[1] |
O'Regan P, McCarthy G, O'Reilly S, et al. Cancer-related fatigue and self-care agency: A multicentre survey of patients receiving chemotherapy[J]. J Clin Nurs, 2019, 28(23-24): 4424-4433. DOI:10.1111/jocn.15026 |
|
[2] |
Berger AM, Mooney K, Alvarez-Perez A, et al. Cancer-Related Fatigue, Version 2.2015[J]. J Natl Compr Canc Netw, 2015, 13(8): 1012-1039. DOI:10.6004/jnccn.2015.0122 |
|
[3] |
Bower JE. Cancer-related fatigue--mechanisms, risk factors, and treatments[J]. Nat Rev Clin Oncol, 2014, 11(10): 597-609. DOI:10.1038/nrclinonc.2014.127 |
|
[4] |
Yang S, Chu S, Gao Y, et al. A Narrative Review of Cancer-Related Fatigue (CRF) and Its Possible Pathogenesis[J]. Cells, 2019, 8(7): 738. DOI:10.3390/cells8070738 |
|
[5] |
de Lima EA, de Sousa LGO, de S Teixeira AA, et al. Aerobic exercise, but not metformin, prevents reduction of muscular performance by AMPk activation in mice on doxorubicin chemotherapy[J]. J Cell Physiol, 2018, 233(12): 9652-9662. DOI:10.1002/jcp.26880 |
|
[6] |
Dougherty JP, Wolff BS, Cullen MJ, et al. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue[J]. Pharmacol Res, 2017, 124: 1-8. DOI:10.1016/j.phrs.2017.07.012 |
|
[7] |
Sougiannis AT, VanderVeen BN, Enos RT, et al. Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota[J]. Brain Behav Immun, 2019, 80: 44-55. DOI:10.1016/j.bbi.2019.02.020 |
|
[8] |
Loman BR, Jordan KR, Haynes B, et al. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice[J]. Sci Rep, 2019, 9(1): 16490. DOI:10.1038/s41598-019-52893-0 |
|
[9] | |
|
[10] |
Sorensen JC, Petersen AC, Timpani CA, et al. BGP-15 Protects against Oxaliplatin-Induced Skeletal Myopathy and Mitochondrial Reactive Oxygen Species Production in Mice[J]. Front Pharmacol, 2017, 8: 137. |
|
[11] | |
|
[12] |
Hayward R, Hydock D, Gibson N, et al. Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function[J]. J Physiol Biochem, 2013, 69(2): 177-187. DOI:10.1007/s13105-012-0200-0 |
|
[13] |
Quinn CJ, Hydock DS. Effects of endurance exercise and doxorubicin on skeletal muscle myogenic regulatory factor expression[J]. Muscles Ligaments Tendons J, 2017, 7(3): 418-425. DOI:10.11138/mltj/2017.7.3.418 |
|
[14] |
Bredahl EC, Pfannenstiel KB, Quinn CJ, et al. Effects of Exercise on Doxorubicin-Induced Skeletal Muscle Dysfunction[J]. Med Sci Sports Exerc, 2016, 48(8): 1468-1473. DOI:10.1249/MSS.0000000000000926 |
|
[15] |
de Lima Junior EA, Yamashita AS, Pimentel GD, et al. Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2016, 7(5): 615-625. DOI:10.1002/jcsm.12104 |
|
[16] |
Norden DM, McCarthy DO, Bicer S, et al. Ibuprofen ameliorates fatigue- and depressive-like behavior in tumor-bearing mice[J]. Life Sci, 2015, 143: 65-70. DOI:10.1016/j.lfs.2015.10.020 |
|
[17] |
Hayward R, Lien CY, Jensen BT, et al. Exercise training mitigates anthracycline-induced chronic cardiotoxicity in a juvenile rat model[J]. Pediatric Blood Cancer, 2012, 59(1): 149-154. DOI:10.1002/pbc.23392 |
|
[18] |
Park SS, Park HS, Jeong H, et al. Treadmill Exercise Ameliorates Chemotherapy-Induced Muscle Weakness and Central Fatigue by Enhancing Mitochondrial Function and Inhibiting Apoptosis[J]. Int Neurourol J, 2019, 23(Suppl 1): S32-S39. DOI:10.5213/inj.1938046.023 |
|
[19] |
齐晓晔, 雷萍, 齐兆东, 等. 归脾汤对化疗相关性疲劳模型TNF-α分泌的调节效应[J]. 亚太传统医药, 2019, 15(1): 13-15. [Qi XY, Lei P, Qi ZD, et al. The Regulatory Effect of Guipi Decoction on TNF-α Secretion in Chemotherapy-Induced Fatigue Model[J]. Ya Tai Chuan Tong Yi Yao, 2019, 15(1): 13-15.] |
|
[20] |
Chaillou T, McPeek A, Lanner JT. Docetaxel does not impair skeletal muscle force production in a murine model of cancer chemotherapy[J]. Physiol Rep, 2017, 5(11): e13261. DOI:10.14814/phy2.13261 |
|
[21] |
Sakai H, Sagara A, Arakawa K, et al. Mechanisms of cisplatin-induced muscle atrophy[J]. Toxicol Appl Pharmacol, 2014, 278(2): 190-199. DOI:10.1016/j.taap.2014.05.001 |
|
[22] |
Crouch ML, Knowels G, Stuppard R, et al. Cyclophosphamide leads to persistent deficits in physical performance and in vivo mitochondria function in a mouse model of chemotherapy late effects[J]. PLoS One, 2017, 12(7): e0181086. DOI:10.1371/journal.pone.0181086 |
|
[23] |
Barreto R, Waning DL, Gao H, et al. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs[J]. Oncotarget, 2016, 7(28): 43442-43460. DOI:10.18632/oncotarget.9779 |
|
[24] |
Wong J, Tran LT, Lynch KA, et al. Dexamethasone exacerbates cytotoxic chemotherapy induced lethargy and weight loss in female tumor free mice[J]. Cancer Biol Ther, 2018, 19(1): 87-96. DOI:10.1080/15384047.2017.1394549 |
|
[25] |
Weymann KB, Wood LJ, Zhu X, et al. A role for orexin in cytotoxic chemotherapy-induced fatigue[J]. Brain Behav Immun, 2014, 37: 84-94. DOI:10.1016/j.bbi.2013.11.003 |
|
[26] |
Grossberg AJ, Vichaya EG, Gross PS, et al. Interleukin 6-independent metabolic reprogramming as a driver of cancer-related fatigue[J]. Brain Behav Immun, 2020, 88: 230-241. DOI:10.1016/j.bbi.2020.05.043 |
|
[27] |
O'Higgins CM, Brady B, O'Connor B, et al. The pathophysiology of cancer-related fatigue: current controversies[J]. Supportive Care Cancer, 2018, 26(10): 3353-3364. DOI:10.1007/s00520-018-4318-7 |
|
[28] |
Zhang WL, Li N, Shen Q, et al. Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide Ⅰ[J]. Acta Pharmacol Sin, 2020, 41(2): 237-248. DOI:10.1038/s41401-019-0275-z |
|
[29] |
Norden DM, Devine R, Bicer S, et al. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue[J]. Physiol Behav, 2015, 140: 230-235. DOI:10.1016/j.physbeh.2014.12.045 |
|
[30] |
Grossberg AJ, Vichaya EG, Christian DL, et al. Tumor-Associated Fatigue in Cancer Patients Develops Independently of IL1 Signaling[J]. Cancer Res, 2018, 78(3): 695-705. DOI:10.1158/0008-5472.CAN-17-2168 |
|
[31] |
Vichaya EG, Ford BG, Quave CB, et al. Toll-like receptor 4 mediates the development of fatigue in the murine Lewis Lung Carcinoma model independently of activation of macrophages and microglia[J]. Psychoneuroendocrinology, 2020, 122: 104874. DOI:10.1016/j.psyneuen.2020.104874 |
|
[32] |
Gilliam LA, Lark DS, Reese LR, et al. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction[J]. Am J Physiol Endocrinol Metab, 2016, 311(2): E293-E301. DOI:10.1152/ajpendo.00540.2015 |
|
[33] | |
|
[34] |
Ouyang MZ, Lin LZ, Lv WJ, et al. Effects of the polysaccharides extracted from Ganoderma lucidum on chemotherapy-related fatigue in mice[J]. Int J Biol Macromol, 2016, 91: 905-910. DOI:10.1016/j.ijbiomac.2016.04.084 |
|
[35] |
Wolff BS, Raheem SA, Saligan LN. Comparing passive measures of fatigue-like behavior in mice[J]. Sci Rep, 2018, 8(1): 14238. DOI:10.1038/s41598-018-32654-1 |
|
[36] |
Wood LJ, Nail LM, Perrin NA, et al. The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms[J]. Biol Res Nurs, 2006, 8(2): 157-169. DOI:10.1177/1099800406290932 |
|
[37] |
Deschenes MR, Li S, Adan MA, et al. Muscle fibers and their synapses differentially adapt to aging and endurance training[J]. Exp Gerontol, 2018, 106: 183-191. DOI:10.1016/j.exger.2018.03.010 |
|
[38] |
Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner[J]. Cancer Res, 2011, 71(5): 1710-1720. DOI:10.1158/0008-5472.CAN-10-3145 |
|