[1] | |
|
[2] |
Zhang M, Zhang C, Zhang L, et al. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma[J]. BMC Cancer, 2015, 15: 531. DOI:10.1186/s12885-015-1541-1 |
|
[3] |
Torresano L, Nuevo-Tapioles C, Santacatterina F, et al. Metabolic reprogramming and disease progression in cancer patients[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165721. DOI:10.1016/j.bbadis.2020.165721 |
|
[4] |
Li X, Jiang Y, Meisenhelder J, et al. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis[J]. Mol Cell, 2016, 61(5): 705-719. DOI:10.1016/j.molcel.2016.02.009 |
|
[5] |
García-Bermúdez J, Sánchez-Aragó M, Soldevilla B, et al. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase[J]. Cell Rep, 2015, 12(12): 2143-2155. DOI:10.1016/j.celrep.2015.08.052 |
|
[6] | |
|
[7] |
Ying H, Kimmelman AC, Lyssiotis CA, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism[J]. Cell, 2012, 149(3): 656-670. DOI:10.1016/j.cell.2012.01.058 |
|
[8] |
Kerr EM, Gaude E, Turrell FK, et al. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities[J]. Nature, 2016, 531(7592): 110-113. DOI:10.1038/nature16967 |
|
[9] |
Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and metabolism[J]. J Mol Cell Biol, 2019, 11(4): 284-292. DOI:10.1093/jmcb/mjy070 |
|
[10] |
Qiu MK, Wang SQ, Pan C, et al. ROCK inhibition as a potential therapeutic target involved in apoptosis in hemangioma[J]. Oncol Rep, 2017, 37(5): 2987-2993. DOI:10.3892/or.2017.5515 |
|
[11] | |
|
[12] |
Ohnishi T, Kusuyama J, Bandow K, et al. Glut1 expression is increased by p53 reduction to switch metabolism to glycolysis during osteoblast differentiation[J]. Biochem J, 2020, 477(10): 1795-1811. DOI:10.1042/BCJ20190888 |
|
[13] |
Butturini E, Carcereri de Prati A, Boriero D, et al. Tumor Dormancy and Interplay with Hypoxic Tumor Microenvironment[J]. Int J Mol Sci, 2019, 20(17): 4305. DOI:10.3390/ijms20174305 |
|
[14] |
Hu L, Cui R, Liu H, et al. Emodin and rhein decrease levels of hypoxia-inducible factor-1α in human pancreatic cancer cells and attenuate cancer cachexia in athymic mice carrying these cells[J]. Oncotarget, 2017, 8(50): 88008-88020. |
|
[15] |
马苑, 付秀华, 王立红. 肿瘤缺氧微环境的研究进展[J]. 癌症进展, 2020, 18(2): 109-112, 147. [Ma Y, Fu XH, Wang LH. Research progress of tumor hypoxic microenvironment[J]. Ai Zheng Jin Zhan, 2020, 18(2): 109-112, 147.] |
|
[16] | |
|
[17] |
Wong TL, Ng KY, Tan KV, et al. CRAF Methylation by PRMT6 Regulates Aerobic Glycolysis-Driven Hepatocarcinogenesis via ERK-Dependent PKM2 Nuclear Relocalization and Activation[J]. Hepatology, 2020, 71(4): 1279-1296. DOI:10.1002/hep.30923 |
|
[18] |
Singh D, Arora R, Kaur P, et al. Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer[J]. Cell Biosci, 2017, 7: 62. DOI:10.1186/s13578-017-0190-2 |
|
[19] |
Erra Díaz F, Ochoa V, Merlotti A, et al. Extracellular Acidosis and mTOR Inhibition Drive the Differentiation of Human Monocyte-Derived Dendritic Cells[J]. Cell Rep, 2020, 31(5): 107613. DOI:10.1016/j.celrep.2020.107613 |
|
[20] |
Gómez V, Eykyn TR, Mustapha R, et al. Breast cancer-associated macrophages promote tumorigenesis by suppressing succinate dehydrogenase in tumor cells[J]. Sci Signal, 2020, 13(652): eaax4585. DOI:10.1126/scisignal.aax4585 |
|
[21] |
Halaby MJ, Hezaveh K, Lamorte S, et al. GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment[J]. Sci Immunol, 2019, 4(42): eaax8189. DOI:10.1126/sciimmunol.aax8189 |
|
[22] |
Kaelin WG Jr., Thompson CB. Q & A. Cancer: clues from cell metabolism[J]. Nature, 2010, 465(7298): 562-564. DOI:10.1038/465562a |
|
[23] |
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337. DOI:10.1038/nrc3038 |
|
[24] |
Hamanaka RB, Chandel NS. Targeting glucose metabolism for cancer therapy[J]. J Exp Med, 2012, 209(2): 211-215. DOI:10.1084/jem.20120162 |
|
[25] | |
|
[26] |
Liu Y, Murray-Stewart T, Casero RA Jr, et al. Targeting hexokinase 2 inhibition promotes radiosensitization in HPV16 E7-induced cervical cancer and suppresses tumor growth[J]. Inter J Oncol, 2017, 50(6): 2011-2023. DOI:10.3892/ijo.2017.3979 |
|
[27] |
DeWaal D, Nogueira V, Terry AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1): 446-446. DOI:10.1038/s41467-017-02733-4 |
|
[28] |
Yadav S, Pandey SK, Goel Y, et al. Diverse stakeholders of tumor metabolism: An appraisal of the emerging approach of multifaceted metabolic targeting by 3-bromopyruvate[J]. Front Pharmacol, 2019, 10: 728. DOI:10.3389/fphar.2019.00728 |
|
[29] |
Zhang Z, Deng X, Liu Y, et al. PKM2, function and expression and regulation[J]. Cell Biosci, 2019, 9: 52. Erratum in: Cell Biosci. 2019, 9: 59.
|
|
[30] |
Zahra K, Dey T, Ashish, et al. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis[J]. Front Oncol, 2020, 10: 159. DOI:10.3389/fonc.2020.00159 |
|
[31] |
Trojan SE, Markiewicz MJ, Leśkiewicz K, et al. The influence of PFK-Ⅱ overexpression on neuroblastoma patients' survival may be dependent on the particular isoenzyme expressed, PFKFB3 or PFKFB4[J]. Cancer Cell Int, 2019, 19: 292. DOI:10.1186/s12935-019-1005-9 |
|
[32] |
Li FL, Liu JP, Bao RX, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis[J]. Nat Commun, 2018, 9(1): 508. DOI:10.1038/s41467-018-02950-5 |
|
[33] |
Doménech E, Maestre C, Esteban-Martínez L, et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest[J]. Nature Cell Biol, 2015, 17(10): 1304-1316. DOI:10.1038/ncb3231 |
|
[34] |
Yakisich JS, Azad N, Kaushik V, et al. The biguanides metformin and buformin in combination with 2-deoxy-glucose or WZB-117 inhibit the viability of highly resistant human lung cancer cells[J]. Stem Cells Int, 2019, 2019: 6254269. |
|
[35] |
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150: 104511. DOI:10.1016/j.phrs.2019.104511 |
|
[36] |
Chen WL, Jin X, Wang M, et al. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling[J]. JCI Insight, 2020, 5(3): e131596. DOI:10.1172/jci.insight.131596 |
|
[37] |
Zhang X, Zhao H, Li Y, et al. The role of YAP/TAZ activity in cancer metabolic reprogramming[J]. Mol Cancer, 2018, 17(1): 134. DOI:10.1186/s12943-018-0882-1 |
|
[38] |
Sai KKS, Zachar Z, Bingham PM, et al. Metabolic PET imaging in oncology[J]. AJR Am J Roentgenol, 2017, 209(2): 270-276. DOI:10.2214/AJR.17.18112 |
|
[39] |
Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Annals Oncol, 2017, 28(Suppl_4): iv1-iv21. |
|
[40] |
Song S, Xiong C, Lu W, et al. Apoptosis imaging probe predicts early chemotherapy response in preclinical models: A comparative study with 18F-FDG PET[J]. J Nuclear Med, 2013, 54(1): 104-110. DOI:10.2967/jnumed.112.109397 |
|
[41] |
You X, Jiang W, Lu W, et al. Metabolic reprogramming and redox adaptation in sorafenib- resistant leukemia cells: detected by untargeted metabolomics and stable isotope tracing analysis[J]. Cancer Commun(Lond), 2019, 39(1): 17. |
|
[42] |
Aggarwal R, Vigneron DB, Kurhanewicz J. Hyperpolarized 1-13C-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer[J]. Eur Urol, 2017, 72(6): 1028-1029. DOI:10.1016/j.eururo.2017.07.022 |
|
[43] |
Hesketh RL, Brindle KM. Magnetic resonance imaging of cancer metabolism with hyperpolarized 13C-labeled cell metabolites[J]. Curr Opin Chem Biol, 2018, 45: 187-194. DOI:10.1016/j.cbpa.2018.03.004 |
|
[44] |
Vinaixa M, Rodríguez MA, Aivio S, et al. Positional enrichment by proton analysis(PEPA): A one-dimensional 1H-NMR approach for 13C stable isotope tracer studies in metabolomics[J]. Angew Chem Int Ed Engl, 2017, 56(13): 3531-3535. DOI:10.1002/anie.201611347 |
|
[45] |
Reyes-Caballero H, Rao X, Sun Q, et al. Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice[J]. Sci Rep, 2019, 9(1): 17423. DOI:10.1038/s41598-019-53716-y |
|
[46] |
Jiang L, Boufersaoui A, Yang C, et al. Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein[J]. Metab Eng, 2017, 43(Pt B): 198-207. |
|
[47] |
Trefely S, Ashwell P, Snyder NW. FluxFix: automatic isotopologue normalization for metabolic tracer analysis[J]. BMC Bioinformatics, 2016, 17(1): 485. DOI:10.1186/s12859-016-1360-7 |
|
[48] |
Liang B, Chen R, Song S, et al. ASPP2 inhibits tumor growth by repressing the mevalonate pathway in hepatocellular carcinoma[J]. Cell Death Dis, 2019, 10(11): 830. DOI:10.1038/s41419-019-2054-7 |
|
[49] |
王莹, 周芳. 肿瘤代谢重排与肿瘤耐药相关性的研究进展[J]. 药物评价研究, 2019, 42(3): 378-384. [Wang Y, Zhou F. Advances in studies on relationship between tumor metabolic rearrangement and tumor chemotherapy resistance[J]. Yao Wu Ping Jia Yan Jiu, 2019, 42(3): 378-384.] |
|