文章信息
- 原发性纵隔大B细胞淋巴瘤分子诊疗进展
- Progress in Molecular Diagnosis and Treatment of Primary Mediastinal Large B-cell Lymphoma
- 肿瘤防治研究, 2020, 47(5): 387-392
- Cancer Research on Prevention and Treatment, 2020, 47(5): 387-392
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2020.19.1311
- 收稿日期: 2019-10-18
- 修回日期: 2020-03-14
原发性纵隔大B细胞淋巴瘤(primary mediastinal large B-cell lymphoma, PMBL)是一种起源于纵隔的成熟侵袭性大B细胞淋巴瘤,具有独特的临床、免疫表型、基因型和分子特征,多发于年轻女性[1]。基因表达谱(gene expression profile, GEP)研究表明,PMBL和霍奇金淋巴瘤(nodular sclerosis Hodgkin lymphoma, NSHL)有三分之一的共享基因,最近研究已确定了这两种疾病有共同的驱动突变[2]。纵隔灰区淋巴瘤(mediastinal grey zone lymphoma, MGZL)虽然比PMBL更少见,但是对其生物学特征的研究表明,它们代表了一种独特的分子实体[3],需要和PMBL、NSHL鉴别。由于PMBL罕见前瞻性研究,对于该类患者的最佳治疗仍存在很多争议。因此本文主要针对与PMBL诊疗相关的JAK-STAT(Janus kinase-signal transducer and activator of transcription, JAK-STAT)途径、核因子κB(nuclear factor kappa-B, NF-κB)通路、免疫豁免和相关生物标志物等热点问题进行综述。
1 遗传特征PMBL具有独特的基因表达谱特征,与其他弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma, DLBCL)不同并且与经典霍奇金淋巴瘤(classical Hodgkin's lymphoma, cHL)密切相关。PMBL转录的特征标志是JAK-STAT信号转导的失调,其潜在遗传基础是在染色体9p24上涉及JAK2(Janus kinase 2, JAK2)的扩增,在50%~70%的PMBL中有发现[4-5]。除了JAK2,9p24的扩增区域还包括JMJD2C(jumonji domain containing protein 2C, JMJD2C)、程序性死亡配体-1(programmed cell death 1 ligand 1, PD-L1)和PD-L2(programmed cell death 1 ligand 2, PD-L2)。JAK2和JMJD2C在PMBL中过表达并协同作用以表观修饰PD-L1和PD-L2。扩增和表观修饰功能协同作用,以促进PD-L1和PD-L2的表达,逃避胸腺微环境的免疫监视[4, 6]。PMBL中JAK-STAT活化的其他分子机制包括细胞因子信号抑制因子(suppressor of cytokine signaling 1, SOCS1)和重组人蛋白酪氨酸磷酸酶非受体(protein tyrosine phosphatase, non-receptor type 1, PTPN1)的异常,这两者正常情况下充当JAK-STAT信号转导和STAT6(signal transducer and activator of transcription 6, STAT6)突变的负调节物。在PMBL中,JAK-STAT信号转导中往往多个基因共同发生改变,表明了信号通路的累加效应[2]。JAK抑制剂关闭PDL表达并下调经典JAK-STAT信号转导被认为是PMBL靶向治疗的临床前模型[5, 7]。
NF-κB途径内的体细胞突变是免疫细胞增殖、存活、发育和激活的另一个关键调节因子[6],在PMBL发病过程中,REL(染色体2p16.1)、BCL10(1p22)、MALT1(18p21)基因的染色体扩增以及灭活的TNFAIP3双等位基因突变激活了NF-κB信号转导。人B细胞κ轻肽基因增强子核因子抑制因子ε(NF-kappa-B inhibitor epsilon, NF-κBIE)畸变通常在PMBCL患者中占22%~27%,通过减少NF-κB的负调节剂——IκBε的量,也有助于增强NF-κB信号转导[8]。与野生型患者相比,NF-κBIE缺失的PMBL患者难治性更高,是PMBL中一种新的不良预后标记[9]。TNFAIP3(A20)作为NF-κB活性的关键调节剂,是cHL和PMBL的一种新型肿瘤抑制基因[10]。
在大约40%的PMBL中发现CⅡTA(MHC class Ⅱ transactivator, CⅡTA)易位,并且代表了该淋巴瘤免疫逃逸的第二种机制。CⅡTA的N末端与各种其他基因融合在一起,结果CⅡTA的一个拷贝被灭活,造成MHCⅡ类蛋白不表达,从而限制肿瘤细胞与T细胞相互作用的能力[11]。几个具有致癌功能的热点突变分别在活化B细胞样(ABC-)(CD79B、CARD11和MYD88)和生发中心B细胞样(GCB-)DLBCL(EZH2)中构成重要标志。与DLBCL的其他亚型不同,这些基因的遗传改变在PMBL中是罕见事件[12]。
2 鉴别诊断PMBL主要需要与cHL、DLBCL、MGZL进行鉴别诊断。cHL可以通过组织学特征与PMBL区分,例如前者中粒细胞和淋巴细胞以及组织细胞的大量浸润。此外,cHL表达CD15,较少表达全套B细胞标志物[13]。一些具有PMBL形态学特征但cHL免疫表型特征的病例无法得到最终诊断,被归类为B细胞淋巴瘤,具有DLBCL和cHL之间的特征或所谓的MGZL[14]。这些肿瘤形态学上显示的细胞比PMBL的典型病例的细胞更大且更多形,多形性细胞类似于陷窝细胞和霍奇金淋巴瘤(Hodgkin's lymphoma, HL)细胞。一些PMBL肿瘤形态特征具有不同区域的广谱性,一些接近cHL,其他更像DLBCL,因此需要进行免疫组织化学分析加以区分。在免疫表型上,PMBL与cHL相比,肿瘤细胞通常表达CD45和B细胞标志物,包括CD20、CD79a、转录因子B细胞特异性激活蛋白(pairedbox 5, PAX-5)、OCT2(organic cation transporter 2, OCT2)和BOB1(B lymphocytes specifically activate OCT binding protein 1, BOB1)[15],而且cHL相关的标志物如CD30和CD15也异常表达。CD23阳性有助于与非特指型DLBCL(diffuse large B cell lyphoma-non-specific type, DLBCL-NOS)的鉴别诊断[16]。与DLBCL-NOS不同,染色体9p24.1(包括编码PD-L2的PDCD1LG2区域)的扩增和(或)易位是PMBL中的常见事件,这表明PD-L2表达可能是PMBL的一个明显特征。大多数PMBL强烈表达PD-L2蛋白,但只有很少的DLBCL-NOS表达PD-L2蛋白,PD-L2免疫组织化学分析可作为有用的辅助测试,以鉴别PMBL和DLBCL-NOS,并合理选择适用抑制程序性死亡受体1(programmed cell death protein 1, PD-1)信号抗体的患者[17]。基因表达分析可以进一步提示PMBL和DLBCL-NOS之间的区别[18-20],但尚未在临床实践中使用,需要进一步的研究。
3 新方法和生物制剂 3.1 JAK-STAT通路在正常B细胞中,JAK-STAT通路通过白介素或干扰素结合受体导致JAK分子的自动磷酸化,后续STAT磷酸化和STAT二聚体易位到细胞核中发挥DNA合成转录因子的作用。PMBL中,JAK-STAT信号通路可能是旁分泌IL13(interleukin13, IL13)受体介导的信号转导和通路分子中各种体细胞基因突变的总和[21]。作为完整旁分泌信号转导的证据,在PMBL的细胞系Med-B1中,IL13刺激导致PMBL中磷酸化STAT5的水平增加,且该通路可逆[22]。JAK2扩增是JAK-STAT通路体细胞遗传改变的首要特征之一。通常,最小扩增区域包含多个基因,包括JAK2、PD-L1、PD-L2和JMJD2C[23],它们在PMBL的发生机制中起协同作用[6]。尽管PMBL中9p24扩增频繁[4],但有证据[24]表明SOCS1的体细胞点突变同样频繁。在功能分析中,SOCS1失活突变被证明可以消除SOCS。在MedB-1细胞系中,野生型SOCS1异位表达SOCS-1导致生长停滞和磷酸化JAK2及转录激活因子-5(磷酸化STAT5)显著减少。最终,靶基因细胞周期蛋白D1在转染中被抑制,而在MedB-1细胞中,沉默的视网膜母细胞瘤基因1(retino blastomal 1, RB1)被诱导表达,说明由于SOCS1缺陷,磷酸化JAK2的作用持续存在。因此,SOCS1可能成为一种新型肿瘤抑制因子[25]。最近,通过测序发现了JAK-STAT信号转导的另一个负调节因子的突变。Gunawardana及其同事使用全基因组和转录组测序鉴定了22%PMBL和20%CHL病例中PTPN1基因的编码序列突变,这些病例由无义、错义和移码突变组成。PTPN1编码PTP1B(protein tyrosine phosphatase 1B, PTP1B),PTP1B是蛋白酪氨酸磷酸酶超家族的非受体成员,是IL-4诱导的STAT6信号转导的负调节因子[2]。观察到的PTPN1无义和错义突变被部分或完全还原,证实PTPN1的磷酸酶活性导致STAT3、STAT5和STAT6的持续磷酸化。虽然JAK2扩增与SOCS1和PTPN1突变都会导致STAT的磷酸化增加,但也有强有力的证据表明STAT中的直接点突变,特别是STAT6,可能改变转录程序,从而有助于解释PMBL的发病机制[26]。因此,磷酸化STAT6已被建议作为区分PMBL与其他大B细胞淋巴瘤亚型的可靠标记。该途径中体细胞的频繁突变和相关的途径活化确定了JAK-STAT信号转导是非常有希望的药物靶标。JAK2抑制剂Ruxolitinib和Fedratinib已在PMBL和HD的体外和鼠模型中应用,这两种情况均显示细胞增殖减少和凋亡增加[5, 27]。抑制JAK2导致JAK2本身及其下游靶标的磷酸化降低;重要的是,导致PD-L1和PD-L2的表达以拷贝数依赖性方式降低。一项针对患有复发性或难治性HD和PMBL(NCT01965119)患者的初步研究描述了具有严重症状的难治性PMBL患者接受Ruxolitinib与pembrolizumab联合治疗后得到迅速的临床和代谢缓解[28]。这表明PD-1阻断剂和JAK2抑制剂之间可能存在协同作用,尽管目前不建议将它们组合使用。
3.2 免疫豁免在PMBL中,“免疫豁免”的肿瘤标志主要由MHC(major histocompatibility complex, MHC)Ⅰ类和Ⅱ类分子的下调和程序性死亡配体的过表达支持,导致免疫原性降低和T细胞无反应性。最近,这些表型的遗传基础已被部分阐明,突出了这种致癌机制的获得机制,并提出干扰免疫豁免作为一部分患者的有效治疗方法。
CⅡTA编码MHCⅡ类表达的主转录调节因子。先前已在PMBL中观察到CⅡTA和MHCⅡ类表达的紧密相关性[29]。CⅡTA重排导致与各种基因伴侣的基因融合,其中一种特异性融合(CⅡTA-FLJ27352)以负性调节的方式作用,以减少MHCⅡ类在功能分析中的表达[11]。需要进一步的研究来确定CⅡTA功能缺失突变是PMBL的真正发病机制。拷贝数的整合分析和随后研究中的基因表达数据证实,PD-L2及其邻近的旁系同源PD-L1都是9p24扩增的关键靶基因,可在超过一半的PMBL病例中检测到。此外,通过测序和随后的FISH(fluorescence in situ hybridization, FISH)分析,在20%的PMBL病例中发现了涉及9p24的重复性基因组重排,导致PD-L1和PD-L2基因融合[11, 30]。Twa等利用高通量测序技术,描述了涉及PDL的新型易位和嵌合融合转录物。数据表明,重复性基因组重排事件是B细胞淋巴瘤中免疫豁免的基础。这些发现证实上述基因是染色体9p24上严重失调的基因,并提示程序性死亡配体的上调以及含有PD-L1和PD-L2基因嵌合体的表达作为新的致病事件。有趣的是,与扩增的病例相比,重排病例中PD-L1和PD-L2表达最高[30]。此外,在DLBCL细胞系U2932中,CⅡTA-PD-L2基因融合的异位表达使共培养系统中的Jurkat T细胞失活。这种失活可以通过阻断PD-1受体或配体来逆转。这些数据证明了这些基因融合可以干扰肿瘤微环境,并强烈表明阻断PD-1可逆转免疫豁免。JAK2与染色体9p24上编码死亡配体基因的共扩增表明JAK-STAT信号转导和获得性免疫豁免在PMBL淋巴瘤形成中存在协同作用。两种途径之间的直接联系可以通过PD-L1启动子研究证实PD-L1的STAT依赖性表达[4]。因此,鉴于这些发现,联合抑制JAK-STAT和免疫检查点似乎很有希望。
3.3 PD-1和PD-L1近年来,在免疫治疗中阻断免疫检查点已成为一种非常有前景的治疗方法。免疫检查点的关键分子是PD-1和PD-L1。
JAK-STAT途径调节失调是PMBL和cHL的标志,并且正调节PD-L1和PD-L2的表达。PD-L1和PD-L2过表达有助于PMBL在胸腺微环境中存活。JAK抑制剂关闭PDL表达并下调JAK-STAT信号[6, 11],最近,针对实体瘤中PDL途径的临床试验已显示出有希望的结果,数据表明PDL及其高亲和力PD-1是合理的药物靶点[31]。这些研究结果揭示了PMBL的特征在于PDL基因异常。免疫检查点抑制剂已在多种癌症如黑色素瘤中表现出抗癌活性,抗PD-1活性可能是由于结合PD-1或PD-L1的直接抗肿瘤作用以及通过增强T细胞和NK细胞功能恢复免疫抗肿瘤反应。81例非霍奇金淋巴瘤(non-Hodgkin lymphoma, NHL)患者的nivolumab Ⅰ期研究中包括11例DLBCL患者[32],在这11例患者中,4例(36%)有反应,然而没有提供多少人患有PMBL的信息。在Ⅰb期试验(Keynote trial 013)中,给17例PMBL患者用pembrolizumab,7例(41%)有效[33]。该研究有几个显著特点[34]:首先,纳入的人群包括经过3次治疗后复发的患者,转化为四线治疗。与侵袭性淋巴瘤挽救治疗相比,显然这一人群的前期治疗更为严重。在这种情况下,41%的反应率必须引起注意[33]。其次,中位随访11.3月,尚未达到中位反应持续时间。该研究17例患者中只有5例出现疾病进展,4例死亡,2例患者达到最长2年的治疗期并保持在缓解期。PMBL患者超过1年复发是不寻常的,因此这2例患者很可能已经治愈。7例有反应的患者中只有1例出现复发。最后,所有病例对pembrolizumab的反应持续时间都长于对一线治疗的反应,这是一种不寻常的结果。对于NHL病例,nivolumab联合brentuximab vedotin(CheckMate 436)的临床试验正在进行。然而,该试验仅限于表达CD30的病例,其中包括PMBL。此外,由于添加了brentuximab,实验不会产生关于nivolumab对PMBL单药活性的信息。
抗PDL轴的疗法似乎可以显著改善淋巴瘤患者的预后。实际上,有两项针对PD-1的淋巴瘤临床试验已经发表了有希望的结果。在一项由66例自体移植后发生侵袭性非霍奇金淋巴瘤患者组成的研究中,观察到的总体反应率为51%,没有明显的治疗相关死亡率[35]。另一项临床试验中,32例复发的Ⅰ~Ⅱ级滤泡性淋巴瘤有免疫治疗敏感史且同时接受利妥昔单抗治疗,联合应答率为66%,无严重治疗相关不良事件[36]。
JAK-STAT信号在PMBL和霍奇金淋巴瘤中都很重要,该途径的抑制剂在体外和体内可以抑制PMBL和霍奇金淋巴瘤的生长。免疫检查点抑制剂联合JAK-STAT抑制剂可能是这些疾病非常有前景的应对策略。
3.4 其他80%的PMBL表达CD30,提示靶向CD30的疗法具有潜在的益处。Brentuximab vedotin(BV)是一种抗体药物偶联物,由抗CD30单克隆抗体和微管抑制剂MMAE(monomethyl auristatin E, MMAE)连接组成[37]。复发或难治性PMBL(Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma, rrPMBL)患者使用BV的Ⅱ期临床试验结果中2例实现了PR(partial response, PR)、1例SD,其余12例(80%)出现PD(progressive disease, PD)。由于这种低OR率(overall response, OR),该研究提早终止[38]。
嵌合抗原受体T细胞免疫疗法(Chimeric Antigen Receptor T-Cell Immunotherapy, CAR-T)作为一种独特的免疫治疗方法,在血液系统肿瘤中具有特殊效力,利用患者自身T细胞的细胞溶解能力,寻找和根除对传统治疗方法没有反应的肿瘤细胞。Axicabtagene ciloleucel(axi-cel)是一种抗CD19的CAR-T细胞疗法,T细胞被工程化以表达CAR,识别表达CD19的细胞。在NCT02348216试验中,向101例复发或难治性DLBCL、PMBL和转化的滤泡性淋巴瘤患者给予axi-cel,82%的病例(CR为54%)获得了缓解[39]。在小部分PMBL(8例患者)中也证明了这种功效,因此在这种情况下用CAR-T细胞开展进一步研究是合理的。
4 前景与展望PMBL在临床、基因和分子上与其他成熟的B细胞淋巴瘤明显不同,与cHL具有许多共同特征,需要进一步研究有效的疗法。PMBL的遗传学与cHL相似,表明它可能对cHL的传统疗法有更好的反应。PMBL尽管很少见,但一线应用含蒽环类药物的方案,是一种高度可治愈的疾病。RT可有效巩固反应,但在诱导后立即获得CR的患者中可避免使用RT。PET扫描可能会提供机会识别可以保留RT的患者。该疾病的独特生物学特征为设计针对复发和难治性疾病的新治疗策略提供了线索,该疾病的预后令人沮丧,仍然未满足医疗需求。
综上所述,PMBL是独特的纵隔淋巴瘤,最近在阐明其生物学特性方面取得了重大进展。PMBL临床病理学上与其他DLBCL不同,应该以不同的方式进行治疗,对这些疾病的生物学的见解为PMBL的诊断和治疗带来了新的希望。
作者贡献
袁婷:文献调研及论文撰写
曹铮:文献调研及整理
冯晓莉:论文设计及修改
[1] |
Martelli M, Ferreri A, Di Rocco A, et al. Primary mediastinal large B-cell lymphoma[J]. Crit Rev Oncol Hematol, 2017, 113: 318-327. DOI:10.1016/j.critrevonc.2017.01.009 |
[2] |
Jay G, Fong CC, Adèle T, et al. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma[J]. Nat Genet, 2014, 46(4): 329-335. DOI:10.1038/ng.2900 |
[3] |
Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations[J]. Mod Pathol, 2011, 24(12): 1586-1597. DOI:10.1038/modpathol.2011.116 |
[4] |
Green MR, Stefano M, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma[J]. Blood, 2010, 116(117): 3268-3277. |
[5] |
Yansheng H, Bjoern C, Stefano M, et al. Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo[J]. Clin Cancer Res, 2014, 20(10): 2674-2683. DOI:10.1158/1078-0432.CCR-13-3007 |
[6] |
Steidl C, Gascoyne RD. The molecular pathogenesis of primary mediastinal large B-cell lymphoma[J]. Blood, 2011, 118(10): 2659-2669. DOI:10.1182/blood-2011-05-326538 |
[7] |
Ritz O, Mölle P, Ushmorov A. Targeting the intratumor heterogeneity in PMBL[J]. Cell Cycle, 2014, 13(15): 2317-2318. DOI:10.4161/cc.29828 |
[8] |
Alves BN, Tsui R, Almaden J, et al. IkappaBepsilon is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner[J]. J Immunol, 2014, 192(7): 3121-3132. DOI:10.4049/jimmunol.1302351 |
[9] |
Mansouri L, Noerenberg D, Young E, et al. Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma[J]. Blood, 2016, 128(23): 2666-2670. DOI:10.1182/blood-2016-03-704528 |
[10] |
Schmitz R, Hansmann ML, Bohle V, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma[J]. J Exp Med, 2009, 206(5): 981-989. DOI:10.1084/jem.20090528 |
[11] |
Steidl C, Shah SP, Woolcock BW, et al. MHC class Ⅱtransactivator CIITA is a recurrent gene fusion partner in lymphoid cancers[J]. Nature, 2011, 471(7338): 377-381. DOI:10.1038/nature09754 |
[12] |
Mottok A, Hung SS, Chavez EA, et al. Integrative genomic analysis identifies key pathogenic mechanisms in primary mediastinal large B-cell lymphoma[J]. Blood, 2019, 134(10): 802-813. DOI:10.1182/blood.2019001126 |
[13] |
Iwaki N, Sato Y, Kurokawa T, et al. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma without mediastinal disease: mimicking nodular sclerosis classical Hodgkin lymphoma[J]. Med Mol Morphol, 2013, 46(3): 172-176. DOI:10.1007/s00795-013-0038-8 |
[14] |
Sarkozy C, Copie-Bergman C, Damotte D, et al. Gray-zone Lymphoma Between cHL and Large B-Cell Lymphoma: A Histopathologic Series From the LYSA[J]. Am J Surg Pathol, 2019, 43(3): 341-351. DOI:10.1097/PAS.0000000000001198 |
[15] |
Christoph L, Ioannis A, Michael H, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas[J]. J Pathol, 2004, 202(1): 60-69. |
[16] |
Calaminici M, Piper K, Lee AM, et al. CD23 expression in mediastinal large B-cell lymphomas[J]. Histopathology, 2004, 45(6): 619-624. DOI:10.1111/j.1365-2559.2004.01969.x |
[17] |
Shi M, Roemer MG, Chapuy B, et al. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain[J]. Am J Surg Pathol, 2014, 38(12): 1715-1723. DOI:10.1097/PAS.0000000000000297 |
[18] |
Dai H, Ehrentraut S, Nagel S, et al. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines[J]. PLoS One, 2015, 10(11): e0139663. DOI:10.1371/journal.pone.0139663 |
[19] |
Karube K, Enjuanes A, Dlouhy I, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets[J]. Leukemia, 2018, 32(3): 675-684. DOI:10.1038/leu.2017.251 |
[20] |
Kozloski GA, Jiang X, Bhatt S, et al. miR-181a negatively regulates NF-kappaB signaling and affects activated B-cell-like diffuse large B-cell lymphoma pathogenesis[J]. Blood, 2016, 127(23): 2856-2866. DOI:10.1182/blood-2015-11-680462 |
[21] |
Viganò E, Guanwardana J, Mottok A, et al. Somatic IL4R Mutations in Primary Mediastinal Large B-cell lymphoma lead to constitutive JAK-STAT signaling activation[J]. Blood, 2018, 131(18): 2036-2046. DOI:10.1182/blood-2017-09-808907 |
[22] |
Raia V, Schilling M, Böhm M, et al. Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets[J]. Cancer Res, 2011, 71(3): 693-704. |
[23] |
Rui L, Emer NC, Kruhlak MJ, et al. Cooperative epigenetic modulation by cancer amplicon genes[J]. Cancer Cell, 2010, 18(6): 590-605. |
[24] |
Barth TF, Melzner I, Wegener S, et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in MedB-1 mediastinal lymphoma line[J]. Verh Dtsch Ges Pathol, 2005, 89: 234-244. |
[25] |
Ingo M, Weniger MA, Bucur AJ, et al. Biallelic deletion within 16p13.13 including SOCS-1 in Karpas1106P mediastinal B-cell lymphoma line is associated with delayed degradation of JAK2 protein[J]. Int J Cancer, 2006, 118(8): 1941-1944. DOI:10.1002/ijc.21485 |
[26] |
Olga R, Karolin R, Karola D, et al. STAT6-mediated BCL6 repression in primary mediastinal B-cell lymphoma (PMBL)[J]. Oncotarget, 2013, 4(7): 1093-1102. DOI:10.18632/oncotarget.1149 |
[27] |
Lee S, Shah T, Yin C, et al. Ruxolitinib significantly enhances in vitro apoptosis in Hodgkin lymphoma and primary mediastinal B-cell lymphoma and survival in a lymphoma xenograft murine model[J]. Oncotarget, 2018, 9(11): 9776-9788. DOI:10.18632/oncotarget.24267 |
[28] |
Nijland M, Meerten TV, Seitz A, et al. Combined PD-1 and JAK1/2 inhibition in refractory primary mediastinal B-cell lymphoma[J]. Ann Hematol, 2018, 97(5): 905-907. |
[29] |
Mottok A, Woolcock B, Chan FC, et al. Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class Ⅱ Expression[J]. Cell Rep, 2015, 13(7): 1418-1431. DOI:10.1016/j.celrep.2015.10.008 |
[30] |
Twa DDW, Fong CC, Susana BN, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma[J]. Blood, 2014, 123(13): 2062-2065. DOI:10.1182/blood-2013-10-535443 |
[31] |
Panjwani PK, Charu V, Delisser M, et al. Programmed Death-1 Ligands, PD-L1 and PD-L2, Show Distinctive and Restricted Patterns of Expression in Lymphoma Subtypes[J]. Hum Pathol, 2018, 71: 91-99. DOI:10.1016/j.humpath.2017.10.029 |
[32] |
Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study[J]. J Clin Oncol, 2016, 34(23): 2698-2704. DOI:10.1200/JCO.2015.65.9789 |
[33] |
Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma[J]. Blood, 2017, 130(3): 267-270. DOI:10.1182/blood-2016-12-758383 |
[34] |
Cabanillas F, Rivera N. Check this checkpoint inhibitor in lymphoma[J]. Blood, 2017, 130(3): 234-235. DOI:10.1182/blood-2017-05-786293 |
[35] |
Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phaseⅡ trial[J]. J Clin Oncol, 2013, 31(33): 4199-4206. DOI:10.1200/JCO.2012.48.3685 |
[36] |
Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial[J]. Lancet Oncol, 2014, 15(1): 69-77. DOI:10.1016/S1470-2045(13)70551-5 |
[37] |
Provencio M, Sánchez A, Sánchez-Beato M. New drugs and targeted treatments in Hodgkin's lymphoma[J]. Cancer Treat Rev, 2014, 40(3): 457-464. DOI:10.1016/j.ctrv.2013.09.005 |
[38] |
Zinzani PL, Pellegrini C, Chiappella A, et al. Brentuximab vedotin in relapsed primary mediastinal large B-cell lymphoma: results from a phase 2 clinical trial[J]. Blood, 2017, 129(16): 2328-2330. DOI:10.1182/blood-2017-01-764258 |
[39] |
Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma[J]. N Engl J Med, 2017, 377(26): 2531-2544. DOI:10.1056/NEJMoa1707447 |