被低估了,Koto等[27]报道了1例患者CIRT 9年后发生了5级黏膜溃疡事件,因此为了更准确评估远期不良反应,延长随访时间十分必要。

2.2 颌骨坏死

颌骨坏死是CIRT中潜在的严重并发症,汇总结果显示(表 1),3级颌骨坏死的总体发生率为0.8%~30%,口腔癌中发生率较高(3%~13.51%),无4~5级不良反应。除了Musha等[17]的研究中颌骨坏死高达30%,其他非口腔癌均不超过6%,但该研究中只涉及了10例病例,致使报告的不良反应偏高。颌骨坏死与计划靶区(PTV)内牙齿或颌骨接受了超过30~50 Gy(RBE)的总剂量有关[10, 30],坏死的颌骨通常需要手术切除,可能会进一步增加感染风险。为了降低放射性颌骨坏死的风险,建议在开始CIRT之前就拔除PTV内有问题的牙齿,并在治疗后定期进行牙齿护理。在光子放疗中[31],颌骨损伤发生率约为6%,口腔肿瘤可达13.6%,相较而言,CIRT并没有降低颌骨坏死的总体发生率。

表 1 头颈部肿瘤CIRT相关的中重度毒性反应类型和发生率 Table 1 Types and incidence of moderate and severe toxic effects of carbon ion radiotherapy for head and neck cancer
2.3 视觉障碍

视觉障碍也频发于头颈部肿瘤的CIRT中,42.3%(11/26)项研究报告了3~4级的视力不良反应,3级视觉障碍为1.32%~22%,严重损伤的概率也较其他远期不良反应大,4级不良反应甚至可高达18.75%[32]。CIRT后视觉障碍的类型常包括视神经损伤、青光眼、白内障、视网膜病变等,进而可导致患者出现失明。从CIRT到发生失明的中位时间为16~30.5个月,并且可能与T4期的较大肿瘤体积相关[10, 14, 28]。视神经受到大剂量辐射可导致不可逆的视觉障碍[27],尤其是肿瘤靠近视神经时,很难在维持肿瘤剂量的同时减少对视神经的辐射剂量,因此,这类肿瘤患者视力损伤几乎是不可避免的。与光子放疗可导致7.4%~22%的视力损伤的结果相比[33-34],CIRT在减少视觉障碍的诱因和发生率方面也没表现出明显优势。

2.4 脑或中枢神经系统损伤

61.54%(16/26)的研究中都出现了CIRT相关的3~4级远期脑或中枢神经系统损伤,主要表现为颞叶坏死和神经损伤。脑或中枢神经系统损伤发生率为1%~10%,这与在颅肿瘤的质子治疗中出现症状性颞叶损伤的发生率(3%~6%)相差并不大[35-36]。但需注意的是,头颈部肿瘤经IMRT后出现局部复发的患者,接受CIRT再照射会导致脑损伤(颞叶坏死)的概率大幅增加并可能出现死亡事件[32],尤其是临近脑组织的颅底部肿瘤。这类局部复发的患者采用IMRT再照射的脑损伤发生率约14.3%,相比之下,CIRT再照射仍然比IMRT再照射具有更好的脑组织保护作用(1%~10% vs. 14.3%)[37]

2.5 出血

Kaneko等[8]、Hu等[25]及Yang等[22]分别报告了1、16和1例患者死于出血,CIRT到出血的中位时间为6.0~7.0个月,出血致死的患者大多数肿瘤体积较大(T4或rT4),导致瘤体附近的大血管无法避免较高的累积剂量。在我们汇总的CIRT研究中(表 1),30.77%(8/26)的研究报告了3级以上出血,总体发生率为0.69%~7.77%,其中62.5%(5/8)存在4~5级出血,这说明在CIRT的远期不良反应中,患者发生出血时极有可能进展为致命事件,因此及时的止血措施是必要的。相比其他肿瘤,鼻咽癌出血的可能性更高(表 1,3级:6%~7.77%,5级:4.85%),但是还没有研究能解释其中原因。出血同样是光子放疗最严重的远期不良反应之一,并且是复发性鼻咽癌IMRT再照射的主要死因,放疗后4~5级的远期出血可高达5.33%~24.9%[38-39]。因此,相比光子放疗,CIRT仍然具有更低的不良反应,尤其是在复发性头肿瘤的再照射应用中[40]

2.6 其他远期不良反应

其他少量报道和较低发生率的远期不良反应包括口干、吞咽困难、感染、听力障碍、软组织坏死、鼓室积液、垂体功能减退、恶性肿瘤和牙关紧闭等,发生率为0.38%~12.50%。光子放疗的远期不良反应中上述症状的发病率为2.1%~21%,明显高于CIRT,并且还存在组织纤维化、皮肤坏死、瘘管、持续性喉水肿、持续性黏膜溃疡等更多类型的远期不良反应[41-42]

3 总结

头颈部肿瘤治疗中,在危险器官附近的照射需要极高的精度,因此,粒子治疗不仅是一种有效且可耐受的选择,而且通常也是唯一的治疗选择。目前,头颈部肿瘤CIRT的研究结果证明了碳离子射线的低毒性,相对光子放疗,尽管急性粘膜炎、皮炎的发生率似乎无明显改善,却显著降低了严重(4~5级)急性期不良反应的概率,并减少了远期不良反应的严重程度和种类,提高了患者治疗的耐受性及生活质量,不同类型头颈部肿瘤CIRT相关的不良反应发生率及分级,见表 1

CIRT相关不良反应的研究还存在一些短板,首先,这些研究大多随访期短,缺乏前瞻性、RCT、多中心研究的证据,因此可能低估了远期不良反应的程度,例如,再次照射会产生特殊范围的不良反应,尤其是颈动脉破裂[32, 43]。其次,CIRT联合同步化疗或放射保护剂的研究罕见,联合方案对不良反应的影响仍不清楚,相关研究也急需开展。最后,基于物理剂量分布上的优势,离子治疗导致的严重不良反应(4~5级)发生率低于传统光子放疗,但是目前CIRT的正常组织限量尚未明确,因此建议及时监测并详细记载离子治疗后产生的不良反应,以便进一步建立危及器官的剂量-效应关系并积累基础数据,对危及器官受到高剂量照射后远期不良反应更需密切观察。

利益冲突声明:

所有作者均声明不存在利益冲突。

作者贡献:

杨鹏程:采集文献、分析和解释数据、撰写及修改文章

姚  颐:分析和解释数据、修改文章

雷田雨:查阅文献、审阅并修改文章

胡钦勇:酝酿和设计研究主题、实施研究及审阅文章

参考文献
[1]
Falchook AD, Tracton G, Stravers L, et al. Use of mobile device technology to continuously collect patient-reported symptoms during radiation therapy for head and neck cancer: A prospective feasibility study[J]. Adv Radiat Oncol, 2016, 1(2): 115-121. DOI:10.1016/j.adro.2016.02.001
[2]
Blakely EA. The 20th Gray lecture 2019: health and heavy ions[J]. Br J Radiol, 2020, 93(1115): 20200172. DOI:10.1259/bjr.20200172
[3]
Wozny AS, Alphonse G, Cassard A, et al. Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells[J]. Sci Rep, 2020, 10(1): 21357. DOI:10.1038/s41598-020-78354-7
[4]
Sun C, Wang Z, Liu Y, et al. Carbon ion beams induce hepatoma cell death by NADPH oxidase-mediated mitochondrial damage[J]. J Cell Physiol, 2014, 229(1): 100-107.
[5]
Panganiban RA, Snow AL, Day RM. Mechanisms of radiation toxicity in transformed and non-transformed cells[J]. Int J Mol Sci, 2013, 14(8): 15931-15958. DOI:10.3390/ijms140815931
[6]
Ikawa H, Koto M, Hayashi K, et al. Feasibility of carbon-ion radiotherapy for oral non-squamous cell carcinomas[J]. Head Neck, 2019, 41(6): 1795-1803. DOI:10.1002/hed.25618
[7]
Ikawa H, Koto M, Demizu Y, et al. Multicenter study of carbon-ion radiation therapy for nonsquamous cell carcinomas of the oral cavity[J]. Cancer Med, 2019, 8(12): 5482-5491. DOI:10.1002/cam4.2408
[8]
Kaneko T, Suefuji H, Koto M, et al. Multicenter Study of Carbon-ion Radiotherapy for Oropharyngeal Non-squamous Cell Carcinoma[J]. In Vivo, 2021, 35(4): 2239-2245. DOI:10.21873/invivo.12496
[9]
Adeberg S, Akbaba S, Lang K, et al. The Phase 1/2 ACCEPT Trial: Concurrent Cetuximab and Intensity Modulated Radiation Therapy with Carbon Ion Boost for Adenoid Cystic Carcinoma of the Head and Neck[J]. Int J Radiat Oncol Biol Phys, 2020, 106(1): 167-173. DOI:10.1016/j.ijrobp.2019.09.036
[10]
Koto M, Demizu Y, Saitoh JI, et al. Multicenter Study of Carbon-Ion Radiation Therapy for Mucosal Melanoma of the Head and Neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN)[J]. Int J Radiat Oncol Biol Phys, 2017, 97(5): 1054-1060. DOI:10.1016/j.ijrobp.2016.12.028
[11]
Magrini SM, Buglione M, Corvò R, et al. Cetuximab and Radiotherapy Versus Cisplatin and Radiotherapy for Locally Advanced Head and Neck Cancer: A Randomized PhaseⅡ Trial[J]. J Clin Oncol, 2016, 34(5): 427-435. DOI:10.1200/JCO.2015.63.1671
[12]
Xu T, Liu Y, Dou S, et al. Weekly cetuximab concurrent with IMRT aggravated radiation-induced oral mucositis in locally advanced nasopharyngeal carcinoma: Results of a randomized phaseⅡ study[J]. Oral Oncol, 2015, 51(9): 875-879. DOI:10.1016/j.oraloncology.2015.06.008
[13]
Musha A, Hirai C, Kitada Y, et al. Relationship between oral mucositis and the oral bacterial count in patients with head and neck cancer undergoing carbon ion radiotherapy: A prospective study[J]. Radiother Oncol, 2022, 167: 65-71. DOI:10.1016/j.radonc.2021.12.010
[14]
Saitoh JI, Koto M, Demizu Y, et al. A Multicenter Study of Carbon-Ion Radiation Therapy for Head and Neck Adenocarcinoma[J]. Int J Radiat Oncol Biol Phys, 2017, 99(2): 442-449. DOI:10.1016/j.ijrobp.2017.04.032
[15]
Sulaiman NS, Demizu Y, Koto M, et al. Multicenter Study of Carbon-Ion Radiation Therapy for Adenoid Cystic Carcinoma of the Head and Neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN)[J]. Int J Radiat Oncol Biol Phys, 2018, 100(3): 639-646. DOI:10.1016/j.ijrobp.2017.11.010
[16]
Hayashi K, Koto M, Demizu Y, et al. A retrospective multicenter study of carbon-ion radiotherapy for major salivary gland carcinomas: Subanalysis of J-CROS 1402 HN[J]. Cancer Sci, 2018, 109(5): 1576-1582. DOI:10.1111/cas.13558
[17]
Musha A, Kubo N, Kawamura H, et al. Carbon-ion Radiotherapy for Inoperable Head and Neck Bone and Soft-tissue Sarcoma: Prospective Observational Study[J]. Anticancer Res, 2022, 42(3): 1439-1446. DOI:10.21873/anticanres.15614
[18]
Karam SD, Reddy K, Blatchford PJ, et al. Final Report of a Phase I Trial of Olaparib with Cetuximab and Radiation for Heavy Smoker Patients with Locally Advanced Head and Neck Cancer[J]. Clin Cancer Res, 2018, 24(20): 4949-4959. DOI:10.1158/1078-0432.CCR-18-0467
[19]
Liu YP, Wen YH, Tang J, et al. Endoscopic surgery compared with intensity-modulated radiotherapy in resectable locally recurrent nasopharyngeal carcinoma: a multicentre, open-label, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2021, 22(3): 381-390. DOI:10.1016/S1470-2045(20)30673-2
[20]
Anderson CM, Lee CM, Saunders DP, et al. PhaseⅡb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer[J]. J Clin Oncol, 2019, 37(34): 3256-3265. DOI:10.1200/JCO.19.01507
[21]
Katano A, Takahashi W, Yamashita H, et al. Radiotherapy alone and with concurrent chemotherapy for nasopharyngeal carcinoma: A retrospective study[J]. Medicine (Baltimore), 2018, 97(18): e0502. DOI:10.1097/MD.0000000000010502
[22]
Yang J, Gao J, Qiu X, et al. Intensity-Modulated Proton and Carbon-Ion Radiation Therapy in the Management of Head and Neck Sarcomas[J]. Cancer Med, 2019, 8(10): 4574-4586. DOI:10.1002/cam4.2319
[23]
You R, Liu YP, Huang PY, et al. Efficacy and Safety of Locoregional Radiotherapy With Chemotherapy vs. Chemotherapy Alone in De Novo Metastatic Nasopharyngeal Carcinoma: A Multicenter Phase 3 Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6(9): 1345-1352. DOI:10.1001/jamaoncol.2020.1808
[24]
Hua Y, You R, Wang Z, et al. Toripalimab plus intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma: an open-label single-arm, phaseⅡ trial[J]. J Immunother Cancer, 2021, 9(11): e003290. DOI:10.1136/jitc-2021-003290
[25]
Hu J, Huang Q, Gao J, et al. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma[J]. Cancer, 2020, 126(23): 5173-5183. DOI:10.1002/cncr.33197
[26]
Gao J, Hu J, Guan X, et al. Salvage Carbon-Ion Radiation Therapy For Locoregionally Recurrent Head and Neck Malignancies[J]. Sci Rep, 2019, 9(1): 4259. DOI:10.1038/s41598-019-39241-y
[27]
Koto M, Ikawa H, Kaneko T, et al. Long-term outcomes of skull base chordoma treated with high-dose carbon-ion radiotherapy[J]. Head Neck, 2020, 42(9): 2607-2613. DOI:10.1002/hed.26307
[28]
Koto M, Demizu Y, Saitoh JI, et al. Definitive Carbon-Ion Radiation Therapy for Locally Advanced Sinonasal Malignant Tumors: Subgroup Analysis of a Multicenter Study by the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS)[J]. Int J Radiat Oncol Biol Phys, 2018, 102(2): 353-361. DOI:10.1016/j.ijrobp.2018.05.074
[29]
Han F, Zhao C, Huang SM, et al. Long-term outcomes and prognostic factors of re-irradiation for locally recurrent nasopharyngeal carcinoma using intensity-modulated radiotherapy[J]. Clin Oncol (R Coll Radiol), 2012, 24(8): 569-576. DOI:10.1016/j.clon.2011.11.010
[30]
Musha A, Shimada H, Kubo N, et al. Clinical features and dosimetric evaluation of carbon ion radiation-induced osteoradionecrosis of mandible in head and neck tumors[J]. Radiother Oncol, 2021, 161: 205-210. DOI:10.1016/j.radonc.2021.06.022
[31]
Kuhnt T, Stang A, Wienke A, et al. Potential risk factors for jaw osteoradionecrosis after radiotherapy for head and neck cancer[J]. Radiat Oncol, 2016, 11: 101. DOI:10.1186/s13014-016-0679-6
[32]
Hayashi K, Koto M, Ikawa H, et al. Feasibility of Re-irradiation using carbon ions for recurrent head and neck malignancies after carbon-ion radiotherapy[J]. Radiother Oncol, 2019, 136: 148-153. DOI:10.1016/j.radonc.2019.04.007
[33]
Brecht S, Boda-Heggemann J, Budjan J, et al. Radiation-induced optic neuropathy after stereotactic and image guided intensity-modulated radiation therapy (IMRT)[J]. Radiother Oncol, 2019, 134: 166-177. DOI:10.1016/j.radonc.2019.02.003
[34]
Ozyigit G, Cengiz M, Hurmuz P, et al. Robotic stereotactic radiosurgery in patients with nasal cavity and paranasal sinus tumors[J]. Technol Cancer Res Treat, 2014, 13(5): 409-413.
[35]
Fung V, Calugaru V, Bolle S, et al. Proton beam therapy for skull base chordomas in 106 patients: A dose adaptive radiation protocol[J]. Radiother Oncol, 2018, 128(2): 198-202. DOI:10.1016/j.radonc.2017.12.017
[36]
Weber DC, Malyapa R, Albertini F, et al. Long term outcomes of patients with skull-base low-grade chondrosarcoma and chordoma patients treated with pencil beam scanning proton therapy[J]. Radiother Oncol, 2016, 120(1): 169-174. DOI:10.1016/j.radonc.2016.05.011
[37]
Held T, Harrabi SB, Lang K, et al. Dose-Limiting Organs at Risk in Carbon Ion Re-Irradiation of Head and Neck Malignancies: An Individual Risk-Benefit Tradeoff[J]. Cancers (Basel), 2019, 11(12): 2016. DOI:10.3390/cancers11122016
[38]
Kong F, Zhou J, Du C, et al. Long-term survival and late complications of intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma[J]. BMC Cancer, 2018, 18(1): 1139. DOI:10.1186/s12885-018-5055-5
[39]
Margalit DN, Schoenfeld JD, Rawal B, et al. Patient-oriented toxicity endpoints after head and neck reirradiation with intensity modulated radiation therapy[J]. Oral Oncol, 2017, 73: 160-165. DOI:10.1016/j.oraloncology.2017.08.012
[40]
Held T, Lang K, Regnery S, et al. Carbon ion reirradiation compared to intensity-modulated re-radiotherapy for recurrent head and neck cancer (CARE): a randomized controlled trial[J]. Radiat Oncol, 2020, 15(1): 190. DOI:10.1186/s13014-020-01625-0
[41]
Wang L, Miao J, Huang H, et al. Long-term Survivals, Toxicities and the Role of Chemotherapy in Early-Stage Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiation Therapy: A Retrospective Study with 15-Year Follow-up[J]. Cancer Res Treat, 2022, 54(1): 118-129. DOI:10.4143/crt.2021.101
[42]
Santa Cruz O, Tsoutsou P, Castella C, et al. Locoregional Control and Toxicity in Head and Neck Carcinoma Patients following Helical Tomotherapy-Delivered Intensity-Modulated Radiation Therapy Compared with 3D-CRT Data[J]. Oncology, 2018, 95(2): 61-68. DOI:10.1159/000489217
[43]
Held T, Windisch P, Akbaba S, et al. Carbon Ion Reirradiation for Recurrent Head and Neck Cancer: A Single-Institutional Experience[J]. Int J Radiat Oncol Biol Phys, 2019, 105(4): 803-811. DOI:10.1016/j.ijrobp.2019.07.021
[44]
Hu J, Bao C, Gao J, et al. Salvage treatment using carbon ion radiation in patients with locoregionally recurrent nasopharyngeal carcinoma: Initial results[J]. Cancer, 2018, 124(11): 2427-2437. DOI:10.1002/cncr.31318
[45]
Abe T, Ohno T, Koto M, et al. A multi-institutional retrospective study of carbon-ion radiotherapy for non-squamous cell malignant tumors of the nasopharynx: Subanalysis of Japan Carbon-Ion Radiation Oncology Study Group study 1402 HN[J]. Cancer Med, 2018, 7(12): 6077-6083. DOI:10.1002/cam4.1884
[46]
Akbaba S, Ahmed D, Lang K, et al. Results of a combination treatment with intensity modulated radiotherapy and active raster-scanning carbon ion boost for adenoid cystic carcinoma of the minor salivary glands of the nasopharynx[J]. Oral Oncol, 2019, 91: 39-46. DOI:10.1016/j.oraloncology.2019.02.019
[47]
Hagiwara Y, Koto M, Bhattacharyya T, et al. Long-term outcomes and toxicities of carbon-ion radiotherapy in malignant tumors of the sphenoid sinus[J]. Head Neck, 2020, 42(1): 50-58. DOI:10.1002/hed.25965
[48]
Hu W, Hu J, Huang Q, et al. Particle beam radiation therapy for sinonasal malignancies: Single institutional experience at the Shanghai Proton and Heavy Ion Center[J]. Cancer Med, 2020, 9(21): 7914-7924. DOI:10.1002/cam4.3393
[49]
Shirai K, Saitoh JI, Musha A, et al. Prospective observational study of carbon-ion radiotherapy for non-squamous cell carcinoma of the head and neck[J]. Cancer Sci, 2017, 108(10): 2039-2044. DOI:10.1111/cas.13325
[50]
Suefuji H, Koto M, Demizu Y, et al. A Retrospective Multicenter Study of Carbon Ion Radiotherapy for Locally Advanced Olfactory Neuroblastomas[J]. Anticancer Res, 2018, 38(3): 1665-1670.
[51]
Vischioni B, Dhanireddy B, Severo C, et al. Reirradiation of salivary gland tumors with carbon ion radiotherapy at CNAO[J]. Radiother Oncol, 2020, 145: 172-177. DOI:10.1016/j.radonc.2020.01.004
[52]
Takayasu Y, Kubo N, Shino M, et al. Carbon-ion radiotherapy combined with chemotherapy for head and neck mucosal melanoma: Prospective observational study[J]. Cancer Med, 2019, 8(17): 7227-7235. DOI:10.1002/cam4.2614
[53]
Hayashi K, Koto M, Demizu Y, et al. A retrospective multicenter study of carbon-ion radiotherapy for external auditory canal and middle ear carcinomas[J]. Cancer Med, 2019, 8(1): 51-57. DOI:10.1002/cam4.1830