[1] |
李红平, 苏薇, 狄连君, 等. 2127例大肠癌临床发病特点的回顾性分析[J]. 肿瘤防治研究, 2017, 44(12): 836-839. [Li HP, Su W, Di LJ, et al. Clinical Characteristics of 2127 Colorectal Cancer Paatients: A Retrospective Analysis[J]. Zhong Liu Fang Zhi Yan Jiu, 2017, 44(12): 836-839. DOI:10.3971/j.issn.1000-8578.2017.17.0446] |
|
[2] |
管莎莎, 戴广海. 遗传性非息肉病性结直肠癌的分子生物学特点和临床特征[J]. 中国医学科学院学报, 2012, 34(3): 293-297. [Guan SS, Dai GH. Molecular Biology and Clinical Features of Hereditary Non-polyposis Colorectal Cancer[J]. Zhongguo Yi Xue ke Xue Yuan Xue Bao, 2012, 34(3): 293-297. DOI:10.3881/j.issn.1000-503X.2012.03.021] |
|
[3] |
Sun X, Suo J, Yan J. Immunotherapy in human colorectal cancer: Challenges and prospective[J]. World J Gastroenterol, 2016, 22(28): 6362-6372. DOI:10.3748/wjg.v22.i28.6362 |
|
[4] |
Xiao Y, Freeman GJ. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy[J]. Cancer Discov, 2015, 5(1): 16-18. DOI:10.1158/2159-8290.CD-14-1397 |
|
[5] | |
|
[6] |
Dougan M, Dougan SK. Targeting Immunotherapy to the Tumor Microenvironment[J]. J Cell Biochem, 2017, 118(10): 3049-3054. DOI:10.1002/jcb.26005 |
|
[7] | |
|
[8] |
Pedrosa L, Esposito F, Thomson TM, et al. The Tumor Microenvironment in Colorectal Cancer Therapy[J]. Cancers (Basel), 2019, 11(8): 1172. DOI:10.3390/cancers11081172 |
|
[9] | |
|
[10] |
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study[J]. Lancet, 2018, 391(10135): 2128-2139. DOI:10.1016/S0140-6736(18)30789-X |
|
[11] | |
|
[12] |
Wrobel P, Ahmed S. Current status of immunotherapy in metastatic colorectal cancer[J]. Int J Colorectal Dis, 2019, 34(1): 13-25. DOI:10.1007/s00384-018-3202-8 |
|
[13] |
Andersen R, Donia M, Westergaard MC, et al. Tumor infiltrating lymphocyte therapy for ovarian cancer and renal cell carcinoma[J]. Hum Vaccin Immunother, 2015, 11(12): 2790-2795. DOI:10.1080/21645515.2015.1075106 |
|
[14] |
Magee MS, Abraham TS, Baybutt TR, et al. Human GUCY2C-Targeted Chimeric Antigen Receptor (CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases[J]. Cancer Immunol Res, 2018, 6(5): 509-516. DOI:10.1158/2326-6066.CIR-16-0362 |
|
[15] |
Turin I, Delfanti S, Ferulli F, et al. In Vitro Killing of Colorectal Carcinoma Cells by Autologous Activated NK Cells is Boosted by Anti-Epidermal Growth Factor Receptor-induced ADCC Regardless of RAS Mutation Status[J]. J Immunother, 2018, 41(4): 190-200. DOI:10.1097/CJI.0000000000000205 |
|
[16] |
Veluchamy JP, Lopez-Lastra S, Spanholtz J, et al. In vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer[J]. Front Immunol, 2017, 8: 87. |
|
[17] |
Katz SC, Burga RA, McCormack E, et al. Phase Ⅰ hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+liver metastases[J]. Clin Cancer Res, 2015, 21(14): 3149-3159. DOI:10.1158/1078-0432.CCR-14-1421 |
|
[18] |
Xu-Monette ZY, Zhang M, Li J, et al. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response?[J]. Front Immunol, 2017, 8: 1597. DOI:10.3389/fimmu.2017.01597 |
|
[19] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264. DOI:10.1038/nrc3239 |
|
[20] |
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515(7528): 563-567. DOI:10.1038/nature14011 |
|
[21] |
Le DT, Kim TW, Van Cutsem E, et al. Phase Ⅱ Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164[J]. J Clin Oncol, 2020, 38(1): 11-19. DOI:10.1200/JCO.19.02107 |
|
[22] | |
|
[23] |
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191. DOI:10.1016/S1470-2045(17)30422-9 |
|
[24] |
Hellmann MD, Kim TW, Lee CB, et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors[J]. Ann Oncol, 2019, 30(7): 1134-1142. DOI:10.1093/annonc/mdz113 |
|
[25] |
Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2019, 20(6): 849-861. DOI:10.1016/S1470-2045(19)30027-0 |
|
[26] |
Geevarghese SK, Geller DA, de Haan HA, et al. Phase Ⅰ/Ⅱ study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver[J]. Hum Gene Ther, 2010, 21(9): 1119-1128. DOI:10.1089/hum.2010.020 |
|
[27] |
Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer[J]. N Engl J Med, 2004, 351(4): 337-345. DOI:10.1056/NEJMoa033025 |
|
[28] |
Gonzalez-Exposito R, Semiannikova M, Griffiths B, et al. CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids[J]. J Immunother Cancer, 2019, 7(1): 101. DOI:10.1186/s40425-019-0575-3 |
|
[29] |
Ramapriyan R, Caetano MS, Barsoumian HB, et al. Altered cancer metabolism in mechanisms of immunotherapy resistance[J]. Pharmacol Ther, 2019, 195: 162-171. DOI:10.1016/j.pharmthera.2018.11.004 |
|
[30] |
Arenas-Ramirez N, Sahin D, Boyman O. Epigenetic mechanisms of tumor resistance to immunotherapy[J]. Cell Mol Life Sci, 2018, 75(22): 4163-4176. DOI:10.1007/s00018-018-2908-7 |
|
[31] |
Li H, Bullock K, Gurjao C, et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade[J]. Nat Commun, 2019, 10(1): 4346. DOI:10.1038/s41467-019-12361-9 |
|
[32] |
Yaguchi T, Kobayashi A, Inozume T, et al. Human PBMCtransferred murine MHC class Ⅰ/Ⅱ-deficient NOG mice enable longterm evaluation of human immune responses[J]. Cell Mol Immunol, 2018, 15(11): 953-962. DOI:10.1038/cmi.2017.106 |
|
[33] |
Kan Z, Jaiswal BS, Stinson J, et al. Diverse somatic mutation patterns and pathway alterations in human cancers[J]. Nature, 2010, 466(7308): 869-873. DOI:10.1038/nature09208 |
|
[34] |
Patel SJ, Sanjana NE, Kishton RJ, et al. Identification of essential genes for cancer immunotherapy[J]. Nature, 2017, 548(7669): 537-542. DOI:10.1038/nature23477 |
|
[35] |
Ishizuka JJ, Manguso RT, Cheruiyot CK, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade[J]. Nature, 2019, 565(7737): 43-48. DOI:10.1038/s41586-018-0768-9 |
|
[36] |
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089. DOI:10.1126/science.aac4255 |
|
[37] |
Wang Y, Ma R, Liu F, et al. Modulation of Gut Microbiota: A Novel Paradigm of Enhancing the Efficacy of Programmed Death-1 and Programmed Death Ligand-1 Blockade Therapy[J]. Front Immunol, 2018, 9: 374. DOI:10.3389/fimmu.2018.00374 |
|
[38] |
Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy[J]. Cancer Cell, 2018, 33(4): 570-580. DOI:10.1016/j.ccell.2018.03.015 |
|
[39] |
Sattar J, Kartolo A, Hopman WM, et al. The efficacy and toxicity of immune checkpoint inhibitors in a real-world older patient population[J]. J Geriatr Oncol, 2019, 10(3): 411-414. DOI:10.1016/j.jgo.2018.07.015 |
|