肿瘤防治研究  2019, Vol. 46 Issue (11): 1036-1039
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

环氧合酶2在肿瘤发生发展中的作用研究进展
Advances in Role of Cyclooxygenase 2 in Development and Progression of Cancer
肿瘤防治研究, 2019, 46(11): 1036-1039
Cancer Research on Prevention and Treatment, 2019, 46(11): 1036-1039
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2019.19.0413
收稿日期: 2019-03-28
修回日期: 2019-06-09
环氧合酶2在肿瘤发生发展中的作用研究进展
张筱1,2 ,    闫克芹1 ,    冯定庆1 ,    凌斌1,2     
1. 100029 北京,中日友好医院妇产科;
2. 100730 北京,北京协和医学院研究生院
摘要: 环氧合酶2(COX2)可通过代谢促进组织前列腺素的合成,在包括卵巢癌在内的多种肿瘤组织中高表达,可通过对下游代谢产物的调节,以不同方式影响肿瘤的发生、发展,刺激肿瘤细胞增殖、迁移,促进血管生成,抑制细胞凋亡,在肿瘤进展中起重要作用,并可能为肿瘤治疗提供新思路。
关键词: 环氧合酶2     凋亡     肿瘤     卵巢癌     治疗    
Advances in Role of Cyclooxygenase 2 in Development and Progression of Cancer
ZHANG Xiao1,2 , YAN Keqin1 , FENG Dingqing1 , LING Bin1,2     
1. Department of Gynaecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, China;
2. Graduate School of Peking Union Medical College, Beijing 100730, China
Abstract: Cyclooxygenase 2 (COX2) can promote the synthesis of prostaglandins through metabolism, and is highly expressed in various tumor tissues including ovarian cancer. It can affect the occurrence and development of tumors in different ways by regulating downstream metabolites. It stimulates tumor cell proliferation and migration, promotes angiogenesis, inhibits apoptosis, plays an important role in tumor progression and may provide new ideas for tumor therapy.
Key words: COX2     Apoptosis     Cancer     Ovarian cancer     Therapy    
0 引言

非甾体抗炎药(NSAIDs)作为镇痛药和消炎药,是世界范围内使用最广泛的药物之一。NSAIDs类药物的作用靶点为环氧合酶(cyclooxygenase, COX),它首先催化花生四烯酸生成不稳定的中间体前列腺素G2,然后通过COX的过氧化物酶活性转化为前列腺素H2(PGH2)[1]。PGH2通过不同途径转化为PGE2、PGD2、PGF2、PGI2(也称前列环素)和血栓烷-A2。这些前列腺素类物质分别与特异受体结合,在免疫应答调节、胃肠黏膜保护、肾稳态维持、血液凝固的调节及炎性反应中起重要作用。

COX又称为前列腺素合成酶,有两种同工酶COX1[2]和COX2[3]。COX1为固有型,在大多数组织中均有表达,包括肾、肺、胃、小肠和结肠。因此,COX1被认为是管家酶,负责维持组织稳态需要的基础前列腺素水平。COX2为诱生型,在正常组织细胞内的活性较低,在细胞受到炎性反应等刺激时,可被诱导表达,促进炎性反应部位包括PGE2等的合成。研究发现,COX2在肿瘤组织中高表达,可通过对下游代谢产物的调节,以不同方式影响肿瘤的发生、发展,刺激肿瘤细胞增殖、迁移,促进血管生成,抑制细胞凋亡,在疾病进展中起重要作用。COX2的过表达会引起肿瘤细胞对化疗药物敏感度的降低,可介导卵巢癌、胃癌、结肠癌、肝癌等多种肿瘤的耐药,导致患者预后不良。本文将综述COX2在肿瘤发生、进展中的机制,以及COX2抑制剂在肿瘤治疗中的应用,为后续研究提供思路。

1 COX2与肿瘤细胞凋亡

细胞凋亡是程序性细胞死亡过程[4],是生物体控制细胞数量的关键机制,这种选择性细胞死亡能够有效去除多余、受损或被感染的细胞[5]。细胞凋亡在胚胎发育过程中起到重要作用,是生物体维持组织稳态所必需的。细胞凋亡机制紊乱是许多病理改变的基础,在细胞受到凋亡刺激时未能有效启动程序性死亡,在肿瘤的发生中起到重要作用[6]。在大多数情况下,细胞凋亡能力的减弱是由线粒体凋亡途径受损导致的,该途径受促凋亡细胞和促存活B淋巴细胞瘤2(Bcl2)家族的比例调控。COX2可通过PGE2作用于细胞表面的前列腺素受体,通过自分泌或旁分泌作用,调节细胞凋亡。

COX2可通过多种途径调节细胞凋亡。研究表明,COX2过表达可导致Bcl2水平升高,使大鼠肠上皮细胞抗凋亡能力增强[7]。Li等[8]研究发现,COX2过表达可通过激活丝裂原活化蛋白激酶(MAPK)/细胞外调节蛋白激酶(ERK)途径抑制细胞凋亡。PGE2可激活促存活途径,包括磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)途径[9]、ERK途径[10]、环磷酸腺苷(cAMP)/蛋白激酶A(PKA)途径[11]和表皮生长因子受体(EGFR)途径[12]。研究发现,PGE2通过PI3K/AKT通路激活核过氧化物酶增殖激活受体(PPAR)-δ,从而促进小鼠腺瘤细胞存活[13]。此外,花生四烯酸可通过刺激神经酰胺的生成诱导细胞凋亡,因此除了COX2催化生成的PGE2的凋亡抑制作用外,COX2蛋白本身的表达失调也可能通过减少底物水平影响细胞对凋亡的敏感度[14]

虽然COX2过表达抑制细胞凋亡的确切机制尚未明确,但可以明确COX2对细胞凋亡的抑制在肿瘤的进展中起重要作用。例如,在缺氧条件下,COX2可通过刺激MAPK信号促进结肠癌细胞的存活[15]。此外,COX2可能在促进腺瘤向癌的转变中起关键作用。Li等[16]研究发现,EP4受体过表达可抑制肿瘤细胞Tca8113的凋亡,从而使其致瘤性增强。

因此,COX2可通过多种途径促进肿瘤细胞凋亡,从而参与肿瘤进展,提示COX2选择性抑制剂可能作为辅助治疗药物,对肿瘤治疗有应用潜力。

2 COX2与血管生成

实体肿瘤需要依靠血管生成来维持生长,这一过程需要促血管生成因子和抗血管生成因子的调节[17]。研究发现,肿瘤细胞中COX2过表达可诱导血管内皮生长因子(VEGF)和碱性成纤维细胞生长因子产生,刺激新血管形成。NSAIDs类药物可抑制COX2的促血管生成作用,从而抑制内皮细胞增殖、迁移和血管形成,而这一抑制作用可被外源性PGE2逆转[18],由此可见COX2的促血管生成作用是PGE2依赖的。同时,研究发现PGE2可通过激活缺氧诱导因子-1(HIF-1)刺激肿瘤细胞中VEGF的表达[19]。体内研究发现,小鼠中COX2的纯合缺失可导致肿瘤异种移植物生长受阻,且与肿瘤血管密度降低相关[20]。COX2促进肿瘤血管形成的机制可能是通过PGE2完成的,研究发现,PGE2可通过调节趋化因子受体信号来调节血管生成[21],在体内诱导促血管生成趋化因子CXCL-1的表达,还可以与缺氧环境协同作用,协调血管生成过程[22]。因此,COX2可通过上调VEGF等促进肿瘤组织血管生成,从而促进肿瘤生长。

3 COX2与肿瘤细胞的侵袭、转移

肿瘤引起患者死亡的主要原因是远处转移,也是肿瘤治疗介入的标志,肿瘤细胞可表现出更强的侵袭性,可与邻近细胞分离,通过细胞外基质侵入局部血管或淋巴管,进一步从血管或淋巴管中渗出到周围组织,在远处定居[23]。体内实验发现,抑制COX2可降低肿瘤细胞的转移能力[24]。同时,PGE2可通过PI3K信号通路促进细胞骨架重组,增加肿瘤细胞的转移和侵袭。此外,肝细胞生长因子受体c-Met也可被PGE2激活,使细胞侵袭性增加[25]。Gupta等[26]将COX2作为共同调节肿瘤细胞远处转移的四个关键“转移进展”基因之一。

由此可见,COX2可提高肿瘤细胞的侵袭、转移能力,在肿瘤细胞远处转移中起到重要作用。

4 COX2与抗肿瘤免疫

肿瘤细胞的特征之一是能够逃避免疫系统的攻击,肿瘤特异性抗原能够激活细胞毒性CD8+T细胞的抗肿瘤免疫应答,导致肿瘤细胞裂解。然而,在肿瘤患者中,抗肿瘤免疫反应通常是无效的,越来越多的证据表明,肿瘤细胞可进化出几种策略,以逃避肿瘤特异性免疫[27]。COX2在调节免疫应答方面起到重要作用,因此肿瘤细胞中COX2的过表达可能有助于逃避肿瘤特异性免疫应答[28]。研究发现,PGE2可通过调节抗原呈递树突细胞转移细胞因子,导致抗肿瘤细胞毒性CD8+T细胞的活化减少[29],可使肿瘤细胞逃脱免疫监视。因此,COX2可通过调节免疫应答,抑制抗肿瘤免疫,促进肿瘤细胞的免疫逃脱,进而促进肿瘤的发生、发展。

5 COX2与肿瘤治疗

包括卵巢癌在内的多种恶性肿瘤都面临化疗后肿瘤复发、耐药的问题,严重影响患者的预后,COX2在肿瘤发生、发展中的重要作用,为临床治疗提供了新策略。Wang等[30]认为,COX2抑制剂可通过减少基底膜的损失,降低卵巢癌细胞的恶性程度,从而起到治疗作用。研究发现,COX2抑制剂阿司匹林、NS398、尼美舒利以及COX2特异性siRNA可抑制卵巢癌细胞增殖,并诱导细胞凋亡。因此,COX2选择性抑制剂可抑制肿瘤生长,与化疗药物联合应用可增强抗肿瘤治疗的效果,有一定的临床应用潜力。

6 小结

体内和体外研究均证明,COX2可通过不同途径,在肿瘤凋亡、血管生成、侵袭、转移和抗肿瘤免疫中发挥重要作用,从而参与肿瘤的发生、发展,成为肿瘤治疗的新靶点,见图 1。目前已有临床试验将高选择性COX2抑制剂应用于结直肠癌的辅助化疗,尽管心血管事件风险的增加使药物的长期应用受到质疑[31],但COX2选择性抑制剂塞来昔布仍是结直肠癌治疗的临床相关药物,将来的研究需进一步探讨NSAIDs类药物在肿瘤预防中的作用,同时研究其是否可应用于卵巢癌等其他类型的肿瘤患者。对COX2在肿瘤发生、发展中的作用和相关机制进行探讨,有望为肿瘤的预防和治疗提供新方法。

AA: arachidonic acid; COX2: cyclooxygenase 2; NSAIDs: nonsteroidal anti-inflammatory drug; COXIBs: celecoxib; PGH2: prostaglandin H2; PGE2: prostaglandin E2; MAPK: mitogen-activated protein kinase; ERK: extracellular regulated protein kinases; PI3K: Phosphatidylinositol 3-kinase; AKT: protein kinase B; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; EGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth factor; CXCL-1: C-X-C motif chemokine ligand-1; c-MET: hepatocyte growth factor 图 1 COX2在肿瘤发生发展中的作用 Figure 1 Role of cyclooxygenase 2 in development and progression of cancer

作者贡献:

张  筱:检索文献,撰写文章

闫克芹:检索文献

冯定庆、凌斌:拟定选题,修改文章

参考文献
[1] Kishore AH, Liang H, Kanchwala M, et al. Prostaglandin dehydrogenase is a target for successful induction of cervical ripening[J]. Proc Natl Acad Sci U S A, 2017, 114(31): E6427–E6436. DOI:10.1073/pnas.1704945114
[2] Poon RWS, Tam EWT, Lau SKP, et al. Molecular identification of cestodes and nematodes by COX1 gene real-time PCR and sequencing[J]. Diagn Microbiol Infect Dis, 2017, 89(3): 185–190. DOI:10.1016/j.diagmicrobio.2017.07.012
[3] Lei BB, Ju F, Fu QR, et al. Mild hypothermia prevents no-induced cytotoxicity in human neuroblastoma cells via induction of COX-2[J]. J Mol Neurosci, 2019, 67(2): 173–180. DOI:10.1007/s12031-018-1222-z
[4] Wang F, Wei ZL, Sun XR, et al. Apoptosis inducing factor is involved in stretch-induced apoptosis of myoblast via a Caspase-9 independent pathway[J]. J Cell Biochem, 2017, 118(4): 829–838. DOI:10.1002/jcb.25759
[5] Blander JM. The many ways tissue phagocytes respond to dying cells[J]. Immunol Rev, 2017, 227(1): 158–173.
[6] Yang X, Chen L, Liang Y, et al. Knockdown of alpha-fetoprotein expression inhibits HepG2 cell growth and induces apoptosis[J]. J Cancer Res Ther, 2018, 14(Supplement): S634–S643.
[7] Wang HY, Yu HZ, Huang SM, et al. p53, Bcl-2 and COX-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells[J]. Mol Med Rep, 2016, 14(4): 3855–3861. DOI:10.3892/mmr.2016.5696
[8] Li T, Gao D, Du M, et al. Casein glycomacropeptide hydrolysates inhibit PGE2 production and COX2 expression in LPS-stimulated RAW 264.7 macrophage cells via Akt mediated NF-κB and MAPK pathways[J]. Food Funct, 2018, 9(4): 2524–2532. DOI:10.1039/C7FO01989K
[9] Ma NX, Sun W, Wu J, et al. Compound wumei powder inhibits the invasion and metastasis of gastric cancer via COX-2/pge2-pi3k/akt/gsk3β/β-catenin signaling pathway[J]. Evid Based Complement Alternat Med, 2017, 2017: 3039450. DOI:10.1155/2017/3039450
[10] Yu L, Yan J, Sun Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways[J]. Mol Med Rep, 2017, 15(4): 2339–2346. DOI:10.3892/mmr.2017.6241
[11] Li H, Luo Y, Xu Y, et al. Meloxicam improves cognitive impairment of diabetic rats through COX2-PGE2-EPs-cAMP/pPKA pathway[J]. Mol Pharm, 2018, 15(9): 4121–4131. DOI:10.1021/acs.molpharmaceut.8b00532
[12] Ooki A, Begum A, Marchionni L, et al. Arsenic promotes the COX2/PGE2-SOX2 axis to increase the malignant stemness properties of urothelial cells[J]. Int J Cancer, 2018, 143(1): 113–126. DOI:10.1002/ijc.31290
[13] Lima JB, Araújo-Santos T, Lázaro-Souza M, et al. Leishmania infantum lipophosphoglycan induced-Prostaglandin E2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2[J]. Sci Rep, 2017, 7(1): 14321. DOI:10.1038/s41598-017-14229-8
[14] Riva B, De Dominici M, Gnemmi I, et al. Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of β-catenin and mTORC1/2[J]. Oncotarget, 2016, 7(49): 81555–81570. DOI:10.18632/oncotarget.13146
[15] Kaidi A, Qualtrough D, Williams AC, et al. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia[J]. Cancer Res, 2016, 66(13): 6683–6691.
[16] Li X, Yang B, Han G, et al. The EP4 antagonist, L-161, 982, induces apoptosis, cell cycle arrest, and inhibits prostaglandin E2-induced proliferation in oral squamous carcinoma Tca8113 cells[J]. J Oral Pathol Med, 2017, 46(10): 991–997.
[17] Li X, Yuan N, Lin L, et al. Targeting cysteine-rich angiogenic inducer-61 by antibody immunotherapy suppresses growth and migration of non-small cell lung cancer[J]. Exp Ther Med, 2018, 16(2): 730–738. DOI:10.3892/etm.2018.6274
[18] Jana S, Chatterjee K, Ray AK, et al. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis[J]. PLoS One, 2016, 11(10): e30163540. DOI:10.1371/journal.pone.0163540
[19] Tafakh MS, Saidijam M, Ranjbarnejad T, et al. Sulforaphane, a chemopreventive compound, inhibits cyclooxygenase-2 and microsomal prostaglandin e synthase-1 expression in human HT-29 colon cancer cells[J]. Cells Tissues Organs, 2018, 206(1-2): 46–53. DOI:10.1159/000490394
[20] Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, et al. YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells[J]. Cancer Res, 2018, 78(1): 168–181. DOI:10.1158/0008-5472.CAN-17-0836
[21] Lee HH, Jeong JW, Hong SH, et al. Diallyl trisulfide suppresses the production of lipopolysaccharide-induced inflammatory mediators in BV2 microglia by decreasing the NF-κB pathway activity associated with Toll-like receptor 4 and CXCL12/CXCR4 pathway blockade[J]. J Cancer Prev, 2018, 23(3): 134–140. DOI:10.15430/JCP.2018.23.3.134
[22] Wu C, Li X, Zhang D, et al. IL-1β-mediated up-regulation of WT1D via miR-144-3p and their synergistic effect with NF-κB/COX-2/HIF-1α pathway on cell proliferation in LUAD[J]. Cell Physiol Biochem, 2018, 48(6): 2493–2502. DOI:10.1159/000492687
[23] Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69–84.
[24] Zuo C, Hong Y, Qiu X, et al. Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3/NF-κB and L1CAM activities[J]. Pancreatology, 2018, 18(3): 328–333. DOI:10.1016/j.pan.2018.02.006
[25] Lala PK, Nandi P, Majumder M, et al. Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer[J]. Cancer Metastasis Rev, 2018, 37(2-3): 369–384. DOI:10.1007/s10555-018-9734-0
[26] Gupta GP, Nguyen DX, Chiang AC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis[J]. Nature, 2017, 446(7137): 756–770.
[27] Chambers AM, Lupo KB, Matosevic S. Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells[J]. Front Immunol, 2018, 9: 2517. DOI:10.3389/fimmu.2018.02517
[28] Theodoraki MN, Yerneni S, Sarkar SN, et al. Helicase-driven activation of NFκB-COX2 pathway mediates the immunosuppressive component of dsRNA-Driven inflammation in the human tumor microenvironment[J]. Cancer Res, 2018, 78(15): 4292–4302. DOI:10.1158/0008-5472.CAN-17-3985
[29] Wang J, Zhang L, Kang D, et al. Activation of PGE2/EP2 and PGE2/EP4 signaling pathways positively regulate the level of PD-1 in infiltrating CD8+ T cells in patients with lung cancer[J]. Oncol Lett, 2018, 15(1): 552–558.
[30] Wang YP, Wang QY, Li CH, et al. COX-2 inhibition by celeCOXib in epithelial ovarian cancer attenuates E-cadherin suppression through reduced Snail nuclear translocation[J]. Chem Biol Interact, 2018, 292: 24–29. DOI:10.1016/j.cbi.2018.06.020
[31] Gunter BR, Butler KA, Wallace RL, et al. Non-steroidal anti-inflammatory drug-induced cardiovascular adverse events: a meta-analysis[J]. J Clin Pharm Ther, 2017, 42(1): 27–38. DOI:10.1111/jcpt.12484