肿瘤防治研究  2022, Vol. 49 Issue (5): 396-402
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

MRE11对食管鳞癌细胞凋亡和增殖的作用研究
Effects of MRE11 on Apoptosis and Proliferation of Esophageal Squamous Cancer Cells
肿瘤防治研究, 2022, 49(5): 396-402
Cancer Research on Prevention and Treatment, 2022, 49(5): 396-402
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2022.21.0868
收稿日期: 2021-08-02
修回日期: 2021-11-05
MRE11对食管鳞癌细胞凋亡和增殖的作用研究
张燕 ,    张红蕊 ,    孟丹丹 ,    弋振营 ,    徐志巧     
475000 开封,开封市中心医院肿瘤诊疗中心
摘要: 目的 探讨MRE11对食管鳞癌细胞增殖和凋亡的影响及其分子机制。方法 MRE11 siRNA转染食管鳞癌细胞,下调MRE11表达;AKT激动剂SC79(0、0.1、0.5、1、1.5、1.8和2 μg/ml)分别孵育24 h;构建过表达载体pcDNA.3.1-c-myc,与MRE11 siRNA共转染细胞;Western blot法检测食管鳞癌细胞Ec9706和TE-1中MRE11、p-AKT和c-myc的蛋白表达量;Annexin-V FITC/PI试剂盒检测Ec9706和TE-1细胞凋亡;Caspase-3活性检测试剂盒检测caspase-3活性;BrdU方法检测Ec9706和TE-1细胞增殖能力。结果 Ec9706和TE-1细胞中MRE11的蛋白表达较人食管上皮细胞Het-1A明显升高;MRE11 siRNA转染后,Ec9706和TE-1细胞中AKT磷酸化水平及MRE11和c-myc的蛋白表达量显著降低;下调MRE11显著促进Ec9706和TE-1细胞凋亡,提高caspase-3活性,抑制食管鳞癌细胞增殖能力;下调MRE11后,SC79(1.5、1.8和2 μg/ml)显著提高AKT磷酸化水平,同时逆转下调MRE11对c-myc蛋白表达量和细胞增殖的抑制作用及对细胞凋亡的促进作用。过表达c-myc抑制下调MRE11对细胞增殖的抑制作用和对细胞caspase-3活性的促进作用。结论 下调MRE11可通过调控AKT和c-myc抑制食管鳞癌细胞增殖及促进细胞凋亡。
关键词: MRE11    AKT    c-myc    食管鳞癌    增殖    凋亡    
Effects of MRE11 on Apoptosis and Proliferation of Esophageal Squamous Cancer Cells
ZHANG Yan , ZHANG Hongrui , MENG Dandan , YI Zhenying , XU Zhiqiao     
Cancer Diagnosis & Treatment Center, Kaifeng Central Hospital, Kaifeng 475000, China
Abstract: Objective To investigate the effect of MRE11 on the proliferation and apoptosis of esophageal squamous cancer cells and its molecular mechanism. Methods MRE11 expression was downregulated by MRE11 siRNA transfection in esophageal squamous cancer cells. The AKT agonist SC79 (0, 0.1, 0.5, 1, 1.5, 1.8, 2 μg/ml) were used to treat cells with MRE11 inhibition for 24 h. Overexpression vector pcDNA.3.1-c-myc was constructed and co-transfected cells with MRE11 siRNA. Western blot method was used to detect the protein expressions of MRE11, p-AKT and c-myc in esophageal squamous cancer cells Ec9706 and TE-1. The Annexin-V FITC/PI kit was used to detect the apoptosis of Ec9706 and TE-1 cells; the activity of caspase-3 was detected by the Caspase-3 activity detection kit; the proliferation of Ec9706 and TE-1 cells was tested by the BrdU method. Results The protein expressions of MRE11 in Ec9706 and TE-1 cells were significantly increased, compared with human esophageal epithelial Het-1A cells. After MRE11 siRNA transfection, AKT phosphorylation and the protein expressions of MRE11 and c-myc were significantly decreased in esophageal squamous cancer cells. MRE11 inhibition significantly promoted the apoptosis and caspase-3 activity in Ec9706 and TE-1 cells, while inhibited the proliferation of Ec9706 and TE-1 cells. SC79 (1.5, 1.8 and 2 μg/ml) significantly increased AKT phosphorylation in MRE11-suppressed esophageal squamous cancer cells, and reversed the inhibitory effects of MRE11 inhibition on c-myc protein expression and cell proliferation and the promoting effect on cell apoptosis. Overexpression of c-myc inhibited the inhibitory effect of MRE11 down-regulation on cell proliferation and the promotion on caspase-3 activity. Conclusion MRE11 inhibition could effectively inhibit the proliferation of esophageal squamous cancer cells and promote cell apoptosis by regulating AKT and c-myc.
Key words: MRE11    AKT    c-myc    Esophageal squamous cancer    Proliferation    Apoptosis    
0 引言

食管癌是发生于食管上皮组织的恶性肿瘤,是消化道常见的恶性肿瘤之一,早期诊断率较低、预后较差且死亡率较高[1-4]。在中国,食管癌的发病类型以食管鳞癌为主,占食管癌90%以上[5]。DNA损伤关键蛋白减数分裂重组蛋白11同系物A(meiotic recombination 11 homolog A, MRE11)是DNA损伤募集因子MRE11-RAD50-Nbs1(MRN)复合物的重要组分,在DNA损伤的感知和修复中起关键的作用[6-8]。研究表明,MRE11具有促进肿瘤发生的作用[9],如MRE11高表达可促进乳腺癌的发生和发展[10]。然而,尚无关于MRE11与食管鳞癌发生发展关系的报道。有文献表明,MRE11可调控成纤维细胞中AKT的活性,且在淋巴细胞中AKT具有上调c-myc的作用[11-12]。另外,c-myc可促进食管鳞癌细胞增殖和抑制凋亡[13-14]。本研究拟通过干扰MRE11探究其对食管鳞癌细胞增殖和凋亡的作用及相关机制。

1 材料与方法 1.1 材料

Het-1A(货号:CRL-2692)购自美国ATCC公司;Ec9706和TE-1购自中国医学科学院肿瘤研究所医院分子肿瘤学国家重点实验室;胎牛血清(货号:SH30084.02)、RPMI1640(货号:SH30809.01)培养基购自美国HyClone公司;BCA试剂盒(货号:P0010)购自碧云天生物技术有限公司;MRE11兔单抗(货号:ab109623)、AKT兔多抗(货号:ab8805)、磷酸化AKT兔单抗(phospho S473,货号:ab81283)、c-myc兔单抗(货号:ab32072)、GAPDH兔单抗(货号:ab8245)和HRP标记的山羊抗兔IgG(货号:ab150077)均购自美国Abcam公司;BrdU试剂盒(货号:QIA58)购自美国Sigma公司;Annexin-V FITC/PI细胞凋亡检测试剂盒(货号:556547)购自美国PharMingen公司;Caspase-3活性检测试剂盒(货号:556485)购自美国BD公司;MRE11 siRNA(货号:siB161221091618-1-5)和无关对照siRNA(货号:siN0000001-1-5)购自广州锐博生物公司。

1.2 细胞培养及分组

人食管上皮细胞Het-1A、人食管鳞癌细胞Ec9706和TE-1均培养于含10%胎牛血清的RPMI-1640培养基中,于5%CO2培养箱,37℃饱和湿度条件下常规传代培养。分组如下:Het-1A组(人食管上皮细胞),Ec9706和TE-1组(食管鳞癌细胞),control组(正常培养的食管鳞癌细胞),MRE11 si组(转染MRE11 siRNA的食管鳞癌细胞),non-spe组(转染non-specific siRNA的食管鳞癌细胞),MRE11 si+0、0.1、0.5、1、1.5、1.8和2 μg/ml SC79组(下调MRE11后0、0.1、0.5、1、1.5、1.8和2 μg/ml SC79孵育细胞24 h),MRE11 si+pc组(转染MRE11 siRNA和pcDNA3.1的细胞)和MRE11 si+c-myc组(转染MRE11 siRNA和pcDNA3.1-c-myc的细胞)。

1.3 Western blot检测MRE11、磷酸化AKT和c-myc蛋白表达量

收集细胞,加入细胞裂解液,冰浴25 min后收集蛋白,BCA法测定其浓度。蛋白样品与上样缓冲液充分混匀后,置于100℃沸水中变性5 min。取25 μg蛋白进行SDS-PAGE电泳,然后电转移到聚偏氟乙烯(polyvinylidene fluoride,PVDF)膜上,封闭后加入一抗:MRE11兔单抗(1:1 000)、AKT兔多抗(1:500)、磷酸化AKT兔单抗(1:5 000,phospho S473)、c-myc兔单抗(1:1 000)或GAPDH兔单抗(1:1 000),4℃孵育过夜。辣根过氧化物酶标记的羊抗兔二抗室温孵育2 h。ECL发光试剂浸泡膜显影,凝胶成像系统观察结果。GAPDH为内参对照蛋白。以目的蛋白条带与GADPH灰度比值表示蛋白相对表达水平。

1.4 c-myc过表达载体的构建和细胞转染

TRIzol法提取待测细胞的总RNA,以总RNA为模板反转cDNA,PCR扩增c-myc(GenBank accession number NM_002467)全长(包括酶切位点XhoⅠ和EcoRⅠ)序列,扩增产物分别与质粒pcDNA.3.1同时进行EcoRⅠ和XhoⅠ双酶切后连接,转化到DH5α中扩增,筛选阳性克隆,鉴定,测序,将测序正确的质粒命名为pcDNA.3.1-c-myc。将Ec9706和TE-1分别接种于96孔板,于37℃、5%CO2环境下培养12 h,待细胞融合达到80%,按照转染试剂操作说明进行细胞转染实验。将分别含有pcDNA.3.1-c-myc(3 μg)、pcDNA.3.1(3 μg)、MER11 siRNA(5′-GGA GGU ACG UCG UUU CAG AdTdT-3′,3 μg)或无关对照siRNA(3 μg)的转染试剂与200 μl不含血清的RPMI-1640培养基混合加入各孔,37℃、5%CO2孵育24 h,Western blot检测转染效率。

1.5 Caspase-3活性检测

收集细胞,按照Caspase-3活性检测试剂盒说明书检测Caspase-3活性,酶标仪测定420 nm处吸光度。

1.6 Annexin-V FITC/PI检测细胞凋亡

按照Annexin-V FITC/PI试剂盒说明书检测细胞凋亡,首先用磷酸盐缓冲溶液预冷细胞,然后用Annexin-V FITC(13 µl)于4℃孵育细胞28 min,PBS洗涤细胞一次,加入10 µl PI孵育7 min。流式细胞分析仪检测细胞凋亡情况。

1.7 BrdU检测细胞增殖

按照BrdU ELISA试剂盒说明书检测各组Ec9706和TE-1细胞的增殖能力,将Ec9706和TE-1细胞分别接种于96孔板进行转染,24 h后每孔加入12 μl BrdU,孵育1.5 h。去上清液,加入100 μl变性溶液孵育细胞15 min。相继加入BrdU抗体和二抗,最后加入四甲基联苯胺(TMB)孵育25 min。酶标仪检测450 nm处吸光度。

1.8 统计学方法

采用SPSS22.0软件进行统计学分析,数值均采用(均数±SEM)表示。两组均数间比较采用t检验,多组间比较采用单因素方差分析。P < 0.05为差异有统计学意义。

2 结果 2.1 MRE11在食管鳞癌细胞中表达量升高

Western blot检测结果表明,Ec9706和TE-1细胞中MRE11的蛋白表达量较人食管上皮细胞Het-1A显著升高(P=0.0109和P=0.0325),见图 1

*: P < 0.05, compared with Het-1A cells. 图 1 食管鳞癌细胞中MRE11的蛋白表达量 Figure 1 Protein expression of MRE11 in esophageal squamous cancer cells
2.2 下调MRE11表达抑制食管鳞癌细胞增殖

与non-spe组比较,MRE11 si组中Ec9706和TE-1细胞中MRE11的蛋白表达量显著降低(P=0.0168和P=0.0117),细胞转染成功,MRE11 si组Ec9706和TE-1细胞增殖能力显著下降(P=0.0135和P=0.0103),见图 2

A: the protein expressions of MRE11 in Ec9706 and TE-1 cells; B: cell proliferation ability; *: P < 0.05, compared with non-spe group. 图 2 抑制MRE11对食管鳞癌细胞增殖能力的影响 Figure 2 Effect of MRE11 inhibition on proliferation of esophageal squamous cancer cells
2.3 下调MRE11表达促进食管鳞癌细胞凋亡

与non-spe组比较,MRE11 si组Ec9706和TE-1细胞凋亡率显著升高(P=0.0398和P=0.0452),且caspase-3活性显著上升(P=0.0125和P=0.0231),见图 3

A: the apoptosis of Ec9706 and TE-1 cells; B: Caspase-3 activity of Ec9706 and TE-1 cells; *: P < 0.05, compared with non-spe group. 图 3 下调MRE11对食管鳞癌细胞凋亡的影响 Figure 3 Effect of MRE11 inhibition on apoptosis of esophageal squamous cancer cells
2.4 MRE11通过调控AKT磷酸化水平来调节c-myc表达

与non-spe组比较,MRE11 si组Ec9706和TE-1细胞AKT磷酸化水平(P=0.0317和P=0.0172)和c-myc蛋白表达量(P=0.0258和P=0.0155)明显下降,见图 4A。与MRE11 si+0 μg/ml组比较,MRE11 si+1.5(P=0.0185和P=0.0206)、1.8(P=0.0197和P=0.0218)和2 μg/ml组(P=0.0161和P=0.0233)AKT磷酸化水平明显升高,MRE11 si+1.5(P=0.0162和P=0.0219)、1.8(P=0.0188和P=0.0235)和2 μg/ml组(P=0.0237和P=0.0162)c-myc蛋白表达量显著升高,见图 4B。与MRE11 si组比较,MRE11 si+1.5 μg/ml组Ec9706和TE-1细胞增殖显著上升(P=0.0124和P=0.0263),且细胞凋亡显著下降(P=0.0153和P=0.0245),见图 5

1: MRE11 si+0μg/ml; 2: MRE11 si+0.1μg/ml; 3: MRE11 si+0.5μg/ml; 4: MRE11 si+1μg/ml; 5: MRE11 si+1.5μg/ml; 6: MRE11 si+1.8μg/ml; 7: MRE11 si+2μg/ml; A: the changes in the expression of p-AKT and c-myc after MRE11 inhibition; B: the changes in the expression of p-AKT and c-myc after incubating cells with SC79; @: P < 0.05, compared with non-spe group; *: P < 0.05, compared with MRE11 si+0 μg/ml group. 图 4 MRE11对AKT磷酸化水平和c-myc表达的调控作用 Figure 4 Regulatory effect of MRE11 on AKT phosphorylation and c-myc expression

*: P < 0.05, compared with MRE11 si group. 图 5 AKT磷酸化水平对细胞增殖(A)和凋亡(B)的影响 Figure 5 Effect of AKT phosphorylation level on cell proliferation and apoptosis
2.5 MRE11通过调节c-myc表达影响食管鳞癌细胞增殖和凋亡

与MRE11 si+pc组比较,MRE11 si+c-myc组Ec9706和TE-1细胞中c-myc蛋白表达量显著升高(P=0.0147和P=0.0259),见图 6A,细胞增殖率显著升高(P=0.0165和P=0.0211),见图 6B,caspase-3活性显著降低(P=0.0207和P=0.0239),见图 6C

1: MRE11 si; 2: MRE11 si+pc; 3: MRE11 si+c-myc; A: the protein expression of c-myc after cell transfection; B: the effect of c-myc on cell proliferation; C: the effect of c-myc on cell apoptosis; *: P < 0.05, compared with MRE11 si+pc group. 图 6 c-myc对食管鳞癌细胞增殖和凋亡的影响 Figure 6 Effect of c-myc on proliferation and apoptosis of esophageal squamous cancer cells
3 讨论

食管鳞癌是全球最常见的消化道恶性肿瘤之一,虽然根治性食管鳞癌切除术联合化疗的治疗方案已经普及,但由于大部分患者发现时已为晚期,5年生存率较低[15-16]。降低细胞的增殖能力和诱导细胞凋亡将大大提高食管鳞癌的治疗效果[17]。MRE11、RAD50和NBSl组成MRN复合物,对DNA损伤的感知和修复以及信号转导具有重要作用,在维持端粒、细胞周期检查点信号系统、DNA复制和DNA双链断裂过程中必不可少[18-19]。Tuxworth等[20]研究发现,MRE11可降低DNA损伤,抑制视网膜神经节细胞的凋亡。Yuan等[10]表明MRE11高表达显著促进乳腺癌细胞的增殖并促进乳腺癌的发展。然而,Borde等[21]报道显示MRE11具有抵抗癌症发生发展的重要作用。目前为止仍没有关于MRE11对食管鳞癌细胞增殖和凋亡作用的报道。本研究发现MRE11蛋白表达量在食管鳞癌细胞Ec9706和TE-1中显著上调。MRE11 siRNA转染食管鳞癌细胞下调MRE11的表达,有效促进细胞凋亡和caspase-3活性,并且抑制细胞增殖能力。

Fraser等[11]研究表明MRE11可调控成纤维细胞AKT磷酸化水平。另外,Dominguez-Caceres等[12]发现在淋巴细胞中AKT具有调节c-myc表达量的作用。AKT又称为蛋白激酶B(protein kinase B, PKB),是细胞增殖和凋亡的重要调控因子[22]。有文献表明,AKT活化增强前列腺上皮细胞的增殖能力[23]。在BRD4对胆囊癌细胞增殖和凋亡的作用中AKT也扮演了不可或缺的角色[24]。Wang等[25]研究发现抑制AKT活化具有促进骨肉瘤细胞凋亡的作用。癌基因c-Myc是一种转录因子,调节细胞生长、增殖、刺激细胞周期[26]。Mahapatra等[27]报道表明降低c-myc表达显著抑制黑色素瘤和卵巢癌细胞的增殖。干扰c-myc表达促进肺腺癌细胞凋亡[28]。本研究结果显示,抑制MRE11表达明显降低AKT磷酸化和c-myc蛋白表达量,并且AKT激动剂SC79(1.5、1.8和2 μg/ml)显著逆转了下调MRE11对c-myc蛋白表达量的抑制作用。说明MRE11可通过调节AKT磷酸化水平来调控c-myc的表达量。目前,已有文献表明,下调c-myc表达量可抑制食管鳞癌细胞增殖并促进其凋亡[29-30]。因此,抑制MRE11可通过AKT下调c-myc表达量,进而抑制食管鳞癌细胞增殖和促进其凋亡。

综上,MRE11在食管鳞癌细胞中表达量显著升高,下调其表达量明显抑制食管鳞癌细胞增殖且促进细胞凋亡。在食管鳞癌细胞中,干扰MRE11可抑制AKT磷酸化和c-myc的表达量。另外,MRE11通过AKT调节c-Myc的表达,从而实现对食管鳞癌细胞增殖和凋亡的调控作用。

作者贡献:

张燕:设计与实施实验、收集与分析数据、撰写论文

张红蕊:指导数据分析和论文写作

孟丹丹、弋振营:指导实验

徐志巧:指导实验设计、修改和审核论文

参考文献
[1]
Xu F, Zhang J. Long non-coding RNA HOTAIR functions as miRNA sponge to promote the epithelial to mesenchymal transition in esophageal cancer[J]. Biomed Pharmacother, 2017, 90: 888-896. DOI:10.1016/j.biopha.2017.03.103
[2]
Guo JH, Xing GL, Fang XH, et al. Proteomic profiling of fetal esophageal epithelium, esophageal cancer, and tumor-adjacent esophageal epithelium and immunohistochemical characterization of a representative differential protein, PRX6[J]. World J Gastroenterol, 2017, 23(8): 1434-1442. DOI:10.3748/wjg.v23.i8.1434
[3]
Yokozaki H, Koma YI, Shigeoka M, et al. Cancer as a tissue: The significance of cancer-stromal interactions in the development, morphogenesis and progression of human upper digestive tract cancer[J]. Pathol Int, 2018, 68(6): 334-352. DOI:10.1111/pin.12674
[4]
伊丽, 赵腾, 李琰琰, 等. 2000-2013年山东省肥城市上消化道癌发病、死亡及早诊早治效果分析[J]. 中华预防医学杂志, 2017, 51(5): 403-408. [Yi L, Zhao T, Li YY, et al. Analysis of incidence and mortality for upper digestive tract cancers and results of early detection and treatment program in Feicheng, Shandong Province from 2000 to 2013[J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2017, 51(5): 403-408. DOI:10.3760/cma.j.issn.0253-9624.2017.05.007]
[5]
毛友生, 高树庚, 王群, 等. 中国食管癌临床流行特征及外科治疗概况大数据分析[J]. 中华肿瘤杂志, 2020, 42(3): 228-233. [Mao YS, Gao SG, Wang Q, et al. Epidemiological characteristic and current status of surgical treatment for esophageal cancer by analysis of national registry database[J]. Zhonghua Zhong Liu Za Zhi, 2020, 42(3): 228-233. DOI:10.3760/cma.j.cn112152-20191112-00729]
[6]
Huang Y, Shao Q, Luo X, et al. Poly(ADP-ribose) polymerase-1 promotes recruitment of meiotic recombination-11 to chromatin and DNA double-strand break repair in Ku70-deficient breast cancer cells[J]. FASEB J, 2018, 32(11): 6112-6122. DOI:10.1096/fj.201800092R
[7]
Ho V, Chung L, Singh A, et al. Overexpression of the MRE11-RAD50-NBS1 (MRN) complex in rectal cancer correlates with poor response to neoadjuvant radiotherapy and prognosis[J]. BMC Cancer, 2018, 18(1): 869. DOI:10.1186/s12885-018-4776-9
[8]
Tharkar-Promod S, Johnson DP, Bennett SE, et al. HDAC1, 2 inhibition and doxorubicin impair MRE11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia[J]. Leukemia, 2018, 32(1): 49-60. DOI:10.1038/leu.2017.174
[9]
Spehalski E, Capper KM, Smith CJ, et al. MRE11 promotes tumorigenesis by facilitating resistance to oncogene-induced replication stress[J]. Cancer Res, 2017, 77(19): 5327-5338. DOI:10.1158/0008-5472.CAN-17-1355
[10]
Yuan SS, Hou MF, Hsieh YC, et al. Role of MRE11 in cell proliferation, tumor invasion, and DNA repair in breast cancer[J]. J Natl Cancer Inst, 2012, 104(19): 1485-1502. DOI:10.1093/jnci/djs355
[11]
Fraser M, Harding SM, Zhao H, et al. MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks[J]. Cell Cycle, 2011, 10(13): 2218-2232. DOI:10.4161/cc.10.13.16305
[12]
Domínguez-Cáceres MA, García-Martínez JM, Calcabrini A, et al. Prolactin induces c-Myc expression and cell survival through activation of Src/Akt pathway in lymphoid cells[J]. Oncogene, 2004, 23(44): 7378-7390. DOI:10.1038/sj.onc.1208002
[13]
Ba Y, Liu Y, Li C, et al. HIPK3 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-599/c-MYC axis[J]. Onco Targets Ther, 2020, 13: 1967-1978. DOI:10.2147/OTT.S217087
[14]
Zhang H, Wang Y, Zhang W, et al. BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma[J]. Cancer Commun (Lond), 2021, 41(3): 240-257. DOI:10.1002/cac2.12127
[15]
Nagami Y, Ominami M, Shiba M, et al. The five-year survival rate after endoscopic submucosal dissection for superficial esophageal squamous cell neoplasia[J]. Dig Liver Dis, 2017, 49(4): 427-433. DOI:10.1016/j.dld.2016.12.009
[16]
Sampath K, Gordon SR, Gardner TB, et al. Su1131 endoscopic management of Barrett' s esophagus with T1A intramucosal carcinoma: a five year follow-up study[J]. Gastroint Endosc, 2018, 87(6): AB286-AB287.
[17]
Chen P, Zhang JY, Sha BB, et al. Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450[J]. Oncotarget, 2017, 8(16): 27471-27480. DOI:10.18632/oncotarget.15832
[18]
Andres SN, Williams RS. CtIP/Ctp1/Sae2, molecular form fit for function[J]. DNA Repair (Amst), 2017, 56: 109-117. DOI:10.1016/j.dnarep.2017.06.013
[19]
Das D, Smith N, Wang X, et al. The deacetylase sIRT1 regulates the replication properties of human papillomavirus 16 E1 and E2[J]. J Virol, 2017, 91(10): e00102-e00117.
[20]
Tuxworth RI, Taylor MJ, Martin Anduaga A, et al. Attenuating the DNA damage response to double strand breaks is neuroprotective[J]. Brain Commun, 2019, 1(1): fcz005. DOI:10.1093/braincomms/fcz005
[21]
Borde V, Cobb J. Double functions for the Mre11 complex during DNA double-strand break repair and replication[J]. Int J Biochem Cell Biol, 2009, 41(6): 1249-1253. DOI:10.1016/j.biocel.2008.12.013
[22]
Manning BD, Toker A. AKT/PKB signaling: navigating the network[J]. Cell, 2017, 169(3): 381-405. DOI:10.1016/j.cell.2017.04.001
[23]
Dang T, Liou GY. Macrophage cytokines enhance cell proliferation of normal prostate epithelial cells through activation of ERK and Akt[J]. Sci Rep, 2018, 8(1): 7718. DOI:10.1038/s41598-018-26143-8
[24]
Hao J, Yang Z, Wang L, et al. Downregulation of BRD4 inhibits gallbladder cancer proliferation and metastasis and induces apoptosis via PI3K/AKT pathway[J]. Int J Oncol, 2017, 51(3): 823-831. DOI:10.3892/ijo.2017.4081
[25]
Wang G, Zhang T, Sun W, et al. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma[J]. Free Radic Biol Med, 2017, 106: 24-37. DOI:10.1016/j.freeradbiomed.2017.02.015
[26]
Xie F, Yuan Y, Xie L, et al. miRNA-320a inhibits tumor proliferation and invasion by targeting c-Myc in human hepatocellular carcinoma[J]. Onco Targets Ther, 2017, 10: 885-894. DOI:10.2147/OTT.S122992
[27]
Mahapatra L, Andruska N, Mao C, et al. A novel IMP1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation[J]. Transl Oncol, 2017, 10(5): 818-827. DOI:10.1016/j.tranon.2017.07.008
[28]
Zhang J, Zhou L, Nan Z, et al. Knockdown of cMyc activates Fas-mediated apoptosis and sensitizes A549 cells to radiation[J]. Oncol Rep, 2017, 38(4): 2471-2479. DOI:10.3892/or.2017.5897
[29]
Wang F, Xia J, Wang N, et al. miR-145 inhibits proliferation and invasion of esophageal squamous cell carcinoma in part by targeting c-Myc[J]. Onkologie, 2013, 36(12): 754-758.
[30]
Zhao X, Wang X, Zhou C, et al. Abrupt reduction of c-myc expression by antisense RNA inducing terminal differentiation and apoptosis of a human esophageal cancer cell line[J]. Sci China B, 1995, 38(5): 580-589.
MRE11对食管鳞癌细胞凋亡和增殖的作用研究
张燕 ,    张红蕊 ,    孟丹丹 ,    弋振营 ,    徐志巧