[1] |
Kwaan HC, Lindholm PF. Fibrin and Fibrinolysis in Cancer[J]. Semin Thromb Hemost, 2019, 45(4): 413-422. DOI:10.1055/s-0039-1688495 |
|
[2] |
Smith HW, Marshall CJ. Regulation of cell signalling by uPAR[J]. Nat Rev Mol Cell Biol, 2010, 11(1): 23-36. DOI:10.1038/nrm2821 |
|
[3] |
Mahmood N, Rabbani SA. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications[J]. Int J Mol Sci, 2021, 22(9): 4358-4374. DOI:10.3390/ijms22094358 |
|
[4] |
Lv T, Zhao Y, Jiang X, et al. uPAR: An Essential Factor for Tumor Development[J]. J Cancer, 2021, 12(23): 7026-7040. DOI:10.7150/jca.62281 |
|
[5] |
Masucci MT, Minopoli M, Gioconda DC. Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer[J]. Cancers (Basel), 2022, 14(3): 498-521. DOI:10.3390/cancers14030498 |
|
[6] |
Su SC, Lin CW, Yang WE, et al. The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies[J]. Expert Opin Ther Targets, 2016, 20(5): 551-566. DOI:10.1517/14728222.2016.1113260 |
|
[7] | |
|
[8] |
Husain SR, Han J, Au P, et al. Gene therapy for cancer: regulatory considerations for approval[J]. Cancer Gene Ther, 2015, 22(12): 554-563. DOI:10.1038/cgt.2015.58 |
|
[9] |
Anna L, Alessio B, Francesca B, et al. Inhibition of uPAR-TGFβ crosstalk blocks MSC-dependent EMT in melanoma cells[J]. J Mol Med (Berl), 2015, 93(7): 783-794. DOI:10.1007/s00109-015-1266-2 |
|
[10] |
Margheri F, D'alessio S, Serratí S, et al. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases[J]. Gene Ther, 2005, 12(8): 702-714. DOI:10.1038/sj.gt.3302456 |
|
[11] |
Wu X, Cai M, Ji F, et al. The impact of COX-2 on invasion of osteosarcoma cell and its mechanism of regulation[J]. Cancer Cell Int, 2014, 14: 27-33. DOI:10.1186/1475-2867-14-27 |
|
[12] |
GondI CS, Kandhukuri N, Dinh DH, et al. Down-regulation of uPAR and uPA activates caspase-mediated apoptosis and inhibits the PI3K/AKT pathway[J]. Int J Oncol, 2007, 31(1): 19-27. |
|
[13] |
Zhou J, Bobbin ML, Burnett JC, et al. Current progress of RNA aptamer-based therapeutics[J]. Front Genet, 2012, 3: 234-248. |
|
[14] |
Blake CM, Sullenger BA, Lawrence DA, et al. Antimetastatic potential of PAI-1-specific RNA aptamers[J]. Oligonucleotides, 2009, 19(2): 117-128. DOI:10.1089/oli.2008.0177 |
|
[15] |
Fortenberry YM, Brandal SM, Carpentier G, et al. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis[J]. PLoS one, 2016, 11(10): e0164288. DOI:10.1371/journal.pone.0164288 |
|
[16] |
Biagioni A, Laurenzana A, Menicacci B, et al. uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1, 2 signaling in endothelial cells[J]. Cell Mol Life Sci, 2021, 78(6): 3057-3072. DOI:10.1007/s00018-020-03707-4 |
|
[17] |
Lee JE, Kwon YJ, Baek HS, et al. Synergistic induction of apoptosis by combination treatment with mesupron and auranofin in human breast cancer cells[J]. Arch Pharm Res, 2017, 40(6): 746-759. DOI:10.1007/s12272-017-0923-0 |
|
[18] |
Faizal ZA, Mohamed AH, Yo HK, et al. Effects of upamostat and opaganib on cholangiocarcinoma patient derived xenografts[J]. Cancer Res, 2020, 80(16): Abstract 3078. |
|
[19] |
Park C, Ha JG, Choi S, et al. HPLC-MS/MS analysis of mesupron and its application to a pharmacokinetic study in rats[J]. J Pharm Biomed Anal, 2018, 150: 39-42. DOI:10.1016/j.jpba.2017.12.002 |
|
[20] |
Heinemann V, Ebert MP, Laubender RP, et al. Phase Ⅱ randomised proof-of-concept study of the urokinase inhibitor upamostat (WX-671) in combination with gemcitabine compared with gemcitabine alone in patients with non-resectable, locally advanced pancreatic cancer[J]. Br J Cancer, 2013, 108(4): 766-770. DOI:10.1038/bjc.2013.62 |
|
[21] |
Xu D, Bum-erdene K, Leth JM, et al. Small-Molecule Inhibition of the uPAR-uPA Interaction by Conformational Selection[J]. Chem Med Chem, 2021, 16(2): 377-387. DOI:10.1002/cmdc.202000558 |
|
[22] |
Bum-erdene K, Liu D, Xu D, et al. Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR-uPA Interaction[J]. ACS Med Chem Lett, 2021, 12(1): 60-66. DOI:10.1021/acsmedchemlett.0c00422 |
|
[23] |
Rouch A, Vanucci-Bacqué C, Bedos-Belval F, et al. Small molecules inhibitors of plasminogen activator inhibitor-1 an overview[J]. Eur J Med Chem, 2015, 92: 619-636. DOI:10.1016/j.ejmech.2015.01.010 |
|
[24] |
Mashiko S, Kitatani k, Toyoshima M, et al. Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer[J]. Cancer Biol Ther, 2015, 16(2): 253-260. DOI:10.1080/15384047.2014.1001271 |
|
[25] |
Nakatsuka E, Sawada K, Nakamura K, et al. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination[J]. Oncotarget, 2017, 8(52): 89887-89902. DOI:10.18632/oncotarget.20834 |
|
[26] |
Placencio VR, Ichimura A, Miyata T, et al. Small Molecule Inhibitors of Plasminogen Activator Inhibitor-1 Elicit Anti-Tumorigenic and Anti-Angiogenic Activity[J]. PLoS one, 2015, 10(7): e0133786. DOI:10.1371/journal.pone.0133786 |
|
[27] | |
|
[28] |
Gold MA, Brady WE, Lankes HA, et al. A phaseⅡ study of a urokinase-derived peptide (A6) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study[J]. Gynecol Oncol, 2012, 125(3): 635-639. DOI:10.1016/j.ygyno.2012.03.023 |
|
[29] |
Belli S, Franco P, Iommelli F, et al. Breast Tumor Cell Invasion and Pro-Invasive Activity of Cancer-Associated Fibroblasts Co-Targeted by Novel Urokinase-Derived Decapeptides[J]. Cancers (Basel), 2020, 12(9): 2404-2429. DOI:10.3390/cancers12092404 |
|
[30] |
Tian C, Chen K, Gong W, et al. The G-Protein Coupled Formyl Peptide Receptors and Their Role in the Progression of Digestive Tract Cancer[J]. Technol Cancer Res Treat, 2020, 19: 1-10. |
|
[31] |
Minopoli M, Botti G, Gigantino V, et al. Targeting the Formyl Peptide Receptor type 1 to prevent the adhesion of ovarian cancer cells onto mesothelium and subsequent invasion[J]. J Exp Clin Cancer Res, 2019, 38(1): 459-475. DOI:10.1186/s13046-019-1465-8 |
|
[32] |
Ragone C, Minopoli M, Ingangi V, et al. Targeting the cross-talk between Urokinase receptor and Formyl peptide receptor type 1 to prevent invasion and trans-endothelial migration of melanoma cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 180-196. DOI:10.1186/s13046-017-0650-x |
|
[33] |
Carriero MV, Bifulco K, Ingangi V, et al. Retro-inverso Urokinase Receptor Antagonists for the Treatment of Metastatic Sarcomas[J]. Sci Rep, 2017, 7(1): 1312-1329. DOI:10.1038/s41598-017-01425-9 |
|
[34] |
Minopoli M, Sarno S, Di CG, et al. Inhibiting Monocyte Recruitment to Prevent the Pro-Tumoral Activity of Tumor-Associated Macrophages in Chondrosarcoma[J]. Cells, 2020, 9(4): 1062-1084. DOI:10.3390/cells9041062 |
|
[35] |
Zhai B, Zhang N, Han X, et al. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review[J]. Biomed Pharmacother, 2019, 114: 108812-108823. DOI:10.1016/j.biopha.2019.108812 |
|
[36] |
Shi H, Liu L, Liu LM, et al. Inhibition of tumor growth by β-elemene through downregulation of the expression of uPA, uPAR, MMP-2, and MMP-9 in a murine intraocular melanoma model[J]. Melanoma Res, 2015, 25(1): 15-21. DOI:10.1097/CMR.0000000000000124 |
|
[37] |
Halim CE, Xinjing SL, Fan L, et al. Anti-cancer effects of oxymatrine are mediated through multiple molecular mechanism(s) in tumor models[J]. Pharmacol Res, 2019, 147: 104327-104339. DOI:10.1016/j.phrs.2019.104327 |
|
[38] |
Wang X, Liu C, Wang J, et al. Oxymatrine inhibits the migration of human colorectal carcinoma RKO cells via inhibition of PAI-1 and the TGF-β1/Smad signaling pathway[J]. Oncol Rep, 2017, 37(2): 747-753. DOI:10.3892/or.2016.5292 |
|
[39] |
Reyes FM, Carrasco PC. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism[J]. Int J Mol Sci, 2019, 20(13): 3177-3196. DOI:10.3390/ijms20133177 |
|
[40] |
Li H, Chen C. Quercetin Has Antimetastatic Effects on Gastric Cancer Cells via the Interruption of uPA/uPAR Function by Modulating NF-κb, PKC-δ, ERK1/2, and AMPKα[J]. Integr Cancer Ther, 2018, 17(2): 511-523. DOI:10.1177/1534735417696702 |
|
[41] | |
|
[42] |
Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2'-deoxycytidine[J]. Carcinogenesis, 2014, 35(1): 138-144. DOI:10.1093/carcin/bgt284 |
|
[43] |
Parashar S, Cheishvili D, Arakelian A, et al. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications[J]. Cancer Med, 2015, 4(5): 732-744. DOI:10.1002/cam4.386 |
|
[44] |
Van DBJ, VerdegaaL EM, De MNF. Cancer immunotherapy: broadening the scope of targetable tumours[J]. Open Biol, 2018, 8(6): 180037-180047. DOI:10.1098/rsob.180037 |
|
[45] |
Rabbani SA, Ateeq B, Arakelian A, et al. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo[J]. Neoplasia, 2010, 12(10): 778-788. DOI:10.1593/neo.10296 |
|
[46] |
Xu X, Cai Y, Wei Y, et al. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM)[J]. PLoS one, 2014, 9(1): e85349. DOI:10.1371/journal.pone.0085349 |
|
[47] |
Mahmood N, Arakelian A, Khan HA, et al. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions[J]. Bone Res, 2020, 8: 18-30. DOI:10.1038/s41413-020-0094-3 |
|
[48] |
Lebeau AM, DurisetI S, Murphy ST, et al. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer[J]. Cancer Res, 2013, 73(7): 2070-2081. DOI:10.1158/0008-5472.CAN-12-3526 |
|
[49] |
Harel ET, Drake PM, Barfield RM, et al. Antibody-Drug Conjugates Targeting the Urokinase Receptor (uPAR) as a Possible Treatment of Aggressive Breast Cancer[J]. Antibodies(Basel), 2019, 8(4): 54. |
|
[50] |
Qin L, Wang L, Zhang J, et al. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer[J]. Sci Adv, 2022, 8(21): eabn3774. DOI:10.1126/sciadv.abn3774 |
|
[51] |
Wang l, Yang R, Zhao L, et al. Basing on uPAR-binding fragment to design chimeric antigen receptors triggers antitumor efficacy against uPAR expressing ovarian cancer cells[J]. Biomed Pharmacother, 2019, 117: 109173-109181. DOI:10.1016/j.biopha.2019.109173 |
|
[52] |
Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. DOI:10.1038/s41586-020-2403-9 |
|
[53] |
Alas M, Saghaeidehkordi A, Kaur K. Peptide-Drug Conjugates with Different Linkers for Cancer Therapy[J]. J Med Chem, 2021, 64(1): 216-232. DOI:10.1021/acs.jmedchem.0c01530 |
|
[54] |
Persson M, Juhl K, Rasmussen P, et al. uPAR targeted radionuclide therapy with (177)Lu-DOTA-AE105 inhibits dissemination of metastatic prostate cancer[J]. Mol Pharm, 2014, 11(8): 2796-2806. DOI:10.1021/mp500177c |
|
[55] |
Yu S, Huang G, Yuan R, et al. A uPAR targeted nanoplatform with an NIR laser-responsive drug release property for tri-modal imaging and synergistic photothermal-chemotherapy of triple-negative breast cancer[J]. Biomater Sci, 2020, 8(2): 720-738. DOI:10.1039/C9BM01495K |
|
[56] |
Simón M, Jørgensen JT, Juhl K, et al. The use of a uPAR-targeted probe for photothermal cancer therapy prolongs survival in a xenograft mouse model of glioblastoma[J]. Oncotarget, 2021, 12(14): 1366-1376. DOI:10.18632/oncotarget.28013 |
|
[57] |
Gu W, Liu T, Fan D, et al. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia[J]. J Control Release, 2021, 329: 706-716. DOI:10.1016/j.jconrel.2020.10.005 |
|
[58] |
Errico PA, Posteri R, Giansanti F, et al. Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera[J]. Microb Cell Fact, 2016, 15(1): 194-207. DOI:10.1186/s12934-016-0589-1 |
|
[59] |
Zuppone S, Assalini C, Minici C, et al. The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP[J]. Sci Rep, 2020, 10(1): 2521-2533. DOI:10.1038/s41598-020-59313-8 |
|
[60] |
Oh F, Modiano JF, Bachanova V, et al. Bispecific Targeting of EGFR and Urokinase Receptor (uPAR) Using Ligand-Targeted Toxins in Solid Tumors[J]. Biomolecules, 2020, 10(6): 965-978. DOI:10.3390/biom10060965 |
|