肿瘤防治研究  2022, Vol. 49 Issue (11): 1180-1183
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

肿瘤浸润性淋巴细胞在乳腺癌预后评估及免疫治疗中的应用进展
Progress on Tumor Infiltrating Lymphocytes in Immunotherapy and Prognosis Evaluation of Breast Cancer
肿瘤防治研究, 2022, 49(11): 1180-1183
Cancer Research on Prevention and Treatment, 2022, 49(11): 1180-1183
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2022.22.0332
收稿日期: 2022-04-02
修回日期: 2022-07-20
肿瘤浸润性淋巴细胞在乳腺癌预后评估及免疫治疗中的应用进展
洪晨忱 ,    姚峰     
430060 武汉, 武汉大学人民医院乳腺甲状腺外科
摘要: 2020年女性乳腺癌已超越肺癌成为全球最常见的癌症,大量研究证实肿瘤浸润性淋巴细胞(TILs)对肿瘤具有杀伤力,并在识别肿瘤抗原中发挥重要作用,因此TILs在临床免疫治疗及乳腺癌预后评估中的应用受到广泛关注。本文综述了近期TILs在不同分子分型乳腺癌中的基础研究进展和临床应用现状,评估了TILs对乳腺癌预后评估及临床免疫治疗的价值。
关键词: 乳腺癌    肿瘤浸润性淋巴细胞    预后    免疫治疗    
Progress on Tumor Infiltrating Lymphocytes in Immunotherapy and Prognosis Evaluation of Breast Cancer
HONG Chenchen , YAO Feng     
Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
Abstract: Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer in 2020. A large number of studies have proved that tumor infiltrating lymphocytes (TILs) are lethal to tumors and play an important role in identifying tumor antigens. Therefore, the application of TILs in clinical immunotherapy and prognosis assessment of breast cancer has attracted wide attention. In this review, the basic research progress and clinical application of TILs in different molecular types of breast cancer are reviewed, and the value of TILs in judging breast cancer prognosis and predicting the therapeutic effect of clinical immunotherapy is evaluated.
Key words: Breast cancer    Tumor infiltrating lymphocytes    Prognosis    Immunotherapy    
0 引言

据国际癌症研究机构统计,2020年女性乳腺癌已超越肺癌成为全球最常见的癌症,约有230万新发病例,占所有癌症新发病例的11.7%。在2020年度的癌症死亡主要原因中女性乳腺癌仅次于肺癌、结直肠癌、肝癌、胃癌排名第五位[1]。肿瘤浸润性淋巴细胞(tumor infiltrating lymphocytes, TILs)是一种浸润肿瘤组织的淋巴细胞群体,乳腺癌中的TILs主要包含T淋巴细胞、B淋巴细胞、自然杀伤细胞(natural killer cell, NK)等免疫型细胞,TILs按分布位置可以分为肿瘤内TILs(intratumoral tumor infiltrating lymphocytes, iTILs)和间质TILs(stromal tumor infiltrating lymphocytes, sTILs)。多项研究表明,相比iTILs,sTILs数量更多,更易于观察测量,且重复性和稳定性更好,更有研究意义,因此国际免疫生物标志物协作组推荐以sTILs作为试验研究和临床应用的主要指标[2]。体外研究证实了从乳腺癌组织中分离出的TILs对肿瘤具有杀伤作用[3-5],CD8(+)和CD4(+)T细胞在识别独特的肿瘤抗原中也发挥着作用[2-5]。目前需要进一步明确TILs与乳腺癌的预后及免疫治疗的关系。

研究表明,TILs更常见于三阴性乳腺癌(triple negative breast cancer, TNBC)和HER2+乳腺癌[6],且高水平TILs与TNBC和HER-2过表达型乳腺癌的良好预后相关[7],但TILs与Luminal型乳腺癌之间的预后关系尚存在争议[3, 6, 8]。因此,本文拟综述TILs在不同分子分型乳腺癌中的基础研究进展和临床应用现状,评估TILs对乳腺癌预后判断及临床免疫治疗的价值。

1 乳腺癌中TILs的特征及检测进展

T淋巴细胞是TILs中占比最高的淋巴细胞,高达75%。目前研究表明,TILs是影响乳腺癌预后的关键因素之一,而CD8(+)T细胞是TILs影响乳腺癌预后的关键因素[2]。主要原因在于CD8(+)TILs包含组织驻留记忆T细胞(tissue-resident memory T, TRM)亚群,TRM细胞在外周免疫监测和病毒免疫中发挥重要作用[9],且TRM细胞水平较高的晚期乳腺癌患者对免疫治疗的反应率也更高[4]。另有研究表明,TILs中的B细胞也对乳腺癌的临床结局有一定影响[10],这很可能与TILs中的B细胞水平及其空间分布有关,TILs中的B细胞分布越分散,则预后越好;分布越局限,则预后越差[11]。NK细胞由于数量极少,对预后的影响几乎可以忽略不计[5]

检测TILs通常采用的方法是将组织切片进行苏木精-伊红(HE)染色,再通过不同淋巴细胞的典型特征或免疫组织化学(immunohistochemistry, IHC)进一步区分[12]。现阶段多重免疫组织化学(multiplex immunohistochemistry, mIHC)也被应用于TILs检测,实现在单一组织切片上同时检测多个抗体,进而对不同TILs亚群进行识别与定位[13]。此外,组织芯片或组织微阵列技术(tissue microarray, TMA)、基于多光子显微技术(multiphoton microscopy, MPM)的肿瘤浸润淋巴细胞评分法(tumor-infiltration lymphocyte score, TILs-score)等新技术也在逐步发展、成熟过程中,新技术借助计算机辅助完成对TILs的检测,可以有效减少染色和其他人为操作对结果的影响[14]

2 TILs对于不同分子分型乳腺癌预后的影响

根据雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)和人表皮生长因子受体2(human epidermal growth factor receptor, HER-2)的表达情况,可将乳腺癌分为四种分子亚型:Luminal A型、Luminal B型、HER-2过表达型和Basal-like型,其中Luminal B型又可依据HER-2状态分为Luminal B(HER2+)型和Luminal B(HER2-)型[15]。其中TNBC和HER2+乳腺癌中TILs浸润水平更高[6]

Kolberg-Liedtke等[16]在前瞻性WSG PLANB试验中比较了2 517例HER2-的中等风险早期乳腺癌(early breast cancer, EBC)患者TILs水平与无病生存期(disease-free survival,DFS)的关系,结果显示在TNBC中高TILs水平患者的DFS显著高于中等TILs水平的患者,虽然低TILs水平的患者DFS也高于中等TILs患者,但仅有临界意义;Luminal-HER2-的患者TILs水平与DFS无关联。Denkert等[7]研究了3 771例接受新辅助化疗的原发性乳腺癌患者TILs水平与DFS和总生存期(overall survival, OS)之间的关系,结果提示TILs水平与TNBC患者的DFS和OS、HER2+患者的DFS正相关,与HER2+患者的OS以及Luminal-HER2-乳腺癌的DFS无关联,但与Luminal-HER2-乳腺癌的OS负相关,即低TILs水平与Luminal-HER2-乳腺癌预后改善有关。Criscitiello等[17]对987例早期ER+且HER2-乳腺癌的单机构病例队列进行了回顾性分析,TILs设为连续变量,主要结果是远端无病生存期(distant disease-free survival, DDFS),在单因素Cox回归分析中,TILs表达与DDFS无关;在接受辅助化疗(adjuvant chemotherapy)的患者中,高TILs与更好的DDFS相关。

以上研究显示,TILs水平对不同分子亚型乳腺癌预后的影响不同。对于TNBC及HER-2过表达型乳腺癌,高TILs预示着良好预后。对于Luminal型乳腺癌,TILs水平与Luminal-HER2+的预后正相关,与Luminal-HER2-的DFS无关但与OS负相关,即低TILs水平与Luminal-HER2-乳腺癌良好预后相关。

此外,Denkert等[7]对6个新辅助化疗(neoadjuvant chemotherapy, NAC)随机试验中接受治疗的乳腺癌患者的TILs综合评估显示:在所有乳腺癌亚型中TILs水平与病理完全缓解率(pathologic complete response, pCR)都显著正相关,即NAC前穿刺活检标本中TILs水平越高,化疗后pCR率越高,这说明TILs可增加乳腺癌NAC的反应。Wang等[18]对13 100例患者的TILs与化疗pCR率及生存结局的关系进行Meta分析表明,高TILs水平与较长的DFS和OS显著相关,TILs水平的增加预示着化疗的pCR率和生存率的提高。在TNBC中,高水平TILs对pCR率的改善更为明显[19]。基于TILs对于乳腺癌预后判断的重要价值,中国临床肿瘤学会(CSCO)2022年乳腺癌诊疗指南建议,对于未经新辅助治疗的乳腺浸润性癌患者,病理学报告应新增对TILs的评估。推荐报告肿瘤区域间质部分TILs(%),即单个核细胞浸润的面积占间质面积的百分比,且仅评估单核细胞(淋巴细胞和浆细胞),暂不建议对粒细胞、树突状细胞和巨噬细胞进行定量评估[20]

3 TILs用于乳腺癌的免疫治疗

癌症的免疫治疗是指通过激活人体本身的免疫系统,使机体依靠自身免疫机制杀灭癌细胞。程序性死亡配体1(programmed cell death-ligand 1, PD-L1)是一种肿瘤细胞表面的跨膜蛋白,程序性死亡受体1(programmed cell death protein 1, PD-1)是一种由活化的T淋巴细胞表达的抑制性蛋白,PD-L1通过与PD-1结合来下调抗癌免疫反应,从而减少癌细胞凋亡并增加免疫逃逸。靶向PD-1/PD-L1的免疫疗法,即免疫检查点抑制剂(immune checkpoint inhibitors, ICIs),主要通过阻断PD-1与PD-L1的结合,诱导癌细胞凋亡并破坏免疫逃逸系统,达到杀伤肿瘤的目的[21]。TONIC试验[22]和KEYNOTE-355试验[23]验证了抗PD-1或抗PD-L1的单抗对于TNBC治疗的有效性,3期IMPassion130试验[24]则表明,在转移或局部晚期TNBC患者的一线治疗中加入抗PD-L1的阿替利珠单抗(atezolizumab)和标准化疗(白蛋白紫杉醇),可使PD-L1阳性肿瘤患者的总生存期延长7个月。这些研究显示了ICIs在TNBC治疗领域的巨大前景。随着抗PD-1的帕博利珠单抗(pembrolizumab)、抗PD-Ll的阿替利珠单抗等ICIs陆续出现,免疫治疗正在改变TNBC的治疗格局,迄今为止在许多国家阿替利珠单抗已被批准用于晚期TNBC的治疗,2021年帕博利珠单抗也在美国获批用于TNBC的治疗[25]

TILs与PD-L1的检测及ICIs疗效的评估密切相关,IMPassion130试验证明TILs水平可以预测PD-L1阳性肿瘤患者的ICIs疗效[24]。在2021年美国国家综合癌症网络(National Comprehensive Cancer Network, NCCN)第4版乳腺癌指南中建议,对拟使用阿特珠单抗联合白蛋白紫杉醇的TNBC患者进行TILs上PD-L1表达的检测,并将PD-L1阳性表达的阈值界定为≥1%[26]。近期研究表明许多肿瘤对ICIs无反应与缺乏TILs浸润有关。通过刺激TILs浸润将这些免疫“冷”肿瘤转化为“热”肿瘤,可以使癌细胞对ICIs产生反应的概率增加。而通过诱导炎性反应细胞凋亡来增加自身抗原的释放和局部免疫反应可以有效增加TILs浸润,是一种尚在被探索的方式[27]

TILs应用于乳腺癌的免疫治疗还存在另外一条途径,即细胞免疫疗法(cellular immunotherapy, CI),是一种基于将免疫细胞提取、修饰和再注入患者体内的全新治疗方式,有望揭开癌症治疗的新篇章[28]。目前尚在研究阶段,还未应用于临床。过继细胞疗法(adoptive cell therapy, ACT)和树突状细胞(dendritic cell, DC)免疫疗法是乳腺癌的两种主要CI类型,TILs是ACT的主要工程细胞之一[29]。实验证明从乳腺癌样本中提取并扩增的TILs在体外对自体肿瘤细胞有显著杀伤效果[30]。目前乳腺癌CI的重点在于寻找和验证可靠的肿瘤特异性靶点,需综合考虑靶点的抗原性、有效性和安全性,规避脱靶效应和细胞因子风暴可能带来的严重不良反应,以实现精准杀伤癌细胞[29]

4 总结与展望

对于TNBC及HER-2过表达型乳腺癌,高TILs预示着良好预后;对于Luminal型乳腺癌,高TILs水平与Luminal-HER2+的良好预后相关,低TILs水平与Luminal-HER2-乳腺癌良好预后相关,目前还没有明确的生物学解释来阐明产生这种差别的原因。TILs可增加乳腺癌细胞对NAC的反应,值得强调的是,在所有乳腺癌亚型中TILs水平与pCR率都显著正相关。基于TILs对于乳腺癌预后判断的重要价值,中国临床肿瘤学会(CSCO)2022年乳腺癌诊疗指南建议,对于未经新辅助治疗的乳腺浸润性癌患者,病理学报告应新增对于TILs的评估。而通过调整乳腺癌的TILs浸润水平从而改善预后,加强癌细胞对NAC的反应,可以成为一种新的研究思路。此外,TILs在内分泌治疗队列中的预后价值也是相当值得探索的。

TILs最常见的检测方式为H & E染色,再通过不同淋巴细胞的典型特征或IHC、mIHC来进一步区分,mIHC作为基于IHC发展的新技术,可以实现单一组织切片上同时检测多个抗体,进而实现不同TILs亚群的识别与定位。TMA、基于MPM的TILs评分法等新技术也在逐步发展、成熟过程中,借助计算机辅助完成对TILs的检测可以有效减少染色和其他人为操作对结果的影响。

阿替利珠单抗的应用是TNBC精准治疗的重要里程碑,TILs与PD-L1的检测及ICIs疗效的评估密切相关。通过增加TILs浸润从而增加ICIs疗效尚在实验室验证阶段,患者对治疗的耐受性和并发的自身免疫性疾病是主要考虑的问题。细胞免疫疗法是免疫治疗的新途径,TILs是ACT的主要工程细胞之一,寻找和验证可靠的肿瘤特异性靶点是目前ACT的重点所在,以期精准杀伤癌细胞的同时最大程度降低对正常细胞的伤害,给患者带来更大受益。

作者贡献:

洪晨忱:查阅资料,撰写论文

姚峰:文章审阅及指导

参考文献
[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660
[2]
Pilipow K, Darwich A, Losurdo A. T-cell-based breast cancer immunotherapy[J]. Semin Cancer Biol, 2021, 72: 90-101. DOI:10.1016/j.semcancer.2020.05.019
[3]
Khan SY, Melkus MW, Rasha F, et al. Tumor-Infiltrating Lymphocytes (TILs) as a Biomarker of Abscopal Effect of Cryoablation in Breast Cancer: A Pilot Study[J]. Ann Surg Oncol, 2022, 29(5): 2914-2925. DOI:10.1245/s10434-021-11157-w
[4]
Byrne A, Savas P, Sant S, et al. Tissue-resident memory T cells in breast cancer control and immunotherapy responses[J]. Nat Rev Clin Oncol, 2020, 17(6): 341-348. DOI:10.1038/s41571-020-0333-y
[5]
Janssen A, Villacorta Hidalgo J, Beringer DX, et al. gammadelta T-cell Receptors Derived from Breast Cancer-Infiltrating T Lymphocytes Mediate Antitumor Reactivity[J]. Cancer Immunol Res, 2020, 8(4): 530-543. DOI:10.1158/2326-6066.CIR-19-0513
[6]
Liu F, Hardiman T, Wu K, et al. Systemic immune reaction in axillary lymph nodes adds to tumor-infiltrating lymphocytes in triple-negative breast cancer prognostication[J]. NPJ Breast Cancer, 2021, 7(1): 86. DOI:10.1038/s41523-021-00292-y
[7]
Denkert C, Von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018, 19(1): 40-50. DOI:10.1016/S1470-2045(17)30904-X
[8]
Caparica R, Bruzzone M, Agostinetto E, et al. Tumour-infiltrating lymphocytes in non-invasive breast cancer: A systematic review and meta-analysis[J]. Breast, 2021, 59: 183-192. DOI:10.1016/j.breast.2021.07.007
[9]
Lai C, Coltart G, Shapanis A, et al. CD8+CD103+ tissue-resident memory T cells convey reduced protective immunity in cutaneous squamous cell carcinoma[J]. J Immunother Cancer, 2021, 9(1): e001807. DOI:10.1136/jitc-2020-001807
[10]
Kuroda H, Jamiyan T, Yamaguchi R, et al. Prognostic value of tumor-infiltrating B lymphocytes and plasma cells in triple-negative breast cancer[J]. Breast Cancer, 2021, 28(4): 904-914. DOI:10.1007/s12282-021-01227-y
[11]
Wortman JC, He TF, Solomon S, et al. Spatial distribution of B cells and lymphocyte clusters as a predictor of triple-negative breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 84. DOI:10.1038/s41523-021-00291-z
[12]
Kovács A, Stenmark Tullberg A, Werner Rönnerman E, et al. Effect of Radiotherapy After Breast-Conserving Surgery Depending on the Presence of Tumor-Infiltrating Lymphocytes: A Long-Term Follow-Up of the SweBCG91RT Randomized Trial[J]. J Clin Oncol, 2019, 37(14): 1179-1187. DOI:10.1200/JCO.18.02157
[13]
Yeong J, Tan T, Chow ZL, et al. Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) for PD-L1 testing in triple-negative breast cancer: a translational assay compared with conventional IHC[J]. J Clin Pathol, 2020, 73(9): 557-562. DOI:10.1136/jclinpath-2019-206252
[14]
He J, Fu F, Wang W, et al. Prognostic value of tumour-infiltrating lymphocytes based on the evaluation of frequency in patients with oestrogen receptor-positive breast cancer[J]. Eur J Cancer, 2021, 154: 217-226. DOI:10.1016/j.ejca.2021.06.011
[15]
Zhao S, Liu XY, Jin X, et al. Molecular portraits and trastuzumab responsiveness of estrogen receptor-positive, progesterone receptor-positive, and HER2-positive breast cancer[J]. Theranostics, 2019, 9(17): 4935-4945. DOI:10.7150/thno.35730
[16]
Kolberg-Liedtke C, Gluz O, Heinisch F, et al. Association of TILs with clinical parameters, Recurrence Score(R) results, and prognosis in patients with early HER2-negative breast cancer (BC)-a translational analysis of the prospective WSG PlanB trial[J]. Breast Cancer Res, 2020, 22(1): 47. DOI:10.1186/s13058-020-01283-w
[17]
Criscitiello C, Vingiani A, Maisonneuve P, et al. Tumor-infiltrating lymphocytes (TILs) in ER+/HER2- breast cancer[J]. Breast Cancer Res Treat, 2020, 183(2): 347-354. DOI:10.1007/s10549-020-05771-7
[18]
Wang K, Xu J, Zhang T, et al. Tumor-infiltrating lymphocytes in breast cancer predict the response to chemotherapy and survival outcome: A meta-analysis[J]. Oncotarget, 2016, 7(28): 44288-44298. DOI:10.18632/oncotarget.9988
[19]
Mao Y, Qu Q, Zhang Y, et al. The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J]. PLoS One, 2014, 9(12): e115103. DOI:10.1371/journal.pone.0115103
[20]
Li J, Jiang Z. Chinese Society of Clinical Oncology Breast Cancer (CSCO BC) guidelines in 2022: stratification and classification[J]. Cancer Biol Med, 2022. Online ahead of print.
[21]
Van Bockstal MR, Cooks M, Nederlof I, et al. Interobserver Agreement of PD-L1/SP142 Immunohistochemistry and Tumor-Infiltrating Lymphocytes (TILs) in Distant Metastases of Triple-Negative Breast Cancer: A Proof-of-Concept Study. A Report on Behalf of the International Immuno-Oncology Biomarker Working Group[J]. Cancers (Basel), 2021, 13(19): 4910. DOI:10.3390/cancers13194910
[22]
Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial[J]. Nat Med, 2019, 25(6): 920-928. DOI:10.1038/s41591-019-0432-4
[23]
Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial[J]. Lancet, 2020, 396(10265): 1817-1828. DOI:10.1016/S0140-6736(20)32531-9
[24]
Emens LA, Molinero L, Loi S, et al. Atezolizumab and nab-Paclitaxel in Advanced Triple-Negative Breast Cancer: Biomarker Evaluation of the IMpassion130 Study[J]. J Natl Cancer Inst, 2021, 113(8): 1005-1016. DOI:10.1093/jnci/djab004
[25]
Gonzalez-Ericsson PI, Stovgaard ES, Sua LF, et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice[J]. J Pathol, 2020, 250(5): 667-684. DOI:10.1002/path.5406
[26]
Gradishar WJ, Moran MS, Abraham J, et al. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021[J]. J Natl Compr Canc Netw, 2021, 19(5): 484-493. DOI:10.6004/jnccn.2021.0023
[27]
Rosenbaum SR, Wilski NA, Aplin AE. Fueling the Fire: Inflammatory Forms of Cell Death and Implications for Cancer Immunotherapy[J]. Cancer Discov, 2021, 11(2): 266-281. DOI:10.1158/2159-8290.CD-20-0805
[28]
Zacharakis N, Chinnasamy H, Black M, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer[J]. Nat Med, 2018, 24(6): 724-730. DOI:10.1038/s41591-018-0040-8
[29]
Venetis K, Invernizzi M, Sajjadi E, et al. Cellular immunotherapy in breast cancer: The quest for consistent biomarkers[J]. Cancer Treat Rev, 2020, 90: 102089. DOI:10.1016/j.ctrv.2020.102089
[30]
Lee HJ, Kim YA, Sim CK, et al. Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer[J]. Oncotarget, 2017, 8(69): 113345-113359. DOI:10.18632/oncotarget.23007