文章信息
- TNFSF15对肿瘤脉管生成调控的临床意义及研究进展
- Clinical Significance and Advances of TNFSF15 Modulation on Tumor Angiogenesis and Lymphangiogenesis
- 肿瘤防治研究, 2020, 57(7): 567-570
- Cancer Research on Prevention and Treatment, 2020, 57(7): 567-570
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2020.19.1622
- 收稿日期: 2019-12-30
- 修回日期: 2020-05-04
肿瘤坏死因子超家族成员15(tumor necrosis factor superfamily 15, TNFSF15)可与内皮细胞表面特异性死亡受体3(DR3)结合,通过不同的下游信号调控脉管系统生成。脉管(血管和淋巴管)系统在肿瘤转移中起至关重要的作用,肿瘤内血管密度和淋巴管密度与患者的预后密切相关。本文介绍了TNFSF15结构与功能及临床价值、TNFSF15生物效应的分子基础、TNFSF15/DR3在血管和淋巴管中截然相反的生物效应,以期为临床研究提供参考。
1 TNFSF15结构、功能及临床价值TNFSF15,亦称TL1A或VEGI(血管内皮细胞生长抑制因子),为肿瘤坏死因子超家族成员之一。TNFSF15在染色体上的位置是9q32,包含4个外显子区域,按照剪切位点的不同可生成3种剪切体。根据其翻译后蛋白中含有氨基酸的数目进行命名,分别为TNFSF15~174、TNFSF15~192及TNFSF15~251。研究发现,TNFSF15参与了临床上抗有丝分裂药物促进肿瘤细胞凋亡的过程[1]。除此之外,TNFSF15还可以抑制血管内皮细胞生长、促进淋巴内皮生长、促进T细胞活化及促进树突状细胞成熟,在维持血管、淋巴管稳态和控制炎性反应等方面发挥重要的作用[2-10]。
早期一系列动物实验结果表明,TNFSF15能够通过抑制原位移植瘤内的血管生成进而抑制肿瘤生长、如骨肉瘤[9]、肾细胞癌[11-12]、卵巢癌[13]、结肠癌[14]及肺癌[15]等;甚至有研究者认为TNFSF15可以作为肿瘤患者预后良好的生物标志物。但近年越来越多的临床数据表明,吸烟等外界因素引起TNFSF15启动子区域单核苷酸突变,而因启动子区域遗传变异引起的TNFSF15高表达不仅与突眼性甲状腺肿瘤[16]、溃疡性结肠炎[17-20]和系统性红斑狼疮[21]的易感性相关,还与胃癌[22]、小细胞肺癌[23]等多种肿瘤发病风险密切相关。我们前期研究发现TNFSF15高表达促进淋巴管生成[7],在肺癌荷瘤小鼠模型中还可促进肿瘤淋巴道转移[15],这意味着TNFSF15高表达者发生淋巴转移的风险更大,淋巴系统内的肿瘤细胞可能也是决定预后的重要因素。与肿瘤细胞血行播散不同,淋巴转移的初期往往表现为病变区域性进展,因而提示对临床上高表达TNFSF15的患者可能更应注重淋巴引流区域控制,如早期手术时彻底清扫淋巴结,对手术视野的范围欠缺者应更早开始引流区放疗等。
2 TNFSF15生物效应的分子基础研究发现,TNFSF15对脉管系统调控的主要信号通路为VEGF/ VEGFR[15, 24-26]。VEGF家族包括五个成员[27],分别是VEGF-A、VEGF-B、VEGF-C、VEGF-D以及PIGF,在血管和淋巴管系统生长调控中发挥关键作用。它们的细胞表面受体是VEGFR家族成员,包括VEGFR1、VEGFR2和VEGFR3,其中VEGF-A可与VEGFR1或VEGFR2结合,主要参与血管生成系统的调控[28]。VEGFR1有两种异构体[24, 29]:mFlt1(膜蛋白VEGFR1)及sFlt1(游离蛋白VEGFR1)。mFlt1正向转导VEGF等配体的信号,sFlt1则只具备mFlt1的细胞外结构域[30],对配体有高亲和力但缺失信号传递功能,能够捕捉VEGF-A、VEGF-B或PIGF,阻碍这些因子发挥效能[31]。VEGF-A/ VEGFR2信号通路主要参与血管渗透性的调控[32]。VEGF-C/ VEGFR3则是淋巴管生成的关键信号通路,与VEGFR3受体结合后可提高淋巴内皮细胞的增殖迁移能力、促进淋巴管生成[15, 33-34]。脉管生成在肿瘤发生发展中起重要作用[35-36],VEGF-A/ VEGFR1及VEGF-C/ VEGFR3则是调控血管和淋巴管生成的关键信号通路。
目前研究表明,DR3仍是TNFSF15在血管内皮细胞和淋巴内皮细胞的唯一受体。当TNFSF15与DR3结合后,会募集一系列接头蛋白(如TRADD、TRAF2、RIP及c-IAP1等)形成信号复合体进而激活不同的下游信号通路[2]。早期的体内、外实验证明,TNFSF15蛋白能够通过抑制增殖期血管内皮细胞的功能而影响血管生成,如TNFSF15重组蛋白可抑制牛主动脉内皮细胞的增殖和成管[37],稳定表达TNFSF15蛋白的HUVEC(人脐静脉血管内皮细胞)成管能力下降[38],重组型TNFSF15蛋白可以显著抑制鸡胚绒毛尿囊膜模型(CAM)的血管生成[37]。TNFSF15还可通过抑制血管内皮的增殖影响内皮细胞集落的形成进而阻断静脉血栓患者血管的修复[39]。进一步研究发现,TNFSF15可抑制血管内皮祖细胞分化为成熟的血管内皮细胞[40];TNFSF15蛋白处理后的血管内皮祖细胞增殖、迁移及成管能力均下降;TNFSF15重组蛋白可以抑制骨髓来源的血管内皮祖细胞参与到体内基质胶中血管生成过程[24];在路易斯肺癌(LLC)荷瘤小鼠模型中,短期系统给与TNFSF15可抑制骨髓来源的血管内皮祖细胞参与肿瘤的血管生成过程中,进而抑制肿瘤生长[41]。究其机制,TNFSF15可通过拮抗血管内皮细胞及肿瘤细胞中VEGF-A的表达削弱VEGF-A/ VEGFR1信号通路达到抑制血管生成的作用[13, 15, 42]。通过抑制VEGF-A的生成起到抑制颅内血管瘤生长及出血的作用[26]。另一方面,在血管内皮祖细胞中,TNFSF15通过改变VEGFR1两种亚型的相对水平(上调sFlt1,下调mFlt1)抑制VEGF-A诱导下血管内皮祖细胞支持的血管生成[24]。VEGF1基因的转录需要激活PKC、Src及Erk1/2信号通路,而TNFSFR15可以促进PKC、Src及Erk1/2等激酶的磷酸化,从而活化信号通路使sFlt表达上升,TNFSF15还可促进依赖于Akt失活的mFlt1的泛素化降解、降低mFlt1表达,从而削弱VEGF-A的作用、影响调控血管生成的关键信号通路。
越来越多体内、外研究也证明,TNFSF15蛋白可通过活化淋巴内皮细胞的功能进而促进淋巴管生成,如TNFSF15重组蛋白可促进mLEC(小鼠淋巴内皮细胞)和hLEC(人淋巴内皮细胞)的增殖和成管,稳定高表达TNFSF15蛋白的转基因孕鼠腹内胎鼠淋巴管密度显著高于对照组,TNFSF15蛋白可以促进不完全弗氏佐剂诱导的良性淋巴管瘤形成,稳定高表达TNFSF15蛋白的A549荷瘤小鼠肿瘤全身转移灶显著高于对照组,肿瘤内新生淋巴管密度显著升高[15]。
VEGF-C/ VEGFR3信号通路在淋巴管生成中发挥关键作用。一方面,TNFSF15可以通过促进肿瘤细胞高表达VEGF-C、进而增强VEGF-C/ VEGFR3信号通路而达到促进肿瘤内淋巴管生成的作用[15],另一方面,TNFSF15通过上调淋巴内皮细胞中VEGFR3蛋白表达水平促进淋巴管生成。TNFSF15可以与淋巴内皮细胞表面的受体DR3结合,进而激活NF-κB信号通路,促进p65亚基进入细胞核,上调VEGFR3 mRNA,并最终促进淋巴内皮细胞表面VEGFR3蛋白的表达量,从而增强VEGF-C的作用、促进淋巴管生成[7]。
3 TNFSF15/DR3在血管和淋巴管中截然相反的生物效应血管内皮细胞[2, 25-26, 43]和淋巴内皮细胞[7]均表达DR3,TNFSF15与血管内皮细胞表面的DR3结合后可抑制血管内皮细胞生长进而阻断新生血管形成,而与淋巴内皮细胞表面的DR3受体结合后却促进淋巴内皮细胞的生长、增殖,促进淋巴管生成,这一“互斥”现象在荷瘤小鼠肿瘤内得到进一步验证[15]。研究表明,在血管内皮细胞中,当TNFSF15与DR3结合后,通过激活p38及JNK的磷酸化进而活化Caspase-3、Caspase-7和Caspase-8等凋亡相关分子启动血管内皮细胞程序化细胞死亡[43]。在淋巴内皮细胞中,TNFSF15与DR3结合后可激活NF-κB信号通路进而上调VEGFR3表达量,促进淋巴内皮细胞的增殖[7]。
综上所述,虽然血管内皮细胞和淋巴内皮细胞几乎在同一时期被发现,但因缺少淋巴内皮细胞的特异标志物,对淋巴内皮细胞及淋巴管的研究远远滞后于对血管的研究。又因TNFSF15作用于血管内皮细胞和淋巴内皮细胞中的同一个受体DR3,临床上通常将淋巴内皮细胞与血管内皮细胞混为一谈;然而两者的遗传背景有本质区别,其下游信号通路也截然不同,进而导致完全相反的生物学效应。因此,将淋巴内皮细胞的生物学效应等同于血管内皮细胞,这很可能导致治疗失误。
4 总结与展望肿瘤内脉管系统在肿瘤发生发展中扮演着重要角色。虽然以往的研究表明,短期应用(如腹腔注射)荷瘤小鼠TNFSF15蛋白能通过抑制肿瘤内的血管生成进而达到抑制肿瘤生长的目的,但长期TNFSF15高表达与肿瘤的发生发展密切相关,这意味着TNFSF15高表达可能是肿瘤患者不良预后的生物标志物,并有可能作为未来肿瘤治疗的靶点。同时,鉴于TNFSF15促进肿瘤淋巴道转移,也为TNFSF15高表达人群肿瘤治疗方式的选择提供了实验依据;针对此类人群,可采用淋巴结的影像示踪、定位引导以加强淋巴道区域肿瘤细胞的清扫,对于降低肿瘤复发率、提高患者生存期具有重要的意义。
综上所述,一方面,TNFSF15启动子突变会影响其在体内的表达量,而其表达量水平与癌症易感性密切相关。另一方面,TNFSF15对脉管系统也有重要的影响。查阅国内外文献,尚无“ TNFSF15启动子突变与肿瘤脉管生成关系”的报道。因而,我们认为对TNFSF15启动子突变与肿瘤脉管生成关系的进一步深入研究也可为肿瘤微环境领域的治疗提供新的启示和线索,对预防淋巴结转移、改善预后具有重要的临床价值。
作者贡献
秦婷婷:文献检索及论文撰写
李凯:文献检索及论文修改
[1] |
Qi C, Wang X, Shen Z, et al. Anti-mitotic chemotherapeutics promote apoptosis through TL1A-activated death receptor 3 in cancer cells[J]. Cell Res, 2018, 28(5): 544-555. DOI:10.1038/s41422-018-0018-6 |
[2] |
Yang GL, Li LY. Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15[J]. Signal Transduct Target Ther, 2018, 3: 21. DOI:10.1038/s41392-018-0023-8 |
[3] |
Kadiyska T, Tourtourikov I, Popmihaylova AM, et al. Role of TNFSF15 in the intestinal inflammatory response[J]. World J Gastrointest Pathophysiol, 2018, 9(4): 73-78. DOI:10.4291/wjgp.v9.i4.73 |
[4] |
Richard AC, Peters JE, Savinykh N, et al. Reduced monocyte and macrophage TNFSF15/TL1A expression is associated with susceptibility to inflammatory bowel disease[J]. PLoS Genet, 2018, 14(9): e1007458.. DOI:10.1371/journal.pgen.1007458 |
[5] |
Ozkaramanli Gur D, Guzel S, Akyuz A, et al. The role of novel cytokines in inflammation: Defining peripheral artery disease among patients with coronary artery disease[J]. Vasc Med, 2018, 23(5): 428-436. DOI:10.1177/1358863X18763096 |
[6] |
Clarke AW, Poulton L, Shim D, et al. An anti-TL1A antibody for the treatment of asthma and inflammatory bowel disease[J]. MAbs, 2018, 10(4): 664-677. DOI:10.1080/19420862.2018.1440164 |
[7] |
Qin TT, Xu GC, Qi JW, et al. Tumour necrosis factor superfamily member 15 (Tnfsf15) facilitates lymphangiogenesis via up-regulation of Vegfr3 gene expression in lymphatic endothelial cells[J]. J Pathol, 2015, 237(3): 307-318. DOI:10.1002/path.4577 |
[8] |
Park SC, Jeen YT. Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients[J]. Cells, 2019, 8(5): pii: E404.. DOI:10.3390/cells8050404 |
[9] |
Kumanishi S, Yamanegi K, Nishiura H, et al. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells[J]. Int J Oncol, 2019, 55(1): 167-178. |
[10] |
Li J, Shi W, Sun H, et al. Activation of DR3 signaling causes loss of ILC3s and exacerbates intestinal inflammation[J]. Nat Commun, 2019, 10(1): 3371. DOI:10.1038/s41467-019-11304-8 |
[11] |
Zhao Q, Hong B, Liu T, et al. VEGI174 protein and its functional domain peptides exert antitumour effects on renal cell carcinoma[J]. Int J Oncol, 2019, 54(1): 390-398. |
[12] |
Zhao Q, Kun D, Hong B, et al. Identification of Novel Proteins Interacting with Vascular Endothelial Growth Inhibitor 174 in Renal Cell Carcinoma[J]. Anticancer Res, 2017, 37(8): 4379-4388. |
[13] |
Deng W, Gu X, Lu Y, et al. Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization[J]. Angiogenesis, 2012, 15(1): 71-85. DOI:10.1007/s10456-011-9244-y |
[14] |
Ślebioda TJ, Stanisławowski M, Cyman M, et al. Distinct Expression Patterns of Two Tumor Necrosis Factor Superfamily Member 15 Gene Isoforms in Human Colon Cancer[J]. Dig Dis Sci, 2019, 64(7): 1857-1867. DOI:10.1007/s10620-019-05507-8 |
[15] |
Qin T, Huang D, Liu Z, et al. Tumor necrosis factor superfamily 15 promotes lymphatic metastasis via upregulation of vascular endothelial growth factor-C in a mouse model of lung cancer[J]. Cancer Sci, 2018, 109(8): 2469-2478. DOI:10.1111/cas.13665 |
[16] |
Zhang M, Liu S, Xu J, et al. TNFSF15 Polymorphisms are Associated with Graves' Disease and Graves' Ophthalmopathy in a Han Chinese Population[J]. Curr Eye Res, 2019, 1-8. |
[17] |
Taheri M, Ghandil P, Hashemi SJ, et al. Association study between two polymorphisms of tumor necrosis factor ligand superfamily member 15 (TNFSF15) gene and ulcerative colitis in south-west of Iran[J]. J Cell Biochem, 2018. |
[18] |
杨威, 杨守醒, 徐昌隆, 等. 肿瘤坏死因子超家族成员15基因多态性与溃疡性结肠炎的关系[J]. 中华内科杂志, 2018, 57(7): 476-482. [Yang W, Yang SX, Xu CL, et al. An association of ulcerative colitis with tumor necrosis factor superfamily member 15 gene polymorphisms in Chinese patients[J]. Zhonghua Nei Ke Za Zhi, 2018, 57(7): 476-482. DOI:10.3760/cma.j.issn.0578-1426.2018.07.002] |
[19] |
He L, Chen J, Sun J, et al. Protective association of TNFSF15 polymorphisms with Crohn' s disease and ulcerative colitis: A meta-analysis[J]. Saudi J Gastroenterol, 2018, 24(4): 201-210. DOI:10.4103/sjg.SJG_5_18 |
[20] |
Castellanos JG, Woo V, Viladomiu M, et al. Microbiota-Induced TNF-like Ligand 1A Drives Group 3 Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T Cell Activation during Colitis[J]. Immunity, 2018, 49(6): 1077-1089 .e5.. DOI:10.1016/j.immuni.2018.10.014 |
[21] |
Xu WD, Fu L, Liu XY, et al. Association between TL1A gene polymorphisms and systemic lupus erythematosus in a Chinese Han population[J]. J Cell Physiol, 2019, 234(12): 22543-22553. DOI:10.1002/jcp.28818 |
[22] |
Zhang Z, Yu D, Lu J, et al. Functional Genetic Variants of TNFSF15 and Their Association with Gastric Adenocarcinoma: A Case-Control Study[J]. PLoS One, 2014, 9(9): e108321. DOI:10.1371/journal.pone.0108321 |
[23] |
Gao H, Niu Z, Zhang Z, et al. TNFSF15 promoter polymorphisms increase the susceptibility to small cell lung cancer: a case-control study[J]. BMC Med Genet, 2019, 20(1): 29. DOI:10.1186/s12881-019-0762-6 |
[24] |
Qi JW, Qin TT, Xu LX, et al. TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1[J]. Proc Natl Acad Sci U S A, 2013, 110(34): 13863-13868. DOI:10.1073/pnas.1304529110 |
[25] |
Yang GL, Zhao Z, Qin TT, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation[J]. FASEB J, 2017, 31(5): 2001-2012. DOI:10.1096/fj.201600800R |
[26] |
Yang GL, Han Z, Xiong J, et al. Inhibition of intracranial hemangioma growth and hemorrhage by TNFSF15[J]. FASEB J, 2019, 33(9): 10505-10514. DOI:10.1096/fj.201802758RRR |
[27] |
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2): 455-467. |
[28] |
Sadremomtaz A, Mansouri K, Alemzadeh G, et al. Dual blockade of VEGFR1 and VEGFR2 by a novel peptide abrogates VEGF-driven angiogenesis, tumor growth, and metastasis through PI3K/AKT and MAPK/ERK1/2 pathway[J]. Biochim Biophys Acta Gen Subj, 2018, 1862(12): 2688-2700. DOI:10.1016/j.bbagen.2018.08.013 |
[29] |
Wang X, Ling CC, Li L, et al. MicroRNA-10a/10b represses a novel target gene mib1 to regulate angiogenesis[J]. Cardiovasc Res, 2016, 110(1): 140-150. |
[30] |
Ambati BK, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1[J]. Nature, 2006, 443(7114): 993-997. DOI:10.1038/nature05249 |
[31] |
Zsengellér ZK, Lo A, Tavasoli M, et al. Soluble fms-Like Tyrosine Kinase 1 Localization in Renal Biopsies of CKD[J]. Kidney Int Rep, 2019, 4(12): 1735-1741. DOI:10.1016/j.ekir.2019.08.004 |
[32] |
Testini C, Smith RO, Jin Y, et al. Myc-dependent endothelial proliferation is controlled by phosphotyrosine 1212 in VEGF receptor-2[J]. EMBO Rep, 2019, 20(11): e47845.. |
[33] |
Telinius N, Hjortdal VE DMSc. Role of the lymphatic vasculature in cardiovascular medicine[J]. Heart, 2019, 105(23): 1777-1784. DOI:10.1136/heartjnl-2018-314461 |
[34] |
Hsu MC, Pan MR, Hung WC. Two Birds, One Stone: Double Hits on Tumor Growth and Lymphangiogenesis by Targeting Vascular Endothelial Growth Factor Receptor 3[J]. Cells, 2019, 8(3): pii: E270. DOI:10.3390/cells8030270 |
[35] |
Gomes FG, Nedel F, Alves AM, et al. Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms[J]. Life Sci, 2013, 92(2): 101-107. DOI:10.1016/j.lfs.2012.10.008 |
[36] |
Han Y, Sengupta S, Lee BJ, et al. Identification of a Unique Resorcylic Acid Lactone Derivative That Targets Both Lymphangiogenesis and Angiogenesis[J]. J Med Chem, 2019, 62(20): 9141-9160. DOI:10.1021/acs.jmedchem.9b01025 |
[37] |
Zhai Y, Yu J, Iruela-Arispe L, et al. Inhibition of angiogenesis and breast cancer xenograft tumor growth by VEGI, a novel cytokine of the TNF superfamily[J]. Int J Cancer, 1999, 82(1): 131-136. |
[38] |
Conway KP, Price P, Harding KG, et al. The role of vascular endothelial growth inhibitor in wound healing[J]. Int Wound J, 2007, 4(1): 55-64. DOI:10.1111/j.1742-481X.2006.00295.x |
[39] |
Della Bella S, Calcaterra F, Bacci M, et al. Pathologic up-regulation of TNFSF15-TNFRSF25 axis sustains endothelial dysfunction in unprovoked venous thromboembolism[J]. Cardiovasc Res, 2020, 116(3): 698-707. |
[40] |
Tian F, Liang PH, Li LY. Inhibition of endothelial progenitor cell differentiation by VEGI[J]. Blood, 2009, 113(21): 5352-5360. DOI:10.1182/blood-2008-08-173773 |
[41] |
Liang PH, Tian F, Lu Y, et al. Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors[J]. Angiogenesis, 2011, 14(1): 61-68. DOI:10.1007/s10456-010-9195-8 |
[42] |
Zhang K, Cai HX, Gao S, et al. TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals[J]. Oncotarget, 2016, 7(43): 69436-69449. DOI:10.18632/oncotarget.11683 |
[43] |
Xu LX, Grimaldo S, Qi JW, et al. Death receptor 3 mediates TNFSF15- and TNFalpha-induced endothelial cell apoptosis[J]. Int J Biochem Cell Biol, 2014, 55: 109-118. DOI:10.1016/j.biocel.2014.08.015 |