文章信息
- 抑制NEK7促进肝癌细胞凋亡的实验
- Experiment on Inhibiting NEK7 to Promote Apoptosis of Hepatocellular Carcinoma Cells
- 肿瘤防治研究, 2021, 48(10): 929-933
- Cancer Research on Prevention and Treatment, 2021, 48(10): 929-933
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2021.21.0261
- 收稿日期: 2021-03-11
- 修回日期: 2021-06-30
2. 222000 连云港,连云港市第一人民医院(徐州医科大学附属连云港医院)肝胆外科
2. Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Lianyungang 222000, China
NEK7(NIMA-related kinase 7)作为NEK家族中的重要一员,在纺锤体形成及促进有丝分裂过程中发挥了重要作用:在有丝分裂期间,NEK7主要定位于中心体,通过减少G2/M期的中心体周膜物质的丢失及停搏来确保有丝分裂进程的准确执行[1-3]。
既往研究表明,相较于正常组织,NEK7在胆囊癌中高表达,并且与肿瘤分化、转移和患者生存率之间有着显著关系[4]。本课题组前期的研究表明NEK7在肝癌组织中呈高表达,且其表达水平与患者预后密切相关。
本实验拟在前期研究基础上,进一步从细胞学角度探究NEK7表达与细胞生物学行为之间的关系,并初步探究引起相关变化的分子机制。
1 材料与方法 1.1 细胞及试剂肝癌细胞系HepG2、Hep3B、MHCC-97H、Huh-7及人肝永生化THLE-2细胞系,购自中科院上海生命科学研究院,RPMI 1640培养基、TRIzol和细胞裂解液均购自上海赛默飞世尔科技(中国)有限公司,20%胎牛血清购自上海语纯生物科技有限公司,胰蛋白酶购自上海雅心生物技术有限公司,兔抗人NEK7单克隆抗体购自美国Proteintech公司,MTT液购自上海泛科生物有限公司,ECL试剂购自上海圣克鲁斯生物技术有限公司,PCR试剂盒购自大连TaKaRa宝生物工程有限公司,NEK7引物购自北京三博远志生物公司,考马斯亮蓝和辣根标记山羊抗兔购自美国Sigma-Aldrich生物公司,PI-Annexin V FITC双标试剂盒购自美国BD公司。
1.2 靶向设计NEK7-shRNA根据PubMed查询到的NEK7 mRNA基因序列号信息(NM_133494.2),遵守RNAi总体设计原则,应用shDirect vershon 2.0软件构建了三条NEK7-shRNA寡核苷酸序列及阴性shRNA序列:shRNA-70:Sense-5’-CCGGATATGGGCTATAATACATT-3’, shRNA-269:Sense-5’-ACCATCCAAATGTAATAAAATAT-3’,shRNA-469:Sense-5’-GTCATGCATAGAGA TATAAAACC-3’,阴性shRNA序列:Sense-5’- TACTTTCTATCGTGACATAATGA-3’。以上序列均由上海吉玛生物制药技术有限公司合成及装载慢病毒转染载体。
1.3 NEK7-shRNA慢病毒转染及筛选应用不同浓度嘌呤霉素进行HepG2肝癌细胞的筛选浓度,将所设计的三条不同shRNA序列(shRNA-469、shRNA-269及shRNA-70)及阴性shRNA序列(Negative)进行质粒组装,应用Western blot及RT-PCR检测不同shRNA抑制效果,筛选抑制NEK7表达效果最佳的shRNA序列。将所筛选抑制效果最佳的shRNA进行慢病毒组装,实验分三组,按HepG2细胞病毒转染最佳MOI 20 pfu number/cell进行shRNA-慢病毒载体、阴性shRNA-慢病毒载体(Negative)及空载慢病毒载体(Blank)转染肝癌细胞,4 μg/ml嘌呤霉素进行转染后肝癌细胞为期一周的筛选,Western blot及RT-PCR检测转染慢病毒后抑制NEK7表达效果。
1.4 RT-PCR检测细胞中NEK7 mRNA的表达按照飞捷生物公司RNA Fast 2000总RNA提取试剂盒说明书操作步骤,提取不同细胞中总RNA,以37℃ 15 min→85℃ 5 s→-20℃冰箱中保存反转录合成cDNA,PCR 25 μl体系包括cDNA 2.5 μl、Primer1 1 μl、Primer2 1 μl、2×Master Mix 12.5 μl及灭菌蒸馏水8 μl进行PCR扩增,扩增条件:50℃预变性2 min, 95℃ 30 s, 58℃ 30 s, 72℃ 1 min,共循环30次,72℃ 10 min进行PCR扩增,扩增结束后进行琼脂糖凝胶电泳检测NEK7 mRNA的表达。
1.5 Western blot检测细胞中NEK7及细胞周期相关因子的表达按照说明书操作步骤,收集细胞,将细胞加入Pierce 100 μl,振荡后冰上放置5 min,予以13 000 r/min离心10 min,收集细胞蛋白至EP管,于聚丙烯凝胶进行电泳后转膜于偏聚二氟乙烯膜上,脱脂奶浸泡后分别予以1:1000的一抗(兔抗人NEK7抗体)及1:20000的二抗进行封闭与杂交,通过凝胶成像系统对目的蛋白以及内参蛋白免疫印迹条带进行分析,探究不同肝癌细胞系中NEK7及细胞周期相关因子的表达。
1.6 MTT实验MTT法检测不同处理组细胞增殖活性、β-半乳糖苷酶染色检测细胞衰老、Annexin V处理细胞后流式细胞仪检测转染后肝癌细胞的凋亡及细胞周期的变化。
1.7 统计学方法采用SPSS20.0统计软件对所得数据进行统计分析,组间差异比较采用t检验,P < 0.05为差异有统计学意义。
2 结果 2.1 不同肝癌细胞系及THLE-2细胞系中NEK7的表达相较于THLE-2细胞系,所有肝癌细胞系NEK7表达均显著升高(均P < 0.05),其中HepG2细胞系NEK7表达高于其余三种细胞系,见图 1。选取HepG2细胞系进行探究抑制NEK7表达后对细胞增殖活性、衰老及凋亡的影响。
2.2 转染不同shRNA质粒抑制肝癌细胞中NEK7的表达HepG2细胞株转染不同shRNA质粒72 h后,与阴性shRNA组细胞相比,各干扰组细胞中NEK7表达均有不同程度的下降,其中shRNA-70抑制NEK7表达效果较其他两组抑制效果更加明显(P < 0.001),见图 2。
2.3 不同处理组肝癌细胞中NEK7的表达HepG2肝癌细胞株转染阴性shRNA及shRNA-70慢病毒载体后,与空白对照组及阴性对照组相比,转染shRNA-70慢病毒载体组肝癌细胞NEK7表达显著下降(均P < 0.01),见图 3。
2.4 MTT法检测细胞增殖活性与空白对照组、阴性对照组相比,转染shRNA-70组的肝癌细胞,其增殖活性在24 h时开始出现降低趋势,在第72 h增殖活性受到的抑制最为显著,见图 4、表 1。
2.5 β-半乳糖苷酶染色检测肝癌细胞衰老
与空白对照组及阴性对照组比较,转染shRNA-70组的肝癌细胞,其衰老细胞比例显著升高,见图 5。
2.6 不同处理组肝癌细胞凋亡及细胞周期的变化应用不同处理方法处理肝癌细胞48 h后,经过PI-Annexin V-FITC标记双染,结果表明,与空白对照组及阴性对照组比,转染shRNA-70组抑制NEK7表达后,肝癌细胞凋亡百分率显著升高,其细胞周期进程受阻,G2/M期细胞数目明显减少,组间比较差异有统计学意义,见图 6。
2.7 Western blot检测细胞周期相关因子表达与空白对照组及阴性对照组相比,转染shRNA-70慢病毒载体的肝癌细胞,其C-myc、c-Fos、cyclin D1及cyclin E表达明显降低,而P16及P27的表达显著升高,CDK2、CDK4及CDK6在三者中的差别并不明显,见图 7。
3 讨论NEK家族成员在有丝分裂中主要参与了G2/M期关键点的调控,并在促进中心体成熟并影响染色体的浓集和纺锤体形成过程中发挥重要作用[5]。
NEK7作为NEK家族中重要的一员,既往研究表明在多种实体肿瘤中,NEK7均呈高表达状态[4, 6-7],为了探究NEK7在肝癌细胞中的功能,首先我们分析了不同肝癌细胞及人肝永生化THLE-2细胞系中NEK7的表达情况,结果显示肝癌细胞中NEK7呈高表达状态。
针对NEK7,我们设计了不同的shRNA序列,并筛选出最佳抑制序列,进而构建慢病毒载体转染所筛选出的肝癌细胞,抑制NEK7的表达水平。与实验预期的设想一致,抑制NEK7表达后,肝癌细胞的增殖活性受到显著抑制,同时肝癌细胞在不同时象出现了细胞衰老的表现,凋亡实验则表明NEK7的表达受到抑制后,肝癌细胞凋亡的比例显著升高。
进一步研究结果表明,抑制NEK7表达后,细胞周期进程受阻,处于S期及G2/M期的细胞比例显著下降。研究表明细胞周期中P16及P27可与细胞周期素D竞争性结合CDK2/4/6,阻止细胞从G1期进入到S期,从而对有丝分裂进行负调节[8-9],本实验结果同样表明,抑制NEK7后P16及P27的表达均有所升高,而在细胞增殖中通过结合形成活化蛋白1,进而诱导或抑制相关基因或蛋白的表达而对细胞周期起到正调控作用的C-myc、c-Fos因子[10-11],其表达则受到了抑制。与设想不一致的是与对照组细胞相比,抑制了NEK7表达的肝癌细胞其CDK的表达似乎并未受到影响,我们推测可能由于P16、cyclin D1/CDK4(6)及P27、cyclin E/CDK2复合物作为抑制剂,其表达的下降可能遮掩了NEK7对于CDK的单独抑制影响。
基于本研究结果,我们推断NEK7在肝癌细胞的发生及发展中可能起到了一定的推动作用,进一步的体内研究及探究其在肝癌细胞发生及发展过程中的具体机制,可能会为肝癌的早期诊断及分子靶向治疗提供新的靶位点。
作者贡献
宋燕州、张昆:实验设计及实施、数据分析及文章撰写
陈琦军、魏文平:实验操作、数据收集及分析
赵新、李志伟:指导数据分析、审核及文章撰写与修改
李伟:实验设计、指导文章撰写与修改
[1] |
Goshima G, Wollman R, Goodwin SS, et al. Genes required for mitotic spindle assembly in Drosophila S2 cells[J]. Science, 2007, 316(5823): 417-421. DOI:10.1126/science.1141314 |
[2] |
Gupta A, Tsuchiya Y, Ohta M, et al. NEK7 is required for G1 progression and procentriole formation[J]. Mol Biol Cell, 2017, 28(15): 2123-2134. DOI:10.1091/mbc.e16-09-0643 |
[3] |
Kim S, Lee K, Rhee K. NEK7 is a centrosomal kinase critical for microtubule nucleation[J]. Biochem Biophys Res Commun, 2007, 360(1): 56-62. DOI:10.1016/j.bbrc.2007.05.206 |
[4] |
Wang R, Song Y, Xu X, et al. The expression of Nek7, FoxM1, and Plk1 in gallbladder cancer and their relationships to clinicopathologic features and survival[J]. Clin Transl Oncol, 2013, 15(8): 626-632. DOI:10.1007/s12094-012-0978-9 |
[5] |
Fry AM, O'Regan L, Sabir SR, et al. Cell cycle regulation by the NEK family of protein kinases[J]. J Cell Sci, 2012, 125(Pt 19): 4423-4433. |
[6] |
Tan R, Nakajima S, Wang Q, et al. Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1[J]. Mol Cell, 2017, 65(5): 818-831. DOI:10.1016/j.molcel.2017.01.015 |
[7] |
Eisa NH, Jilani Y, Kainth K, et al. The co-chaperone UNC45A is essential for the expression of mitotic kinase NEK7 and tumorigenesis[J]. J Biol Chem, 2019, 294(14): 5246-5260. DOI:10.1074/jbc.RA118.006597 |
[8] |
Romagosa C, Simonetti S, López-Vicente L, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors[J]. Oncogene, 2011, 30(18): 2087-2097. DOI:10.1038/onc.2010.614 |
[9] |
Razavipour SF, Harikumar KB, Slingerland JM. p27 as a Transcriptional Regulator: New Roles in Development and Cancer[J]. Cancer Res, 2020, 80(17): 3451-3458. DOI:10.1158/0008-5472.CAN-19-3663 |
[10] |
García-Gutiérrez L, Delgado MD, León J. MYC Oncogene Contributions to Release of Cell Cycle Brakes[J]. Genes(Basel), 2019, 10(3): 244. |
[11] |
Tsiambas E, Mastronikolis N, P Fotiades P, et al. c-Jun/c-Fos complex in laryngeal squamous cell carcinoma[J]. J BUON, 2020, 25(2): 618-620. |