肿瘤防治研究  2021, Vol. 48 Issue (5): 524-529
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

乳腺癌靶向治疗相关心血管毒性的研究进展
Advances in Cardiovascular Toxicity Associated with Targeted Therapy for Breast Cancer
肿瘤防治研究, 2021, 48(5): 524-529
Cancer Research on Prevention and Treatment, 2021, 48(5): 524-529
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2021.20.1232
收稿日期: 2020-10-23
修回日期: 2021-01-28
乳腺癌靶向治疗相关心血管毒性的研究进展
王岩 ,    孟文静 ,    佟仲生     
300060 天津,天津医科大学肿瘤医院乳腺肿瘤内科,国家肿瘤临床医学研究中心,乳腺癌防治教育部重点实验室,天津市恶性肿瘤临床医学研究中心,天津市“肿瘤防治”重点实验室
摘要: 乳腺癌是女性常见的恶性肿瘤之一。由于近年来乳腺癌诊疗手段的丰富和靶向治疗药物的广泛应用,乳腺癌患者的生存期较前有所延长,死亡率呈现下降的趋势。然而,与靶向药物治疗相关的心血管毒性在乳腺癌患者治疗过程中的发生率也随之升高,本文就乳腺癌靶向药物治疗相关心血管毒性的研究进展作一综述。
关键词: 乳腺癌    靶向治疗    心血管毒性    
Advances in Cardiovascular Toxicity Associated with Targeted Therapy for Breast Cancer
WANG Yan , MENG Wenjing , TONG Zhongsheng     
Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
Abstract: Breast cancer is one of the most common malignant tumors in women. Because of the abundance of diagnosis and treatment methods and the wide application of targeted therapy drugs in recent years, the survival time of breast cancer patients is longer than before and the mortality rate shows a downward trend. However, the incidence of cardiovascular toxicity associated with targeted drug therapy in breast cancer patients is also increasing. This article reviews the research progress of cardiovascular toxicity associated with targeted drug therapy in breast cancer.
Key words: Breast cancer    Targeted therapy    Cardiovascular toxicity    
0 引言

乳腺癌是危害女性身体健康的常见恶性肿瘤之一。2019年美国癌症协会最新数据显示乳腺癌是美国女性发病率最高,死亡率第二的恶性肿瘤[1]。我国乳腺癌的发病率近年来亦呈逐年上升趋势,目前已居女性恶性肿瘤的首位,每年新增乳腺癌病例占全世界新增乳腺癌病例的12.2%,新增死亡病例占全世界乳腺癌死亡病例的9.6%[2]。随着多种靶向药物的应用,乳腺癌患者的生存已得到明显改善,但随之而来在乳腺癌患者的治疗过程中或治疗后,非肿瘤原因的死亡比例日趋增多,其中最为主要的就是心血管因素,此现象在绝经后乳腺癌患者中尤甚[3]。抗肿瘤治疗过程中的心血管毒性已经成为影响乳腺癌患者生存的高危因素。根据近几年的循证医学证据,对乳腺癌靶向治疗相关的心血管毒性的研究进展进行了整理和总结,现综述如下。

1 抗HER2单克隆抗体 1.1 曲妥珠单抗

约20%~25%的乳腺癌患者存在人类表皮生长因子受体-2(human epidermal growth factor receptor-2, HER2)基因扩增和蛋白质过度表达,并且其与患者的预后密切相关[4]。曲妥珠单抗(Trastuzumab)是一种针对HER2细胞外结构域的人源化小鼠单克隆抗体,有研究表明它可以通过抑制HER2过表达时发生的与配体无关的HER2、HER3异构化及与免疫效应细胞上的Fc受体结合诱导对HER2阳性肿瘤细胞的抗体依赖性细胞毒性(ADCC)等多种机制杀伤肿瘤细胞[5]。在多个国家多中心开展的有关曲妥珠单抗临床作用的五项大型临床研究(NSABP B-31、NCCTG N9831、HERA、BCIRG 006和FinHer试验)共纳入近14 000例HER2阳性乳腺癌患者,结果表明:曲妥珠单抗的应用显著提高了HER2阳性乳腺癌患者的无进展生存期(progression-free survival, PFS)和总生存期(overall survival, OS),并且在降低HER2阳性乳腺癌患者复发及死亡相对风险方面也有显著效果[6-10]。这五项实验奠定了曲妥珠单抗在HER2阳性乳腺癌用药中的基石地位,因此成为HER2阳性乳腺癌患者的首选用药。然而诸多研究表明,曲妥珠单抗的应用有增加心血管毒性的风险,虽然其机制尚不明确,但目前已有研究表明心肌细胞的死亡是通过包括HER2阻断和活性氧产物增加等多种途径发生的[11-12]。有临床试验显示3%~7%接受曲妥珠单抗单药治疗的患者出现了不同程度的心功能异常[13]。英国的Persephone Ⅲ期试验主要比较应用曲妥珠单抗短期6月和标准12月疗法的辅助治疗效果,结果发现曲妥珠单抗12月组的心血管事件是6月组的两倍[14]。这对曲妥珠单抗相关心血管毒性与曲妥珠单抗的累积剂量密切相关给出了有力支持。国外的一项荟萃分析研究发现,无论是作为一线治疗还是在疾病进展后的治疗,接受曲妥珠单抗治疗的患者心血管毒性风险均显著增高,同时严重心功能障碍和左心室射血分数(left ventricular ejection fraction, LVEF)下降的风险也明显增加[15]。国内也有学者研究发现,接受曲妥珠单抗治疗的185例HER2阳性乳腺癌患者中47.6%出现LVEF下降[16]。在HERA试验8年的随访中,研究者发现在治疗1年组中出现心血管事件的患者结束治疗后,其中79.5%的患者达到了心功能早期恢复的标准,可见曲妥珠单抗相关的心脏毒性是具有可逆性的[17]

另有研究表明,蒽环类药物序贯曲妥珠单抗时心血管毒性的发生率更高,Ⅲ期临床试验结果显示,早期乳腺癌应用蒽环序贯曲妥珠单抗充血性心力衰竭(congestive heart-failure, CHF)的发生率为2%~4%[18-19]。而在既往未使用蒽环类药物的患者中,CHF的发生率则明显降低,为0.4%~0.5%[18, 20-21]。另外在曲妥珠单抗初始Ⅲ期试验中,接受曲妥珠单抗联合化疗的HER2阳性转移性乳腺癌(metastatic breast cancer, MBC)患者中有27%出现心功能障碍,而只接受化疗(含蒽环类)的患者中仅有8%出现心功能障碍,这同时又提示蒽环类药物联合曲妥珠单抗对心脏可能有叠加的毒性反应[22]。英国一项真实队列研究发现,接受曲妥珠单抗治疗的早期或MBC患者的心脏毒性发生率高于预期,并且在年龄较大且之前曾接受蒽环类药物治疗的患者中发生率更高[23]。荷兰的一项研究显示,在接受曲妥珠单抗辅助治疗的患者中,12.6%的患者发生心血管毒性,其中8.7%的患者存在有症状的心血管毒性[24]。意大利的一项研究发现,接受曲妥珠单抗治疗的早期乳腺癌患者中,其心血管毒性发生率更高,27%的患者出现LVEF降低[25]。两项研究都注意到曲妥珠单抗相关心血管毒性在治疗的早期(6月左右)就出现了,这强调了早期心功能监测的重要性[24-25]。尤其是曲妥珠单抗与蒽环类联合应用时,心血管毒性一直都是临床医生特别关注的问题。虽然总体发病率较低,但曲妥珠单抗与严重心脏事件(如CHF)的发病风险增加显著相关[26]。这些数据都证实了在整个曲妥珠单抗治疗过程中进行心脏监测的必要性,特别是对于年龄较大且既往接受过多线抗肿瘤治疗的MBC患者。

1.2 曲妥珠单抗+帕妥珠单抗双靶向治疗

帕妥珠单抗(Pertuzumab)是另一种与HER2胞外结构域Ⅱ区结合,通过抑制二聚体的形成,进而抑制受体介导的信号转导途径的重组人源化单克隆抗体。结构域Ⅱ区位于Ⅳ区的对侧,Ⅳ区即是曲妥珠单抗结合的部位,作用机制上与曲妥珠单抗是互补的[27]。2012年, 美国食品与药品管理局(Food and Drug Administration, FDA)批准帕妥珠单抗用于治疗HER2阳性晚期乳腺癌。

2012年6月FDA批准多西他赛联合曲妥珠单抗及帕妥珠单抗用于HER2阳性MBC患者的一线标准治疗。在CLEOPATRAⅢ期临床试验中,接受上述方案治疗的HER2阳性MBC患者,其心血管毒性的发生率略低于安慰剂联合曲妥珠单抗和多西他赛治疗的患者[28]。同样,在APHINITY试验中,接受帕妥珠单抗、常规辅助化疗和1年曲妥珠单抗治疗的早期乳腺癌患者发生心脏事件的概率也较低[29]。一项Ⅱ期试验中,66例MBC患者中3例出现无症状性LVEF下降≥10%或 < 50%,没有患者因为心脏相关不良反应退出试验[30]。对于接受曲妥珠单抗和帕妥珠单抗新辅助治疗的患者,NeoSphereⅡ期试验研究报告了整个治疗组的心脏事件发生率均较低[31],这一研究也奠定了曲妥珠单抗+帕妥珠单抗的双靶向治疗模式在HER2阳性乳腺部新辅助治疗中的地位。Train-2是一项旨在研究新辅助化疗中双靶向联合蒽环药物的Ⅲ期试验,共入组了438例HER2阳性的Ⅱ~Ⅲ期乳腺癌患者,结果如我们所料,联合蒽环治疗组的心血管毒性发生率明显高于非联合组[32]。总体上,作为新型靶向联合方案,曲妥珠单抗联合帕妥珠单抗双靶抗HER2治疗的心脏安全性还是较好的。然而,由于现有的数据有限,且双靶治疗通常与蒽环类药物联合使用,因此建议临床医生在用药时注意心血管事件的发生。

2 抗体药物偶联剂(ADC) 2.1 曲妥珠单抗——美坦新偶联物

曲妥珠单抗——美坦新偶联物(trastuzumab emtansine, T-DM1)是一种抗体偶联药物,由曲妥珠单抗和美坦新衍生物(DM-1)偶联而成,是一种微管聚合抑制剂,也是一种新型靶向药物。T-DM1抗体可将细胞毒药物特异性送至HER2阳性的肿瘤细胞内。在曲妥珠单抗治疗失败后,NCCN指南推荐T-DM1为HER2阳性MBC的二线首选治疗方案。在治疗HER2阳性MBC的Ⅲ期TH3RESA和EMILIA临床试验中发现,接受T-DM1或替代治疗(包括曲妥珠单抗或拉帕替尼加化疗或单独化疗)的患者LVEF下降的发生率均较低[33-34]。在辅助治疗的初始临床试验中发现,即使在先前使用蒽环类药物治疗后,LVEF的降低率也低于曲妥珠单抗加化疗的方案[35]。在MARIANNE Ⅲ期试验中,接受T-DM1治疗的患者较接受曲妥珠单抗加紫杉醇治疗的患者LVEF较少出现下降[36]。虽然T-DM1的心血管毒性发生率较低,但由于该药通常用于先前接受过曲妥珠单抗治疗的患者,因此临床应用中仍然要注意监测心功能。

2.2 新型ADC类药物

Trastuzumab deruxtecan(DS-8201)是一种新型抗体药物偶联剂,由曲妥珠单抗和Ⅰ型拓扑异构酶抑制剂通过四肽连接子组成,与T-DM1不同的是DS-8201能更容易地穿过细胞膜,对肿瘤细胞有更强大的细胞毒作用。DESTINY-Breast01试验纳入了既往应用过T-DM1、曲妥珠单抗及帕妥珠单抗等药物治疗的184例HER2阳性乳腺癌患者,该试验显示患者在获得了很好疗效的同时,仅有3例出现了无症状的LVEF下降,且均在治疗后得以恢复[37]。因此2019年12月FDA加速批准DS-8201上市,用于治疗HER2阳性晚期乳腺癌。另一种新型HER2靶向抗体药物偶联药Trastuzumab duocarmazine(SYD985),通过释放活性毒素使DNA损伤最终导致肿瘤细胞死亡,Ⅰ期试验结果未报道严重的心血管不良事件[38]

3 酪氨酸酶抑制剂(TKIs) 3.1 拉帕替尼

拉帕替尼(Lapatinib)属于口服喹唑啉药物,可同时多靶点作用于HER1、HER2和EGFR,主要通过降低HER1和HER2同型二聚体或异二聚体的酪氨酸激酶磷酸化,干扰基因转录,进而抑制肿瘤细胞增殖[39]。2007年3月FDA批准拉帕替尼用于MBC的治疗。一项荟萃分析表明,临床试验中使用拉帕替尼治疗的患者,无论既往是否接受过蒽环类或曲妥珠单抗治疗,其心血管毒性大多数仅表现在无症状性的LVEF下降,且在停药后很大程度上可逆[36]。另有几项临床观察显示,拉帕替尼联合卡培他滨或紫杉醇的治疗方案约有2%~2.5%的患者出现了无症状性LVEF的下降[40-41]。ALLTO试验也提示拉帕替尼与曲妥珠单抗相比心脏不良事件(包括CHF和LVEF下降)发生率更低[42]。由于拉帕替尼常用于之前接受过曲妥珠单抗和(或)基于蒽环类化疗的患者,应当注意在治疗前和治疗期间监测LVEF。

3.2 来那替尼和阿法替尼

来那替尼(Neratinib)和阿法替尼(Afatinib)均是高度选择性的HER2和表皮生长因子受体(epidermal growth factor receptor, EGFR)多靶点不可逆的酪氨酸激酶抑制剂。Ⅱ期临床试验显示,来那替尼与患者的3/4级心血管毒性无关,而且不论患者之前是否接受曲妥珠单抗治疗,LVEF与基线相比变化都不大[43]。在NEfERT-T Ⅲ期试验中,来那替尼的心血管毒性最小[44]。ExteNET Ⅲ期试验共纳入了2 840例乳腺癌患者,该研究发现,来那替尼组和安慰剂组相比,并未增加心脏不良事件的风险[45]。在接受来那替尼辅助治疗的患者用药过程中,未出现有症状的心血管毒性累加[46]。所以,来那替尼被批准用于曲妥珠单抗治疗后的辅助治疗,目前为止还没有心血管不良反应相关的严重报道。在LUX-breast 1的Ⅲ期研究中,508例已经接受过曲妥珠单抗治疗的HER2阳性MBC患者被随机分为阿法替尼联合长春瑞滨组和曲妥珠单抗联合长春瑞滨组,结果曲妥珠单抗联合长春瑞滨组2例出现CHF,而阿法替尼联合长春瑞滨组并未出现,且阿法替尼联合长春瑞滨组仅1例出现LVEF下降≥2级,而曲妥珠单抗联合长春瑞滨组有3例出现LVEF下降≥2级[47]。由此可见来那替尼和阿法替尼的心脏安全性是较好的。

3.3 吉非替尼和厄洛替尼

吉非替尼(Gefitinib)和厄洛替尼(Erbtinib)都属于EGFR酪氨酸激酶抑制剂。关于吉非替尼联合内分泌治疗的4项临床试验[48-51]均未发生吉非替尼相关的严重心脏不良反应。NCT00024219研究是一项Ⅱ期试验,旨在评估厄洛替尼对局部晚期或MBC患者的疗效和安全性,结果并未发现厄洛替尼相关心脏不良事件的发生[52]

4 抗血管内皮生长因子(VEGF) 4.1 贝伐单抗

在VEGF的大家族(VEGF-A、VEGF-B、VEGF-C、VEGF-D和VEGF-E)中,以VEGF-A最为重要,它通过与内皮细胞表面的受体特异性结合来调节生理和病理性血管的生成。贝伐单抗(bevacizumab)为VEGF-A的单克隆抗体,其抗肿瘤作用主要通过与血管内皮生长因子结合,破坏肿瘤血管系统来实现[53]。ECOG-E2100研究显示,贝伐单抗能有效提高晚期乳腺癌患者的PFS,但紫杉醇组与紫杉醇联合贝伐单抗组3级及以上高血压的发生率分别为0和14.8%,左心室功能失调的发生率分别为0.3%和0.8%[54]。对5项临床研究中3 784例MBC患者进行荟萃分析发现,贝伐单抗组和非使用组严重心力衰竭的发生率分别为1.6%和0.4%,差异有统计学意义[55]。另一项荟萃分析中发现,贝伐单抗使MBC患者的高血压发病率增加了5倍,心脏功能障碍发病率增加了3倍[56]。AVADO试验结果显示贝伐单抗的使用与高血压和CHF密切相关,并且其中高血压的发病率可能与贝伐单抗的剂量呈正相关[57]。E5103研究表明在蒽环类药物和紫杉醇辅助治疗基础上增加贝伐单抗并不能改善高危HER2阴性乳腺癌患者的DFS和OS,且心血管毒性发生率出现明显增加[58]。可见,临床医生在用药过程中应格外关注贝伐单抗的心血管毒性。

4.2 雷莫芦单抗

雷莫芦单抗(ramucirumab)是人免疫球蛋白G1单克隆抗体,与贝伐单抗不同的是,它通过与VEGFR-2胞外结构域结合,从而阻断VEGF与VEGFR-2的相互作用,进而抑制肿瘤血管生成。ROSE/TRIO-12试验结果显示,在多西他赛基础上联合雷莫芦单抗,未显著延长PFS及OS,与对照组相比,联合组高血压的发生率更高[59]。一项Ⅱ期试验发现雷莫芦单抗单抗组的心脏疾患及高血压的发生率均高于对照组[60]。因此,临床上接受雷莫芦单抗治疗的患者应密切监测血压变化。

5 靶向药物相关心血管毒性的管理

主要参考美国临床肿瘤学会(ASCO)发布的关于《成人肿瘤幸存者心血管事件预防和监测实践指南》和欧洲心脏病学会的《癌症治疗与心血管毒性立场声明》,关于靶向药物相关心血管毒性的管理主要可以从以下几个方面进行。

5.1 治疗前的风险评估

首先,在进行靶向药物治疗前,医师应对患者进行详细的体格检查和临床评估。高龄(≥60岁)、吸烟、高血压、糖尿病、血脂异常和肥胖等均是增加心血管毒性的危险因素,对于既往有心力衰竭、心肌梗死、恶性心律失常、中重度心脏瓣膜病,以及既往接受过高剂量蒽环类药物治疗的患者,如表柔比星累积剂量超过600 mg/m²,多柔比星累积剂量超过250 mg/m²,或者接受过高剂量放疗(≥30 Gy)等高风险患者在用药前应仔细评估其受益[61]

5.2 治疗过程中的监测

目前,临床上常用的监测手段主要包括超声心动图、心电图、心脏核磁、心脏血清生物标志物等。靶向药物治疗期间,无症状患者常规每3月监测LVEF评估心脏功能[62]。近年来有研究报道,LVEF反映的心脏收缩功能缺乏早期和微小心脏病变的敏感度,而心脏标志物BNP(B-type natriuretic peptide)、NT-proBNP(N-terminal fragment B-type natriureticpeptide)、肌钙蛋白以及通过斑点追踪所获得的心肌整体纵向应变(GLS),能在早期发现心功能的异常,对心脏不良事件具有预测价值[62-63]。随着医疗技术的发展,心血管事件的检测方法多种多样,但是需要强调的是在整个治疗过程中,应使用相同的成像方式或生物标志物来进行监测,强烈反对在不同的检测方法之间进行转换[62]。另外,高风险患者在靶向治疗结束后应考虑进行常规LVEF评估,但是到目前为止,评估的时间和频率对心血管或肿瘤预后的直接临床影响仍是未知的[61]

5.3 心脏辅助用药

有研究发现,在抗癌药物治疗期间发现心功能障碍后早期使用血管紧张素转换酶抑制剂(ACEI)、血管紧张素转换酶Ⅱ受体阻滞剂(ARBs)或β受体阻滞剂治疗将会有更好的心脏结局,并且联合用药可能比单独治疗更有效[64-66]。所以除非有禁忌证,否则建议有症状性心衰或无症状性心功能障碍的患者早期使用ACEI、ARBs或β受体阻滞剂[62]

6 总结与展望

根据以上各项临床研究不难发现,乳腺癌靶向药物的应用过程中会引起不同程度的心血管毒性,主要表现为无症状性LVEF下降和慢性心功能不全,这在临床工作中是不容忽视的,但值得欣慰的是,大部分不良事件是相对轻微的,且在停止治疗后大多是可逆的,仅有少部分会出现严重的CHF。虽然严重心血管事件发生率不高,但是为了尽量减少和预防心血管相关不良反应的发生,在应用靶向药物过程中临床医生应注意仔细评估和定期监测心功能,争取早发现、早干预、早治疗,有基础心血管病史的患者在用药过程中应尤为注意。如今肿瘤心脏病学是一门正在蓬勃发展的新兴学科,而乳腺癌患者的预后较其他癌症相对较好,并且随着现代医疗水平的提高及各种靶向药物的应用,乳腺癌患者的生存率也逐年提高,所以乳腺肿瘤科医生对确保今天的乳腺癌幸存者不会成为明天的心脏病患者有着很大的责任和义务,未来如何更好的发挥乳腺癌靶向药物的作用同时减轻心血管毒性仍然需要我们继续探索!

作者贡献

王岩:文献检索及论文撰写

孟文静:指导及修改论文

佟仲生:设计和审校论文

参考文献
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. DOI:10.3322/caac.21551
[2]
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15(7): e279-289. DOI:10.1016/S1470-2045(13)70567-9
[3]
Chapman JA, Meng D, Shepherd L, et al. Competing causes of death from a randomized trial of extended adjuvant endocrine therapy for breast cancer[J]. J Natl Cancer Inst, 2008, 100(4): 252-260. DOI:10.1093/jnci/djn014
[4]
Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987, 235(4785): 177-182. DOI:10.1126/science.3798106
[5]
De P, Hasmann M, Leyland-Jones B. Molecular determinants of trastuzumab efficacy: What is their clinical relevance?[J]. Cancer Treat Rev, 2013, 39(8): 925-934. DOI:10.1016/j.ctrv.2013.02.006
[6]
Au HJ, Eiermann W, Robert NJ, et al. Health-related quality of life with adjuvant docetaxel- and trastuzumab-based regimens in patients with node-positive and high-risk node-negative, HER2-positive early breast cancer: results from the BCIRG 006 Study[J]. Oncologist, 2013, 18(7): 812-818. DOI:10.1634/theoncologist.2013-0091
[7]
Perez EA, Press MF, Dueck AC, et al. Immunohistochemistry and fluorescence in situ hybridization assessment of HER2 in clinical trials of adjuvant therapy for breast cancer (NCCTG N9831, BCIRG 006, and BCIRG 005)[J]. Breast Cancer Res Treat, 2013, 138(1): 99-108. DOI:10.1007/s10549-013-2444-y
[8]
Perez EA, Romond EH, Suman VJ, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31[J]. J Clin Oncol, 2011, 29(25): 3366-3373. DOI:10.1200/JCO.2011.35.0868
[9]
Untch M, Gelber RD, Jackisch C, et al. Estimating the magnitude of trastuzumab effects within patient subgroups in the HERA trial[J]. Ann Oncol, 2008, 19(6): 1090-1096. DOI:10.1093/annonc/mdn005
[10]
Purmonen TT, Pänkäläinen E, Turunen JH, et al. Short-course adjuvant trastuzumab therapy in early stage breast cancer in Finland: cost-effectiveness and value of information analysis based on the 5-year follow-up results of the FinHer Trial[J]. Acta Oncol, 2011, 50(3): 344-352. DOI:10.3109/0284186X.2011.553841
[11]
Zeglinski M, Ludke A, Jassal DS, et al. Trastuzumab-induced cardiac dysfunction: A 'dual-hit'[J]. Exp Clin Cardiol, 2011, 16(3): 70-74.
[12]
Gordon LI, Burke MA, Singh AT, et al. Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways[J]. J Biol Chem, 2009, 284(4): 2080-2087. DOI:10.1074/jbc.M804570200
[13]
Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience[J]. J Clin Oncol, 2002, 20(5): 1215-1221. DOI:10.1200/JCO.2002.20.5.1215
[14]
Earl HM, Vallier AL, Dunn J, et al. Trastuzumab-associated cardiac events in the Persephone trial[J]. Br J Cancer, 2016, 115(12): 1462-1470. DOI:10.1038/bjc.2016.357
[15]
Balduzzi S, Mantarro S, Guarneri V, et al. Trastuzumab-containing regimens for metastatic breast cancer[J]. Cochrane Database Syst Rev, 2014, 2014(6): Cd006242.
[16]
孟文静, 张继博, 李淑芬, 等. 曲妥珠单抗治疗185例HER2阳性乳腺癌患者的心脏安全性评价[J]. 肿瘤防治研究, 2018, 45(2): 86-90. [Meng WJ, Zhang JB, Li SF, et al. Cardiac safety of trastuzumab on 185 patients with HER2 positive breast cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2018, 45(2): 86-90. DOI:10.3971/j.issn.1000-8578.2018.17.0975]
[17]
de Azambuja E, Procter MJ, van Veldhuisen DJ, et al. Trastuzumab-Associated Cardiac Events at 8 Years of Median Follow-Up in the Herceptin Adjuvant Trial (BIG 1-01)[J]. J Clin Oncol, 2014, 32(20): 2159-2165. DOI:10.1200/JCO.2013.53.9288
[18]
Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer[J]. N Engl J Med, 2011, 365(14): 1273-1283. DOI:10.1056/NEJMoa0910383
[19]
Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer[J]. N Engl J Med, 2005, 353(16): 1673-1684. DOI:10.1056/NEJMoa052122
[20]
Dang C, Guo H, Najita J, et al. Cardiac Outcomes of Patients Receiving Adjuvant Weekly Paclitaxel and Trastuzumab for Node-Negative, ERBB2-Positive Breast Cancer[J]. JAMA Oncol, 2016, 2(1): 29-36. DOI:10.1001/jamaoncol.2015.3709
[21]
Jones SE, Collea R, Paul D, et al. Adjuvant docetaxel and cyclophosphamide plus trastuzumab in patients with HER2-amplified early stage breast cancer: a single-group, open-label, phase 2 study[J]. Lancet Oncol, 2013, 14(11): 1121-1128. DOI:10.1016/S1470-2045(13)70384-X
[22]
Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2[J]. N Engl J Med, 2001, 344(11): 783-792. DOI:10.1056/NEJM200103153441101
[23]
Naumann D, Rusius V, Margiotta C, et al. Factors predicting trastuzumab-related cardiotoxicity in a real-world population of women with HER2+ breast cancer[J]. Anticancer Res, 2013, 33(4): 1717-1720.
[24]
Seferina SC, de Boer M, Derksen MW, et al. Cardiotoxicity and Cardiac Monitoring During Adjuvant Trastuzumab in Daily Dutch Practice: A Study of the Southeast Netherlands Breast Cancer Consortium[J]. Oncologist, 2016, 21(5): 555-562. DOI:10.1634/theoncologist.2015-0230
[25]
Tarantini L, Cioffi G, Gori S, et al. Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer[J]. J Card Fail, 2012, 18(2): 113-119. DOI:10.1016/j.cardfail.2011.10.015
[26]
Long HD, Lin YE, Zhang JJ, et al. Risk of Congestive Heart Failure in Early Breast Cancer Patients Undergoing Adjuvant Treatment With Trastuzumab: A Meta-Analysis[J]. Oncologist, 2016, 21(5): 547-554. DOI:10.1634/theoncologist.2015-0424
[27]
Richard S, Selle F, Lotz JP, et al. Pertuzumab and trastuzumab: the rationale way to synergy[J]. An Acad Bras Cienc, 2016, 88(Suppl 1): 565-577. DOI:10.1590/0001-3765201620150178
[28]
Swain SM, Baselga J, Kim SB, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer[J]. N Engl J Med, 2015, 372(8): 724-734. DOI:10.1056/NEJMoa1413513
[29]
von Minckwitz G, Procter M, de Azambuja E, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer[J]. N Engl J Med, 2017, 377(2): 122-131. DOI:10.1056/NEJMoa1703643
[30]
Baselga J, Gelmon KA, Verma S, et al. Phase Ⅱ trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy[J]. J Clin Oncol, 2010, 28(7): 1138-1144. DOI:10.1200/JCO.2009.24.2024
[31]
Gianni L, Pienkowski T, Im YH, et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial[J]. Lancet Oncol, 2016, 17(6): 791-800. DOI:10.1016/S1470-2045(16)00163-7
[32]
van Ramshorst MS, van der Voort A, van Werkhoven ED, et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(12): 1630-1640. DOI:10.1016/S1470-2045(18)30570-9
[33]
Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer[J]. N Engl J Med, 2012, 367(19): 1783-1791. DOI:10.1056/NEJMoa1209124
[34]
Krop IE, Kim SB, Gonzalez-Martin A, et al. Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2014, 15(7): 689-699. DOI:10.1016/S1470-2045(14)70178-0
[35]
Kast K, Link T, Friedrich K, et al. Impact of breast cancer subtypes and patterns of metastasis on outcome[J]. Breast Cancer Res Treat, 2015, 150(3): 621-629. DOI:10.1007/s10549-015-3341-3
[36]
Perez EA, Barrios C, Eiermann W, et al. Trastuzumab Emtansine With or Without Pertuzumab Versus Trastuzumab Plus Taxane for Human Epidermal Growth Factor Receptor 2-Positive, Advanced Breast Cancer: Primary Results From the Phase Ⅲ MARIANNE Study[J]. J Clin Oncol, 2017, 35(2): 141-148. DOI:10.1200/JCO.2016.67.4887
[37]
Modi S, Saura C, Yamashita T, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer[J]. N Engl J Med, 2020, 382(7): 610-621. DOI:10.1056/NEJMoa1914510
[38]
Banerji U, van Herpen CML, Saura C, et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study[J]. Lancet Oncol, 2019, 20(8): 1124-1135. DOI:10.1016/S1470-2045(19)30328-6
[39]
Paul B, Trovato JA, Thompson J. Lapatinib: a dual tyrosine kinase inhibitor for metastatic breast cancer[J]. Am J Health Syst Pharm, 2008, 65(18): 1703-1710. DOI:10.2146/ajhp070646
[40]
Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer[J]. N Engl J Med, 2006, 355(26): 2733-2743. DOI:10.1056/NEJMoa064320
[41]
Di Leo A, Gomez HL, Aziz Z, et al. Phase Ⅲ, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer[J]. J Clin Oncol, 2008, 26(34): 5544-5552. DOI:10.1200/JCO.2008.16.2578
[42]
Piccart-Gebhart M, Holmes E, Baselga J, et al. Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Results From the Randomized Phase Ⅲ Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial[J]. J Clin Oncol, 2016, 34(10): 1034-1042. DOI:10.1200/JCO.2015.62.1797
[43]
Burstein HJ, Sun Y, Dirix LY, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer[J]. J Clin Oncol, 2010, 28(8): 1301-1307. DOI:10.1200/JCO.2009.25.8707
[44]
Awada A, Colomer R, Inoue K, et al. Neratinib Plus Paclitaxel vs Trastuzumab Plus Paclitaxel in Previously Untreated Metastatic ERBB2-Positive Breast Cancer: The NEfERT-T Randomized Clinical Trial[J]. JAMA Oncol, 2016, 2(12): 1557-1564. DOI:10.1001/jamaoncol.2016.0237
[45]
Chan A, Delaloge S, Holmes FA, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2016, 17(3): 367-377. DOI:10.1016/S1470-2045(15)00551-3
[46]
Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2017, 18(12): 1688-1700. DOI:10.1016/S1470-2045(17)30717-9
[47]
Harbeck N, Huang CS, Hurvitz S, et al. Afatinib plus vinorelbine versus trastuzumab plus vinorelbine in patients with HER2-overexpressing metastatic breast cancer who had progressed on one previous trastuzumab treatment (LUX-Breast 1): an open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2016, 17(3): 357-366. DOI:10.1016/S1470-2045(15)00540-9
[48]
Tryfonidis K, Basaran G, Bogaerts J, et al. A European Organisation for Research and Treatment of Cancer randomized, double-blind, placebo-controlled, multicentre phase Ⅱ trial of anastrozole in combination with gefitinib or placebo in hormone receptor-positive advanced breast cancer (NCT00066378)[J]. Eur J Cancer, 2016, 53: 144-154. DOI:10.1016/j.ejca.2015.10.012
[49]
Carlson RW, O'Neill A, Vidaurre T, et al. A randomized trial of combination anastrozole plus gefitinib and of combination fulvestrant plus gefitinib in the treatment of postmenopausal women with hormone receptor positive metastatic breast cancer[J]. Breast Cancer Res Treat, 2012, 133(3): 1049-1056. DOI:10.1007/s10549-012-1997-5
[50]
Cristofanilli M, Valero V, Mangalik A, et al. Phase Ⅱ, randomized trial to compare anastrozole combined with gefitinib or placebo in postmenopausal women with hormone receptor-positive metastatic breast cancer[J]. Clin Cancer Res, 2010, 16(6): 1904-1914. DOI:10.1158/1078-0432.CCR-09-2282
[51]
Osborne CK, Neven P, Dirix LY, et al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase Ⅱ study[J]. Clin Cancer Res, 2011, 17(5): 1147-1159. DOI:10.1158/1078-0432.CCR-10-1869
[52]
Dickler MN, Cobleigh MA, Miller KD, et al. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer[J]. Breast Cancer Res Treat, 2009, 115(1): 115-121. DOI:10.1007/s10549-008-0055-9
[53]
Trillsch F, Mahner S, Hilpert F, et al. Prognostic and predictive effects of primary versus secondary platinum resistance for bevacizumab treatment for platinum-resistant ovarian cancer in the AURELIA trial[J]. Ann Oncol, 2016, 27(9): 1733-1739. DOI:10.1093/annonc/mdw236
[54]
Kristensen TB, Knutsson ML, Wehland M, et al. Anti-vascular endothelial growth factor therapy in breast cancer[J]. Int J Mol Sci, 2014, 15(12): 23024-23041. DOI:10.3390/ijms151223024
[55]
Choueiri TK, Mayer EL, Je Y, et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab[J]. J Clin Oncol, 2011, 29(6): 632-638. DOI:10.1200/JCO.2010.31.9129
[56]
Rossari JR, Metzger-Filho O, Paesmans M, et al. Bevacizumab and Breast Cancer: A Meta-Analysis of First-Line Phase ⅢStudies and a Critical Reappraisal of Available Evidence[J]. J Oncol, 2012, 2012: 417673.
[57]
Pivot X, Schneeweiss A, Verma S, et al. Efficacy and safety of bevacizumab in combination with docetaxel for the first-line treatment of elderly patients with locally recurrent or metastatic breast cancer: results from AVADO[J]. Eur J Cancer, 2011, 47(16): 2387-2395. DOI:10.1016/j.ejca.2011.06.018
[58]
Miller KD, O'Neill A, Gradishar W, et al. Double-Blind Phase ⅢTrial of Adjuvant Chemotherapy With and Without Bevacizumab in Patients With Lymph Node-Positive and High-Risk Lymph Node-Negative Breast Cancer (E5103)[J]. J Clin Oncol, 2018, 36(25): 2621-2629. DOI:10.1200/JCO.2018.79.2028
[59]
Mackey JR, Ramos-Vazquez M, Lipatov O, et al. Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase Ⅲtrial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer[J]. J Clin Oncol, 2015, 33(2): 141-148. DOI:10.1200/JCO.2014.57.1513
[60]
Vahdat LT, Layman R, Yardley DA, et al. Randomized Phase Ⅱ Study of Ramucirumab or Icrucumab in Combination with Capecitabine in Patients with Previously Treated Locally Advanced or Metastatic Breast Cancer[J]. Oncologist, 2017, 22(3): 245-254. DOI:10.1634/theoncologist.2016-0265
[61]
Armenian SH, Lacchetti C, Barac A, et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline[J]. J Clin Oncol, 2017, 35(8): 893-911. DOI:10.1200/JCO.2016.70.5400
[62]
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2016, 37(36): 2768-2801. DOI:10.1093/eurheartj/ehw211
[63]
Narayan HK, Finkelman B, French B, et al. Detailed Echocardiographic Phenotyping in Breast Cancer Patients: Associations With Ejection Fraction Decline, Recovery, and Heart Failure Symptoms Over 3 Years of Follow-Up[J]. Circulation, 2017, 135(15): 1397-1412. DOI:10.1161/CIRCULATIONAHA.116.023463
[64]
Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy[J]. Circulation, 2015, 131(22): 1981-1988. DOI:10.1161/CIRCULATIONAHA.114.013777
[65]
Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy[J]. J Am Coll Cardiol, 2010, 55(3): 213-220. DOI:10.1016/j.jacc.2009.03.095
[66]
Copur MS, Obermiller A. An algorithm for the management of hypertension in the setting of vascular endothelial growth factor signaling inhibition[J]. Clin Colorectal Cancer, 2011, 10(3): 151-156. DOI:10.1016/j.clcc.2011.03.021