[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI:10.3322/caac.21590 |
|
[2] | |
|
[3] |
Shiau DJ, Kuo WT, Davuluri GVN, et al. Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis[J]. Sci Rep, 2020, 10(1): 13582. DOI:10.1038/s41598-020-70137-4 |
|
[4] |
Yang Y, Ye YC, Chen Y, et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors[J]. Cell Death Dis, 2018, 9(8): 793. DOI:10.1038/s41419-018-0818-0 |
|
[5] |
Hu L, Zhang P, Sun W, et al. PDPN is a prognostic biomarker and correlated with immune infiltrating in gastric cancer[J]. Medicine (Baltimore), 2020, 99(19): e19957. DOI:10.1097/MD.0000000000019957 |
|
[6] |
Byun JM, Jeong DH, Choi IH, et al. The Significance of VSIG4 Expression in Ovarian Cancer[J]. Int J Gynecol Cancer, 2017, 27(5): 872-878. DOI:10.1097/IGC.0000000000000979 |
|
[7] |
Zhu S, Tan W, Li W, et al. Low expression of VSIG4 is associated with poor prognosis in hepatocellular carcinoma patients with hepatitis B infection[J]. Cancer Manag Res, 2018, 10: 3697-3705. DOI:10.2147/CMAR.S165822 |
|
[8] |
Bianchi-Frias D, Damodarasamy M, Hernandez SA, et al. The Aged Microenvironment Influences the Tumorigenic Potential of Malignant Prostate Epithelial Cells[J]. Mol Cancer Res, 2019, 17(1): 321-331. DOI:10.1158/1541-7786.MCR-18-0522 |
|
[9] |
Menyhart O, Kakisaka T, Pongor LS, et al. Uncovering Potential Therapeutic Targets in Colorectal Cancer by Deciphering Mutational Status and Expression of Druggable Oncogenes[J]. Cancers (Basel), 2019, 11(7): 983. DOI:10.3390/cancers11070983 |
|
[10] |
Li T, Fan J, Wang B, et al. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells[J]. Cancer Res, 2017, 77(21): e108-e110. DOI:10.1158/0008-5472.CAN-17-0307 |
|
[11] |
Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions[J]. Bioinformatics, 2019, 35(20): 4200-4202. DOI:10.1093/bioinformatics/btz210 |
|
[12] |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. DOI:10.1093/nar/gkx247 |
|
[13] |
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613. DOI:10.1093/nar/gky1131 |
|
[14] |
Snel B, Lehmann G, Bork P, et al. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene[J]. Nucleic Acids Res, 2000, 28(18): 3442-3444. DOI:10.1093/nar/28.18.3442 |
|
[15] |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005, 102(43): 15545-15550. DOI:10.1073/pnas.0506580102 |
|
[16] |
Najafi M, Hashemi Goradel N, Farhood B, et al. Macrophage polarity in cancer: A review[J]. J Cell Biochem, 2019, 120(3): 2756-2765. DOI:10.1002/jcb.27646 |
|
[17] |
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev, 2017, 114: 206-221. DOI:10.1016/j.addr.2017.04.010 |
|
[18] |
支馨仪, 刘岩厚, 高晶, 等. 巨噬细胞在肿瘤免疫治疗中的研究进展[J]. 中国免疫学杂志, 2018, 34(2): 277-281. [Zhi XY, Liu YH, Gao J, et al. Research progress on role of macrophages in tumor immunotherapy[J]. Zhongguo Mian Yi Xue Za Zhi, 2018, 34(2): 277-281. DOI:10.3969/j.issn.1000-484X.2018.02.025] |
|
[19] |
韩晨阳, 杨毅, 王瑾, 等. M2型巨噬细胞促进肝癌肿瘤血管生成的作用[J]. 中华微生物学和免疫学杂志, 2020, 40(4): 283-289. [Han CY, Yang Y, Wang J, et al. Effects of CD68+CD163+M2 Macrophages on Tumor Angiogenesis in Hepatocellular Carcinoma[J]. Zhonghua Wei Sheng Wu Xue He Mian Yi Xue Za Zhi, 2020, 40(4): 283-289. DOI:10.3760/cma.j.cn112309-20190813-00252] |
|
[20] |
Tariq M, Zhang J, Liang G, et al. Macrophage Polarization: Anti-Cancer Strategies to Target Tumor-Associated Macrophage in Breast Cancer[J]. J Cell Biochem, 2017, 118(9): 2484-2501. DOI:10.1002/jcb.25895 |
|
[21] |
Choi J, Gyamfi J, Jang H, et al. The role of tumor-associated macrophage in breast cancer biology[J]. Histol Histopathol, 2018, 33(2): 133-145. |
|
[22] |
El-Kenawi A, Gatenbee C, Robertson-Tessi M, et al. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer[J]. Br J Cancer, 2019, 121(7): 556-566. DOI:10.1038/s41416-019-0542-2 |
|
[23] |
丁军利, 夏钰弘, 刘超英, 等. M2型肿瘤相关巨噬细胞在胰腺癌中的表达及其临床意义[J]. 肿瘤防治研究, 2012, 39(1): 59-61. [Ding JL, Xia YH, Liu CY, et al. Expression and Clinical Significance of M2 Tumor-associated Macrophage in Pancreatic Carcinoma[J]. Zhong Liu Fang Zhi Yan Jiu, 2012, 39(1): 59-61. DOI:10.3971/j.issn.1000-8578.2012.01.015] |
|
[24] |
赖智勇, 胡嘉欣, 李枝键, 等. 基于单细胞质谱流式技术分析膀胱肿瘤微环境中免疫细胞的组成[J]. 中国癌症防治杂志, 2020, 12(2): 169-174. [Lai ZY, Hu JX, Li ZJ, et al. Analysis of the Composition of Immune Cells in the Bladder Tumor Microenvironment Based on Single-cell Mass Cytometry[J]. Zhongguo Ai Zeng Fang Zhi Za Zhi, 2020, 12(2): 169-174.] |
|
[25] | |
|
[26] |
Lowery AJ, Miller N, McNeill RE, et al. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management[J]. Clin Cancer Res, 2008, 14(2): 360-365. DOI:10.1158/1078-0432.CCR-07-0992 |
|
[27] | |
|
[28] |
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. DOI:10.1016/j.cell.2004.12.035 |
|
[29] | |
|
[30] | |
|
[31] |
Giannakakis A, Coukos G, Hatzigeorgiou A, et al. miRNA genetic alterations in human cancers[J]. Expert Opin Biol Ther, 2007, 7(9): 1375-1386. DOI:10.1517/14712598.7.9.1375 |
|
[32] | |
|
[33] |
Liu YB, Wang Y, Zhang MD, et al. MicroRNA-29a functions as a tumor suppressor through targeting STAT3 in laryngeal squamous cell carcinoma[J]. Exp Mol Pathol, 2020, 104521. |
|
[34] |
Shi Y, Kong W, Lu Y, et al. Traditional Chinese Medicine Xiaoai Jiedu Recipe Suppresses the Development of Hepatocellular Carcinoma via Regulating the microRNA-29a/Signal Transducer and Activator of Transcription 3 Axis[J]. Onco Targets Ther, 2020, 13: 7329-7342. DOI:10.2147/OTT.S248797 |
|
[35] |
Nie K, Zheng Z, Wen Y, et al. A novel ceRNA axis involves in regulating immune infiltrates and macrophage polarization in gastric cancer[J]. Int Immunopharmacol, 2020, 87: 106845. DOI:10.1016/j.intimp.2020.106845 |
|