文章信息
- 反馈激活STAT3调控HER2阳性乳腺癌细胞拉帕替尼耐药的机制
- Feedback Activation of STAT3 Confers Resistance of HER2-positive Breast Cancer Cells to Lapatinib
- 肿瘤防治研究, 2019, 46(4): 305-310
- Cancer Research on Prevention and Treatment, 2019, 46(4): 305-310
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2019.18.1410
- 收稿日期: 2018-09-26
- 修回日期: 2018-12-12
2. 550004 贵阳,贵州医科大学贵州省医学分子生物学重点实验室;
3. 558000 都匀,贵州医科大学院第三附属医院神经内科;
4. 558000 都匀,贵州医科大学第三附属医院医学中心实验室
2. Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, China;
3. Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, China;
4. Medical Laboratory Center, The Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, China
乳腺癌是女性常见的恶性肿瘤之一,其中20%~25%乳腺癌患者携带过表达表皮生长因子受体2(human epithelial growth factor receptor 2, HER2)[1-2]。HER2过表达预示着患者易有淋巴结转移、肿瘤分化差、无疾病总体生存期短[3]。靶向HER2阳性的药物,例如人源化曲妥珠单抗和双重HER2-EGFR酪氨酸激酶抑制剂拉帕替尼,可使HER2阳性乳腺癌患者的临床结果得到显著改善[4-6]。但是,患者对两种药物产生耐药性是治疗HER2阳性乳腺癌面临的巨大挑战,大约50%的HER2阳性患者在治疗一年后表现出对曲妥珠单抗的抗药性[7]。拉帕替尼在接受过曲妥珠单抗治疗失败的晚期转移性HER2阳性乳腺癌中取得了较好的临床疗效,然而,只有不到25%达到一定疗效,其中大部分最终会产生获得性耐药[8-9]。因此,这些抗性产生的机制仍然是临床上尚未解决的重要问题。
本研究中,我们用HER2阳性乳腺癌细胞株BT-474建立拉帕替尼耐药细胞株,检测拉帕替尼诱导分泌的白介素-6(Interleukin-6, IL-6)在拉帕替尼耐药中的作用,旨在探讨靶向治疗HER2阳性乳腺癌的耐药机制,为突破耐药提供可能的新靶点和思路。
1 材料与方法 1.1 细胞培养及处理人乳腺癌BT-474细胞购自美国ATCC细胞库,RPMI培养基中加入10%胎牛血清(美国Gibco公司)以及1%青霉素和链霉素双抗Antibiotic-Antimycotic(美国Gibco公司),置于37℃、5%CO2的培养箱中培养。
1.2 药物与试剂拉帕替尼购自美国MedchemExpress(MCE)公司, 人源IL-6R ELISA和MTT检测试剂盒购自美国ThermoFisher Scientific公司,Caspase 3/7Glo购自美国Promega公司,RNeasy Plus kit购自德国Qiagen公司,cDNA合成试剂盒(iScript)购自美国Bio-Rad公司。P-gp、兔抗STAT3、兔抗P-STAT3,兔抗Cleaved caspase-3、兔抗TUBULIN、辣根过氧化物酶标记的羊抗兔二抗、兔抗羊二抗均购自美国CST公司。
1.3 MTT检测细胞IC50调整细胞悬液的浓度,以5×103个/孔的密度分别将细胞接种于96孔板内,每孔加200 μl完全培养基,置于细胞培养箱内培养。第二天用DMSO或拉帕替尼处理。处理48 h后,每孔细胞加入12 mmol/L MTT液10 μl,连续孵育4 h,停止培养,弃上清液,每孔加入150 μl DMSO,避光摇晃,酶标检测仪测定540 nm处的吸光度值。根据公式计算细胞增殖抑制率:抑制率=(1-加药组OD值/对照组OD值)×100%。
1.4 拉帕替尼耐药细胞株的建立用0.2、0.5、1.0、2.0 μmol/L拉帕替尼逐渐递增浓度直至4.0 μmol/L处理细胞加以诱导,维持6月,建立稳定BT-474耐药株(BT-474R)。Western blot法检测耐药标志蛋白P-gp的表达。用MTT法检测BT-474R细胞的生长抑制IC50值。用Caspase-Glo® 3/7法验证拉帕替尼诱导的Caspase3/7酶的活性在BT-474R细胞是否比在BT-474细胞降低。
1.5 Western blot检测蛋白表达水平收集细胞,提取总蛋白。SDS聚丙烯酰胺凝胶电泳分离蛋白, 将蛋白转移到PVDF膜上,封闭,常规一抗和二抗孵育后, 用ECL超敏免疫印迹检测试剂(英国Amersham公司)检测蛋白表达,用Image J软件分析蛋白图像强度。
1.6 Caspase-Glo® 3/7法检测细胞凋亡把16 000个细胞(100 μl)接种于96孔不透明白板,按实验方案加入DMSO或拉帕替尼处理6 h。不含细胞的培养基样品吸收值作为背景值。DMSO处理的细胞样品作为阴性对照。按照试剂盒说明书进行操作。用药细胞处理到达时间时,取出96孔板,平衡至室温。每孔加入100 μl Caspase-Glo®3/7试剂,混匀,室温孵育90 min。采用具备荧光检测功能的读板机读取荧光值。
1.7 细胞转染选取对数生长期的乳腺癌BT-474细胞株,悬浮在无抗生素的培养液里,按1×106个细胞接种10 cm培养皿培养过夜。制备终浓度为50 nmol/L的siSTAT3或siScr。用无血清OPTI-MEM分别稀释siSTAT3、siScr和Lipofectamine™ RNAiMAX转染试剂,室温静置5 min后混合,逐滴加入待转染的细胞中。转染12 h后换新鲜培养基。Western blot检测基因沉默效率。Stat3 siRNA(siSTAT3)正义链为:5′-GGAAGCUGCAGAAAGAUACGACUGA 3′, 阴性siRNA (siScr)正义链为:5′-CUGCUAUCACCGACAGCUAAGGGAC-3′。
1.8 qPCR检测IL-6 mRNA的表达用RNeasy试剂抽提细胞总RNA,按iScript反转录试剂盒说明书合成cDNA,用Sybr Green分别进行实时荧光定量PCR反应。人IL-6引物:上游为5′-CCAGGAGCCCAGCTATGAAC-3′,下游为5′-GATGCCGTCGAGGATGTACC-3′,扩增片段长度为206 bp; β-actin内参引物为:上游引物5′- ATCGTGCGTGACATTAAGGAGAAG-3′,下游引物:5′-AGGAAGGAAGGCTGGAAGA GTG-3′,扩增片段长度为179 bp; 人IL-6R引物:上游引物为5′-TGAGCTCAGATATCGGGCTGAAC-3′,下游引物为5′-CGTCGTGGATGACACAGTGATG-3′。
反应条件为:95℃ 30 s, 95℃ 5 s, 60℃ 30 s, 40个循环。采集待测基因和内参(β-actin), 计算ΔΔCt及相对含量(RQ),RQ=2–ΔΔCt。
1.9 流式细胞术检测细胞凋亡用siSTAT3或siScr转染BT-474R细胞6 h后,用DMSO或拉帕替尼处理细胞48 h,在37℃、5%CO2培养箱孵育48h,收集细胞后用Annexin V-FITC/PI双染色法凋亡试剂盒(eBioscience)检测细胞凋亡,按使用说明书操作。样品准备好后上流式细胞仪检测细胞凋亡,数据用FlowJo软件处理。
1.10 统计学方法采用GraphPad Prism 6.0自带统计分析软件处理数据,每组实验重复3次,实验数据以均数±标准差(x±s)表示。两组之间的数据采用t检验, 多组间的单变量比较采用单因素方差分析(One way ANOVA)。P < 0.05为差异有统计学意义。
2 结果 2.1 拉帕替尼耐药细胞株BT-474R的鉴定Western blot结果显示,BT-474R细胞中P-gp的表达比BT-474显著增加,见图 1A。用MTT法检测BT-474细胞的IC50大约是0.22 μmol/L, 而BT-474R细胞的IC50大约是2.8 μmol/L,即BT-474R细胞IC50是BT-474细胞的12.7倍,见图 1B。Caspase Glo®3/7法显示BT-474R细胞中拉帕替尼诱导的Caspase3/7酶的活性比BT-474细胞显著降低,见图 1C。以上结果说明BT-474R细胞具有拉帕替尼耐药性。
2.2 拉帕替尼对STAT3活性的影响Western blot结果显示,拉帕替尼能上调p-STAT3水平,即增强STAT3活性,见图 2A。在BT-474R细胞中p-STAT3的表达比BT-474细胞显著升高,见图 2B。由此说明拉帕替尼增强STAT3活性。
2.3 抑制STAT3表达对Caspase 3/7活性的影响Western blot结果显示,siSTAT3有效地沉默了STAT3表达,见图 3A。用DMSO或拉帕替尼处理BT-474R细胞24 h后,用Western blot检测细胞凋亡标志产物Cleaved Caspase 3的表达水平,沉默STAT3后,BT-474R细胞中拉帕替尼诱导的Cleaved Caspase 3的表达水平显著高于未沉默组(siScr),见图 3B。用Caspase Glo® 3/7法结果显示:沉默STAT3后,BT-474R中拉帕替尼诱导的Caspase 3/7的表达水平显著高于未沉默组(siScr),见图 3C。这些结果说明BT-474R细胞对拉帕替尼的耐药性依赖STAT3活性。
2.4 沉默STAT3对拉帕替尼诱导耐药细胞凋亡的影响流式细胞术结果显示,拉帕替尼诱导的细胞凋亡率在STAT3沉默组为33.42%,在未沉默组(siScr)组细胞为18.52%,差异有统计学意义(P < 0.01),见图 4A。Western blot检测结果表明沉默STAT3后显著抑制耐药基因P-gp表达,见图 4B。
2.5 拉帕替尼通过刺激乳腺癌细胞分泌IL-6对STAT3活性的影响qPCR检测结果显示,拉帕替尼显著诱导了BT-474细胞的IL-6 mRNA表达,见图 5A。Western blot检测结果表明BT-474R细胞的IL-6蛋白表达水平显著高于BT-474细胞,见图 5B。与BT-474细胞相比,qPCR检测结果显示拉帕替尼没有显著诱导BT-474R细胞中IL-6R mRNA的表达,见图 5C。Western blot检测上清液中IL-6表达,BT-474+DMSO作为阴性对照,BT-474+Lapatinib作为阳性对照,结果表明BT-474R细胞分泌IL-6蛋白,见图 5D。
用IgG或IL-6抗体预处理BT-474细胞,然后用拉帕替尼处理BT-474细胞后的上清液(CM)刺激BT-474细胞,Western blot检测结果显示,IL-6抗体组没有刺激STAT3活性,这个结果说明IL-6抗体中和上清液的IL-6,导致STAT3没有被激活,见图 5E。这些结果表明拉帕替尼诱导的IL-6分泌刺激STAT3活性,增强了BT-474细胞耐药性。
3 讨论拉帕替尼是靶向HER2阳性癌症的第二代靶向药物,但患者对其产生的耐药阻碍了它的疗效。研究显示拉帕替尼会激活一些信号通路,包括PI3K/AKT/mTOR、Ras/ERK和HER2通路,由此引起拉帕替尼耐药[10-11]。拉帕替尼能上调耐药蛋白P-gp的表达。虽然拉帕替尼能有效抑制HER2活性,但是最近用拉帕替尼单药治疗癌症的临床试验也宣告失败,其原因是拉帕替尼诱导HER2与HER3形成持续激活的异聚体,促进乳腺癌细胞生长[12]。在靶向EGFR、ERK治疗中,反馈信号激活促癌基因信号转导和转录激活因子3(signal transducer and activator of transcription 3, STAT3)是靶向耐药的主要原因[13-14]。在EGFR突变的非小细胞肺癌细胞,酪氨酸激酶抑制剂埃洛替尼诱导持续性激活STAT3 [15]。
虽然拉帕替尼自身能抑制HER2活性,但最新研究发现拉帕替尼也会促进乳腺癌细胞生长,原因可能是拉帕替尼诱导了HER2与HER3形成持续激活的异聚体[13]。拉帕替尼耐药机制有待研究。本研究发现拉帕替尼通过诱导乳腺癌细胞表达和分泌细胞因子IL-6激活STAT3,引起细胞耐药。
我们首先建立了拉帕替尼耐药细胞株BT-474R。通过检测证实了BT-474R细胞株高表达耐药标志蛋白P-gp,IC50是BT-474的12.7倍,拉帕替尼诱导的Caspase3/7活性在BT-474R显著低于亲本细胞,说明BT-474R是耐药细胞。
因为STAT3在许多肿瘤、耐药细胞株,包括一些靶向耐药细胞中处于持续性激活状态,促进肿瘤细胞增殖、抗凋亡、促血管生成等。在携带EGFR突变的非小细胞肺癌细胞,酪氨酸激酶抑制剂埃洛替尼诱导STAT3持续性激活[15]。因此本实验检测了拉帕替尼是否能增强STAT3的活性。结果显示,拉帕替尼可以诱导STAT3活性,在BT-474R中,我们观察到随着时间的推移拉帕替尼逐渐增加STAT3活性,表明反馈机制可能是STAT3持续激活的基础。
为了探究STAT3表达是否有助于提高拉帕替尼抗性,我们在BT-474R细胞中沉默STAT3基因,显著增加了拉帕替尼诱导的细胞凋亡标志蛋白Cleaved Caspase 3表达和Caspase3/7的活性,说明拉帕替尼耐药依赖STAT3表达,STAT3的反馈激活有助于耐药性的出现。流式细胞术检测的细胞凋亡结果也显示STAT3基因沉默增强了拉帕替尼诱导的细胞凋亡。
与我们这些结果类似,在HER2阳性乳腺癌和胃癌中,曲妥珠单抗耐药与由上游纤连蛋白/EGF /IL-6诱导的以STAT3为中心的正反馈环机制相关[14]; 对非小细胞肺癌耐药机制的研究也清楚地证明,抑制各种络氨酸激酶受体,包括EGFR、丝裂原活化蛋白激酶激酶MEK、FGFR和HER2,可以触发STAT3的反馈激活[15]。
为了进一步探索STAT3反馈激活的机制, 对拉帕替尼调控的可激活STAT3的候选上游激活因子进行了理论筛选。在HER2阳性乳腺癌中,IL-6可诱导耐药的发生、促进肿瘤细胞生长及反馈激活STAT3,因此我们认为IL-6是最可能的候选因子。IL-6或其受体的表达升高常见于许多癌症类型,并且与预后不良有关[16-17]。此外,IL-6表达使肿瘤细胞对抗癌疗法具有抗性[18-19]。Hartman等报道HER2过表达增强IL-6转录,导致IL-6/JAK/STAT3自分泌环的激活,这在HER2阳性乳腺癌的发生中起关键作用[20]。因此我们检测了拉帕替尼是否能刺激IL-6的表达和分泌,结果显示拉帕替尼的确能够诱导IL-6的表达和分泌,来自拉帕替尼处理的细胞上清液可以激活BT-474细胞STAT3活性,而用IL-6抗体中和拉帕替尼诱导分泌的IL-6上清液,不能激活BT-474细胞STAT3活性,说明拉帕替尼耐药中增强的STAT3活性是通过拉帕替尼分泌的IL-6反馈机制调控的。最近一项研究成果与我们的结果一致,IL-6调控HER2阳性乳腺癌拉帕替尼耐药,他们发现IL-6通过维持HER2阳性乳腺癌干细胞引起对拉帕替尼耐药[21]。除此之外,有研究已经证实IL-6R也参与激活STAT3促进肿瘤发生发展及化疗耐受[22-23], 但我们的结果显示拉帕替尼没有显著上调BT474细胞IL-6R的表达,因此,我们认为拉帕替尼是通过诱导IL-6表达激活STAT3的活性。
综上所述,抑制IL-6/STAT3信号通路可抑制HER2阳性乳腺癌拉帕替尼耐药。鉴于STAT3是调控多个肿瘤细胞生存、增殖、抗凋亡、血管生成和耐药等信号通路的枢纽和转录因子[24],至今没有非常有效的方法抑制STAT3表达,研究IL-6/STAT3信号通路中可驾驭的因子,有望为HER2阳性乳腺癌拉帕替尼耐药提供新的思路和靶点。
作者贡献
胡晓红:完成实验,分析数据和撰文
柏华:设计实验
段娟娟、雷秀:完成实验
张启芳:设计实验,分析数据和撰文
[1] | Kümler I, Tuxen MK, Nielsen DL. A systematic review of dual targeting in HER2-positive breast cancer[J]. Cancer Treat, Rev, 2014, 40(2): 259–70. DOI:10.1016/j.ctrv.2013.09.002 |
[2] | Ballinger TJ, Sanders ME, Abramson VG. Current HER2 testing recommendations and clinical relevance as a predictor of response to targeted therapy[J]. Clin Breast Cancer, 2015, 15(3): 171–80. DOI:10.1016/j.clbc.2014.11.009 |
[3] | He L, Du Z, Xiong X, et al. Targeting androgen receptor in treating HER2 positive breast cancer[J]. Sci Rep, 2017, 7(1): 14584. DOI:10.1038/s41598-017-14607-2 |
[4] | Meric-Bernstam F, Johnson A, Ileana Dumbrava EE, et al. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer[J]. Clin Cancer Res, 2018.[Epub ahead of print] |
[5] | Voigtlaender M, Schneider-Merck T, Trepel M. Lapatinib[J]. Recent Results Cancer Res, 2018, 211: 19–44. DOI:10.1007/978-3-319-91442-8 |
[6] | Zuazana B, Luboš P, Renata C. Use of Trastuzumab for Neoadjuvant Therapy of HER2+ Breast Cancer- 5-Years of Experience in a Single Clinic[J]. Klin Onkol, 2018, 31(3): 191–9. |
[7] | Mohd Sharial MS, Crown J, Hennessy BT. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer[J]. Ann Oncol, 2012, 23(12): 3007–16. DOI:10.1093/annonc/mds200 |
[8] | Eustace AJ, Conlon NT, McDermott MSJ, et al. Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL[J]. BMC Cancer, 2018, 18(1): 965. DOI:10.1186/s12885-018-4852-1 |
[9] | Takeda T, Yamamoto H, Kanzaki H, et al. Yes1 signaling mediates the resistance to Trastuzumab/Lap atinib in breast cancer[J]. PLoS One, 2017, 12(2): e0171356. DOI:10.1371/journal.pone.0171356 |
[10] | Veeraraghavan J, De Angelis C, Reis-Filho JS, et al. De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance[J]. Breast, 2017, 34 Suppl 1: S19–S26. |
[11] | D'Amato V, Raimondo L, Formisano L, et al. Mechanisms of lapatinib resistance in HER2-driven breast cancer[J]. Cancer Treat Rev, 2015, 41(10): 877–83. DOI:10.1016/j.ctrv.2015.08.001 |
[12] | Claus J, Patel G, Autore F, et al. Inhibitor-induced HER2-HER3 heterodimerisation promotes proliferation through a novel dimer interface[J]. Elife, 2018, 7: pii: e32271. DOI:10.7554/eLife.32271 |
[13] | Zhao C, Li H, Lin HJ, et al. Feedback Activation of STAT3 as a Cancer Drug-Resistance Mechanism[J]. Trends Pharmacol Sci, 2016, 37(1): 47–61. DOI:10.1016/j.tips.2015.10.001 |
[14] | Li G, Zhao L, Li W, et al. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression[J]. Oncotarget, 2014, 5(18): 8317–29. |
[15] | Lee HJ, Zhuang G, Cao Y, et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells[J]. Cancer Cell, 2014, 26(2): 207–21. DOI:10.1016/j.ccr.2014.05.019 |
[16] | Masjedi A, Hashemi V, Hojjat-Farsangi M, et al. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer[J]. Biomed Pharmacother, 2018, 108: 1415–24. DOI:10.1016/j.biopha.2018.09.177 |
[17] | Ma Y, Ren Y, Dai ZJ, et al. IL-6, IL-8 and TNF-α levels correlate with disease stage in breast cancer patients[J]. Adv Clin Exp Med, 2017, 26(3): 421–6. DOI:10.17219/acem/62120 |
[18] | Suh YA, Jo SY, Lee HY, et al. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells[J]. Int J Oncol, 2015, 46(3): 1405–11. DOI:10.3892/ijo.2014.2808 |
[19] | Yang L, Han S, Sun Y. An IL6-STAT3 loop mediates resistance to PI3K inhibitors by inducing epithelial-mesenchymal transition and cancer stem cell expansion in human breast cancer cells[J]. Biochem Biophys Res Commun, 2014, 453(3): 582–7. DOI:10.1016/j.bbrc.2014.09.129 |
[20] | Hartman ZC, Yang XYi, Glass O, et al. HER2 overexpression elicits a proinflammatory IL-6 autocrine signaling loop that is critical for tumorigenesis[J]. Cancer Res, 2011, 71(13): 4380–91. DOI:10.1158/0008-5472.CAN-11-0308 |
[21] | Huang WC, Hung CM, Wei CT, et al. Interleukin-6 expression contributes to lapatinib resistance through maintenance of stemness property in HER2-positive breast cancer cells[J]. Oncotarget, 2016, 7(38): 62352–63. |
[22] | Liu X, Zhang A, Xiang J, et al. miR-451 acts as a suppressor of angiogenesis in hepatocellular carcinoma by targeting the IL-6R-STAT3 pathway[J]. Oncol Rep, 2016, 36(3): 1385–92. |
[23] | Zhu X, Shen H, Yin X, et al. IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells[J]. Oncotarget, 2017, 8(24): 39154–66. |
[24] | Yu H, Lee H, Herrmann A, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions[J]. Nat Rev Cancer, 2014, 14(11): 736–46. DOI:10.1038/nrc3818 |