肿瘤防治研究  2021, Vol. 48 Issue (8): 820-824
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

RAS突变型转移性结直肠癌的精准治疗
Precision Therapy of Metastatic Colorectal Cancer with RAS Mutation
肿瘤防治研究, 2021, 48(8): 820-824
Cancer Research on Prevention and Treatment, 2021, 48(8): 820-824
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2021.21.0230
收稿日期: 2021-03-01
修回日期: 2021-05-09
RAS突变型转移性结直肠癌的精准治疗
邹佳运1 ,    杨天瑶2 ,    王颖1     
1. 110004 沈阳,中国医科大学附属盛京医院肿瘤科;
2. 110122 沈阳,中国医科大学公共卫生学院环境卫生学教研室
摘要: 转移性结直肠癌(mCRC)是一种异质性疾病,临床表现和分子分型差异大。目前,mCRC在治疗前需要常规行大鼠肉瘤病毒(RAS)基因检测。RAS突变状态与患者预后显著相关并能预测抗表皮生长因子受体(EGFR)治疗的疗效,然而仍缺乏针对RAS靶点的特异性治疗手段。既往研究表明直接抑制RAS蛋白带来的临床获益非常有限,最近报道了一种能够直接抑制KRAS G12C的有前景的药物—AMG-510,但还需要大样本研究进一步证实。近年来,通过抑制RAS基因相关效应器间接抑制RAS的表达、多靶点联合治疗及免疫治疗等均取得重要进展,有望成为针对RAS靶点的有效治疗手段。本文针对RAS突变型mCRC的精准治疗进行总结。
关键词: 结直肠癌    RAS基因突变    精准治疗    
Precision Therapy of Metastatic Colorectal Cancer with RAS Mutation
ZOU Jiayun1 , YANG Tianyao2 , WANG Ying1     
1. Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China;
2. Teaching and Research Room of Environmental Health, Academy of Public Health, China Medical University, Shenyang 110122, China
Abstract: Metastatic colorectal cancer (mCRC) is a clinical and molecular heterogeneous disease. Currently, for mCRC, extended rat sarcoma (RAS) testing is recommended in routine clinical practice before any treatment. RAS mutational status is significantly associated with the outcome of patients and strongly predictive for anti-EGFR-targeted therapy. However, specific treatments for RAS target are not yet available. Previous studies have shown that direct inhibition of RAS proteins has limited clinical benefits. Recently, a promising drug, AMG-510, which can directly inhibit KRAS G12C has been reported; however, it needs further confirmation. In the past few years, important advances have also been made in approaches designed to indirectly target RAS by inhibiting RAS effectors, multi-target combination strategies and immunotherapy. They are expected to be effective treatments for RAS target. This article summarizes the precision treatment of RAS-mutant mCRC.
Key words: Colorectal cancer    RAS mutation    Precision therapy    
0 引言

结直肠癌是一种异质性疾病,参与结直肠癌发病的途径有很多,基因组、转录组、表观基因组和代谢组学的改变在结直肠癌发生发展中起着重要的作用[1]。不同分子亚型的患者具有不同的临床病理特征和对化疗和靶向药物的治疗反应以及预后,掌握结直肠癌发病的分子机制有助于提高患者的生存。大鼠肉瘤病毒(rat sarcoma, RAS)基因编码的蛋白能够调节细胞内信号通路,调控细胞的增殖、迁移、分化、衰老和凋亡[2]。RAS蛋白有活化的膜结合型鸟苷三磷酸(guanosine triphosphate, GTP)和失活的鸟苷二磷酸(guanosine diphosphate, GDP)两种状态。RAS基因突变后,其产物能够抵抗GTP酶的水解作用,导致其下游的丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)和磷脂酰肌醇3激酶(phosphoinositide 3-kinase, PI3K)这两条信号通路异常活化,引起细胞的持续生长而引起癌变[3]。RAS家族包括KRAS、NRAS和HRAS,结直肠癌中KRAS和NRAS基因突变率分别约40%和4%,HRAS突变率较低,其中95%以上的突变发生在G12、G13和Q61三个位点[4]。基于RAS基因的突变状态来选择抗表皮生长因子受体(epidermal growth factor receptor, EGFR)单抗药物是当前的标准治疗[5]。由于缺乏针对转移性结直肠癌(metastatic colorectal cancer, mCRC)RAS基因突变人群设计的临床试验,其最佳的治疗方案仍在不断探索中,本文对RAS基因突变型mCRC精准治疗现状及相关研究进展作一综述。

1 抗血管生成靶向治疗

在mCRC一线治疗中,近年来有临床研究对比了不同KRAS基因状态与贝伐珠单抗疗效之间的关系。以5-氟尿嘧啶、亚叶酸钙联合奥沙利铂或伊立替康(5-fluorouracil, leucovorin, oxaliplatin/irinotecan, FOLFIRI/FOLFOX)为基础的化疗中加入贝伐珠单抗,KRAS野生型和突变型组患者的中位无进展生存期(median progression free survival, mPFS)分别为11.5月和11.4月,中位总生存期(median overall survival, mOS)分别为30.7月和28.4月(P=0.312),差异均无统计学意义,疗效不受KRAS状态的影响[6-7]。TRIBE研究中,对于体能状态好的RAS突变型患者,三药化疗(FOLFOXIRI)联合贝伐珠单抗对比双药化疗(FLOFIRI)联合贝伐珠单抗的客观缓解率(overall response rate, ORR)分别为66%和55%,mPFS分别为12月和9.5月,mOS分别为27.3月和23.9月,差异均无统计学意义,但三药化疗组的不良反应明显增加[8]。尽管目前各大指南均推荐化疗联合抗血管生成药物作为RAS基因突变型mCRC的主要治疗方案,但缺乏足够的循证医学证据。上述试验均非针对RAS突变患者设计的前瞻性随机对照研究,且化疗联合贝伐珠单抗并没有提高RAS突变患者的ORR、PFS及OS。然而最近中国的一项前瞻性、单中心随机对照研究共纳入241例仅有肝转移且RAS突变的mCRC患者,结果显示化疗联合贝伐珠单抗组(n=121)和单纯化疗组(n=120)的肝转移R0切除率分别为22.3%和5.8%,ORR分别为54.5%和36.7%,mPFS分别为9.5月和5.6月,mOS分别为25.7月和20.5月,差异均有统计学意义(P < 0.05),这也是唯一一项取得阳性结果的临床试验[9]。有研究发现高剂量的Vitamin C能选择性杀死KRAS或V-raf鼠肉瘤病毒癌基因同源体B(V-raf murine sarcoma viral oncogene homolog, BRAF)突变型的结直肠癌细胞株,且能够抑制KRAS(G12D)突变型小鼠肿瘤的生长[10],目前Ⅲ期临床试验FOLFOX±贝伐珠单抗联合Vitamin C用于mCRC一线治疗的研究正在进行中(NCT02969681)。在二线及后线治疗中,ML18147研究纳入300例KRAS突变型mCRC,化疗联合贝伐珠单抗组(n=164)和单纯化疗组(n=136)的ORR分别为4%和3%,DCR分别为70%和56%,mPFS分别为5.5月和4.1月(P=0.0027),mOS分别为10.4月和10月,差异均无统计学意义(P=0.496)。贝伐珠单抗的跨线治疗可能不是RAS突变型mCRC最佳选择,因为在ML18147研究中该治疗策略没有带来额外的生存获益[11]。尽管目前还没有充足的循证医学证据,但在一线治疗疾病仍快速进展的情况下,可能会考虑使用不同的抗血管生成药物,比如阿柏西普或雷莫芦单抗。呋喹替尼、瑞戈非尼、TAS-102均被指南推荐作为氟尿嘧啶、奥沙利铂、伊立替康或抗血管内皮生长因子(vascular endothelial growth factor, VEGF)、抗EGFR靶向药物等现有标准治疗失败后的mCRC三线标准治疗药物,研究发现这三种药物的疗效均不受KRAS状态的影响[12-14]

2 抑制RAS基因及RAS下游信号蛋白药物治疗

到目前为止,还没有针对RAS基因的靶向药物成功上市。在mCRC中,KRAS G12C突变率不到4%,AMG-510是一种口服的小分子药物,能够特异性地不可逆地结合并抑制KRAS G12C,一项Ⅰ期研究入组19例伴KRAS G12C突变的mCRC患者,经AMG-510治疗后,14例患者疾病稳定,5例患者疾病进展,对于伴KRAS G12C突变的mCRC患者有一定疗效且不良反应可耐受。AMG-510联合免疫检查点抑制剂以及其他药物的临床试验正在进行中,其疗效尚等待观察[4, 7, 15]。BI-1701963是针对KRAS的非特异性抑制剂,通过选择性地抑制SOS1来阻断RAS信号转导。临床前研究表明BI-1701963对KRAS突变的肿瘤有效。目前,中国正在参与该药的全球临床试验(NCT04111458)。Antroquinol也能通过抑制异戊二烯转移酶的活性,促进细胞凋亡,间接抑制RAS和RAS相关的GTP结合蛋白的激活,临床前研究证明其对RAS突变型大肠癌有一定疗效[16-17]。抑制RAS下游信号蛋白的研究主要包括MEK和PI3K蛋白。单药MEK抑制剂用于实体肿瘤的Ⅰ期研究中,入组41例既往接受系统治疗(中位治疗线数为4线)失败的mCRC,其中KRAS突变型有28例,均对MEK抑制剂治疗无反应[18]。目前考虑应用单药MEK抑制剂易出现耐药及不良反应,其仍无法常规应用于临床[19]。一项MEK抑制剂联合EGFR/ERBB3双重阻断的早期临床试验显示,22例患者中9例患者疾病稳定,13例患者疾病进展,且因患者耐受较差而没有进行进一步的探索[20]。体外实验表明MEK抑制剂联合抗EGFR单抗能够诱导KRAS/NRAS突变型大肠癌细胞的死亡,具有一定疗效。对6例化疗抵抗的KRAS突变型结肠癌治疗后发现KRAS2号外显子突变相比3号外显子突变对联合治疗反应更好,但还有待大样本的临床试验进一步验证[21-22]。考虑到信号通路的转导及反馈机制,研究者对PI3K和MEK通路的双重抑制也进行了深入的研究,但由于疗效差及较大的不良反应,不同的药物组合方案均没有得到阳性结果[19]。比较有前景的药物组合方案是CDK4/6抑制剂联合MEK抑制剂,Ziemke等发现曲美替尼联合帕布昔利布在KRAS突变型mCRC异种移植模型治疗中疗效佳且耐受性好[23],目前Ⅱ期临床试验正在进行中(NCT03981614),结果值得期待。

3 免疫治疗

高度微卫星不稳定/错配修复缺陷(microsatellite instability-high, MSI-H/defective mismatch repair, dMMR)型mCRC突变负荷高,能产生大量新抗原激发免疫反应,因此免疫检查点抑制剂潜在有效。CheckMate 142研究是一项多队列Ⅱ期临床研究,分成3个队列,队列1评估纳武利尤单抗联合伊匹单抗一线治疗dMMR/MSI-H型mCRC的疗效,在可评估的45例患者中,客观缓解率(overall response rate, ORR)达到60%,KRAS突变型有10例,亚组分析显示疗效不受KRAS状态的影响[24]。队列2入组74例既往接受至少一线标准治疗失败的患者,单药纳武利尤单抗治疗ORR为31.1%,超过12周的DCR为69%,9月和12月PFS率分别为54%和50%,OS率分别为78%和73%,其中26例为KRAS突变型,ORR为26.9%,超过12周DCR达62%[25]。队列3为经一线标准化疗进展后应用纳武利尤单抗联合伊匹单抗,在可评估的119例患者中ORR达到55%,超过12周的DCR为80%,9月和12月PFS率分别为76%和71%,OS率分别为87%和85%,其中44例KRAS突变患者ORR达57%,超过12周DCR达84%[26]。尽管KRAS突变亚组的患者数目较少,间接比较3组队列的数据有一定局限性,我们仍可以看出,dMMR/MSI-H型mCRC伴KRAS突变的患者似乎从双免治疗中获益更多。2020年ASCO会议上,研究者报道了KEYNOTE-177研究,旨在比较dMMR/MSI-H型mCRC一线帕博利珠单抗和标准治疗(化疗±靶向)的疗效。共入组307例患者,程序性死亡受体1(programmed cell death 1, PD-1)单抗治疗组153例,化疗组154例。结果显示mPFS分别为16.5月和8.2月,ORR分别为43.8%和33.1%。但亚组分析的森林图可以发现,KRAS或NRAS突变的患者使用PD-1单抗相比单纯化疗的获益没有显著差异(NCT02563002)。KEYNOTE-164研究中,A组纳入61例既往至少接受二线系统治疗失败的患者,使用帕博利珠单抗的ORR达到33%,DCR为51%,12月和24月PFS分别为34%和31%,OS率分别为72%和55%,其中19例RAS突变患者ORR为37%。B组纳入63例既往至少接受一线系统治疗失败的患者,应用帕博利珠单抗的ORR达33%,DCR为57%,12月和24月PFS率分别为41%和37%,OS率分别为76%和63%,其中25例RAS突变患者ORR为36%。同样也可以看到RAS突变亚组中单药PD-1单抗治疗获益不显著[27]。综上所述,伴RAS突变的dMMR/MSI-H型mCRC患者,双免治疗可能比单免治疗获益更多。而PD-1单抗用于治疗伴RAS突变的MSS型mCRC患者疗效有限。一项MEK抑制剂联合程序性死亡受体配体1(programmed cell death 1 ligand 1, PD-L1)单抗的ⅠB期研究,入组23例经标准治疗失败后伴RAS突变的MSS型mCRC患者,部分缓解率达17%[28]。随后的更新结果显示联合用药安全性良好,ORR为8%,mOS为10.0月,12月的OS率为46%,KRAS突变型和野生型患者疗效无显著差异[29]。但Ⅲ期临床试验没有达到主要研究终点,IMblaze370研究中,双药联合组纳入183例患者,ORR为3%,DCR为26%,6月和12月OS率分别为64.7%和38.5%,其中有99例RAS突变型患者,亚组分析显示ORR仅为1%,PFS和OS无显著提高[30]。2020年ASCO会议口头报告了一项ⅠB/Ⅱ期MEDETREME研究,中期结果显示:双免联合FOLFOX一线治疗伴KRAS突变的MSS型mCRC患者ORR达到62.5%(10/16),DCR达到87.5%(14/16),最终结果值得期待。

4 手术治疗

RAS基因状态是结直肠癌肝转移行肝切除术后重要的预后因子。KRAS突变型患者的mOS明显比野生型患者差。RAS突变型患者在肝转移切除术后发生肺转移的概率显著增高,而肝转移的发生率与RAS野生型相似[31-32]。原发肿瘤周围淋巴结转移、肿瘤直径 > 3 cm和术前化疗超过7周期是复发率高和预后差的预测因素。有数据显示,KRAS突变型患者在肺转移瘤切除术后更易复发,也与更广泛的转移相关[33]。总之,RAS突变型患者预后差,术后复发风险高,但RAS突变目前还未能作为判断转移灶是否应该切除的标准。

5 抗EGFR单抗再引入治疗

初始RAS野生型mCRC在应用抗EGFR单抗治疗一段时间后,大约有50%的患者会出现RAS突变[34]。这种继发性获得耐药的机制尚不完全清楚,肿瘤组织内细胞的异质性以及经药物选择后的肿瘤细胞克隆增殖可能导致RAS基因状态的转化[35]。RAS突变克隆细胞在抗EGFR治疗间歇期又可能转变成RAS野生状态,这种情况下患者对抗EGFR治疗可能再次敏感[36]。而对于初始RAS突变型mCRC,由于肿瘤内分子分型不同的亚克隆细胞在肿瘤微环境改变和治疗的选择下,一部分RAS突变肿瘤细胞也会随之消失。Raimondi等报道了11例初始RAS突变型mCRC经化疗联合抗血管生成靶向治疗失败后,通过循环肿瘤脱氧核糖核酸(circulating tumor deoxyribonucleic acid, ctDNA)测定,发现4例患者RAS突变检测结果转为阴性,在接受抗EGFR单抗治疗后均有明显的临床获益。其中3例患者为二线接受化疗联合抗EGFR单抗治疗,PFS分别达到了12月、10月和6月。1例患者为四线接受抗EGFR单抗治疗,PFS达到了4月[37]。目前越来越多的证据支持抗EGFR治疗在临床实践中再挑战策略,而通过液体活检ctDNA技术有助于检测和动态监测RAS突变克隆,从而指导抗EGFR治疗的最佳使用时机[36]。总之,无论患者初始治疗时RAS基因的状态如何,在疾病进展时都应该重新检测RAS状态并根据结果选择相应治疗策略。

6 结论及展望

晚期结直肠癌中针对RAS靶点的精准治疗仍是肿瘤学领域具有挑战的难点。由于RAS介导的信号转导通路中复杂的反馈代偿机制、旁路激活以及肿瘤对药物敏感的异质性,至今仍没有针对RAS基因突变mCRC的标准规范化治疗,但还是找到了一些有前景的研究方向:中国的一项伴肝转移的RAS突变mCRC研究为化疗联合抗血管生成治疗提供了一定依据,针对KRAS G12C的抑制剂在早期临床试验中也取得了不错的结果,抗PD-1/PD-L1联合治疗以及多靶点药物的联合治疗也有一定获益。对RAS基因抑制剂的研究一直是热点和难点,人类呼肠病毒血清型3能在RAS突变的细胞中复制增殖并引起细胞溶解,对mCRC KRAS突变位点有靶向杀伤作用,一项关于溶血素与FOLFIRI联合贝伐珠单抗治疗KRAS突变型mCRC的多中心Ⅰ期临床研究正在进行中(NCT01274624)。此外,针对RAS突变肽设计的疫苗和针对RAS突变患者的多克隆T细胞免疫治疗也可能会是一个重大突破[38-39]。我们也逐步认识到不同的RAS突变类型可能会对下游信号通路产生不同的影响,结直肠癌中不同的分子分型也会影响针对RAS靶点的治疗。全面了解RAS突变mCRC中信号通路的功能关系和基因位点的相互作用有助于探索更有效的治疗方法。

作者贡献:

邹佳运:资料收集、文章撰写

杨天瑶:资料收集

王颖:文章修改及审核

参考文献
[1]
Dienstmann R, Connor K, Byrne AT, et al. Precision Therapy in RAS Mutant Colorectal Cancer[J]. Gastroenterology, 2020, 158(4): 806-811. DOI:10.1053/j.gastro.2019.12.051
[2]
Jinesh GG, Sambandam V, Vijayaraghavan S, et al. Molecular genetics and cellular events of K-Ras-driven tumorigenesis[J]. Oncogene, 2018, 37(7): 839-846. DOI:10.1038/onc.2017.377
[3]
Saeed O, Lopez-Beltran A, Fisher KW, et al. RAS genes in colorectal carcinoma: pathogenesis, testing guidelines and treatment implications[J]. J Clin Pathol, 2019, 72(2): 135-139. DOI:10.1136/jclinpath-2018-205471
[4]
Serebriiskii IG, Connelly C, Frampton G, et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients[J]. Nat Commun, 2019, 10(1): 3722-3734. DOI:10.1038/s41467-019-11530-0
[5]
Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline Summary From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology[J]. J Oncol Pract, 2017, 13(5): 333-337. DOI:10.1200/JOP.2017.022152
[6]
Bencsikova B, Bortlicek Z, Halamkova J, et al. Efficacy of bevacizumab and chemotherapy in the first-line treatment of metastatic colorectal cancer: broadening KRAS-focused clinical view[J]. BMC Gastroenterol, 2015, 15: 37-47. DOI:10.1186/s12876-015-0266-6
[7]
Lakatos G, Kohne CH, Bodoky G. Current therapy of advanced colorectal cancer according to RAS/RAF mutational status[J]. Cancer Metast Rev, 2020, 39(4): 1143-1157. DOI:10.1007/s10555-020-09913-7
[8]
Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study[J]. Lancet Oncol, 2015, 16(13): 1306-1315. DOI:10.1016/S1470-2045(15)00122-9
[9]
Tang W, Ren L, Liu T, et al. Bevacizumab Plus mFOLFOX6 Versus mFOLFOX6 Alone as First-Line Treatment for RAS Mutant Unresectable Colorectal Liver-Limited Metastases: The BECOME Randomized Controlled Trial[J]. J Clin Oncol, 2020, 38(27): 3175-3184. DOI:10.1200/JCO.20.00174
[10]
Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH[J]. Science, 2015, 350(6266): 1391-1396. DOI:10.1126/science.aaa5004
[11]
Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial[J]. Lancet Oncol, 2013, 14(1): 29-37. DOI:10.1016/S1470-2045(12)70477-1
[12]
Li J, Qin S, Xu RH, et al. Effect of Fruquintinib vs Placebo on Overall Survival in Patients With Previously Treated Metastatic Colorectal Cancer: The FRESCO Randomized Clinical Trial[J]. JAMA, 2018, 319(24): 2486-2496. DOI:10.1001/jama.2018.7855
[13]
Grothey A, Cutsem EV, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial[J]. Lancet, 2013, 381(9863): 303-312. DOI:10.1016/S0140-6736(12)61900-X
[14]
Van Cutsem E, Mayer RJ, Laurent S, et al. The subgroups of the phase Ⅲ RECOURSE trial of trifluridine/tipiracil (TAS-102) versus placebo with best supportive care in patients with metastatic colorectal cancer[J]. Eur J Cancer, 2018, 90: 63-72. DOI:10.1016/j.ejca.2017.10.009
[15]
Govindan R, Fakih MG, Price TJ, et al. Phase 1 study of AMG 510, a novel molecule targeting KRAS G12C mutant solid tumors[J]. Ann Oncol, 2019, 30(suppl_5): v163-v164.
[16]
Lin HC, Lin MH, Liao JH, et al. Antroquinonol, a Ubiquinone Derivative from the Mushroom Antrodia camphorata, Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets[J]. J Agric Food Chem, 2017, 65(1): 51-59. DOI:10.1021/acs.jafc.6b04101
[17]
Ho CL, Wang JL, Lee CC, et al. Antroquinonol blocks Ras and Rho signaling via the inhibition of protein isoprenyltransferase activity in cancer cells[J]. Biomed Pharmacother, 2014, 68(8): 1007-1014. DOI:10.1016/j.biopha.2014.09.008
[18]
Rosen LS, LoRusso P, Ma WW, et al. A first-in-human phaseⅠstudy to evaluate the MEK1/2 inhibitor, cobimetinib, administered daily in patients with advanced solid tumors[J]. Invest New Drug, 2016, 34(5): 604-613. DOI:10.1007/s10637-016-0374-3
[19]
Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers[J]. Nat Rev Clin Oncol, 2018, 15(11): 709-720. DOI:10.1038/s41571-018-0105-0
[20]
Lieu CH, Hidalgo M, Berlin JD, et al. A PhaseⅠb Dose-Escalation Study of the Safety, Tolerability, and Pharmacokinetics of Cobimetinib and Duligotuzumab in Patients with Previously Treated Locally Advanced or Metastatic Cancers with Mutant KRAS[J]. Oncologist, 2017, 22(9): 1024-e89.
[21]
Ledys F, Derangere V, Reda M, et al. Anti-MEK and Anti-EGFR mAbs in RAS-Mutant Metastatic Colorectal Cancer: Case Series and Rationale[J]. Adv Ther, 2019, 36(6): 1480-1484. DOI:10.1007/s12325-019-00949-y
[22]
Migliardi G, Sassi F, Torti D, et al. Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas[J]. Clin Cancer Res, 2012, 18(9): 2515-2525. DOI:10.1158/1078-0432.CCR-11-2683
[23]
Ziemke EK, Dosch JS, Maust JD, et al. Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6[J]. Clin Cancer Res, 2016, 22(2): 405-414. DOI:10.1158/1078-0432.CCR-15-0829
[24]
Lenz HJ, Van Cutsem E, Limon ML, et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC)[J/OL]. Ann Oncol, 2018, 29(Suppl 8): LBA18_PR.
[25]
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191. DOI:10.1016/S1470-2045(17)30422-9
[26]
Overman MJ, Lonardi S, Wong KYM, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer[J]. J Clin Oncol, 2018, 36(8): 773-779. DOI:10.1200/JCO.2017.76.9901
[27]
Le DT, Kim TW, Van Cutsem E, et al. Phase Ⅱ Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164[J]. J Clin Oncol, 2020, 38(1): 1-9. DOI:10.1200/JCO.19.02105
[28]
Bendell JC, Kim TW, Goh BC. Clinical activity and safety of cobimetinib(cobi) and atezolizumab in colorectal cancer(CRC)[J]. J Clin Oncol, 2016, 34(15_suppl): 3502-3502. DOI:10.1200/JCO.2016.34.15_suppl.3502
[29]
Bendell J, Bang YJ, Chee CE, et al. A phaseⅠb study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer(mCRC)[J]. J Clin Oncol, 2018, 36(4_suppl): 560-560. DOI:10.1200/JCO.2018.36.4_suppl.560
[30]
Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2019, 20(6): 849-861. DOI:10.1016/S1470-2045(19)30027-0
[31]
Passot G, Denbo JW, Yamashita S, et al. Is hepatectomy justified for patients with RAS mutant colorectal liver metastases? An analysis of 524 patients undergoing curative liver resection[J]. Surgery, 2017, 161(2): 332-340. DOI:10.1016/j.surg.2016.07.032
[32]
Vauthey JN, Zimmitti G, Kopetz SE, et al. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases[J]. Ann Surg, 2013, 258(4): 619-626. DOI:10.1097/SLA.0b013e3182a5025a
[33]
Schweiger T, Hegedus B, Nikolowsky C, et al. EGFR, BRAF and KRAS status in patients undergoing pulmonary metastasectomy from primary colorectal carcinoma: a prospective follow-up study[J]. Ann Surg Oncol, 2014, 21(3): 946-954. DOI:10.1245/s10434-013-3386-7
[34]
Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer[J]. Nature, 2012, 486(7404): 532-536. DOI:10.1038/nature11156
[35]
Goldberg RM, Montagut C, Wainberg ZA, et al. Optimising the use of cetuximab in the continuum of care for patients with metastatic colorectal cancer[J]. ESMO Open, 2018, 3(4): e000353. DOI:10.1136/esmoopen-2018-000353
[36]
Cremolini C, Rossini D, Dell'Aquila E, et al. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan: A Phase 2 Single-Arm Clinical Trial[J]. JAMA Oncol, 2019, 5(3): 343-350. DOI:10.1001/jamaoncol.2018.5080
[37]
Raimondi C, Nicolazzo C, Belardinilli F, et al. Transient Disappearance of RAS Mutant Clones in Plasma: A Counterintuitive Clinical Use of EGFR Inhibitors in RAS Mutant Metastatic Colorectal Cancer[J]. Cancer(Basel), 2019, 11(1): 42-52.
[38]
Toubaji A, Achtar M, Provenzano M, et al. Pilot study of mutant Ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers[J]. Cancer Immunol Immunother, 2008, 57(9): 1413-1420. DOI:10.1007/s00262-008-0477-6
[39]
Tran E, Robbins PF, Lu YC, et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer[J]. New Engl J Med, 2016, 375(23): 2255-2262. DOI:10.1056/NEJMoa1609279