文章信息
- 结直肠肿瘤内镜切除术后高危随访因素研究进展
- Progress in Follow-up of High-risk Factors After Endoscopic Resection of Colorectal Tumors
- 肿瘤防治研究, 2019, 46(4): 371-375
- Cancer Research on Prevention and Treatment, 2019, 46(4): 371-375
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2019.18.1406
- 收稿日期: 2018-11-05
- 修回日期: 2019-01-22
2. 524000 湛江, 广东医科大学研究生院
2. Graduate School, Guangdong Medical University, Zhanjiang 524000, China
结直肠癌(colorectal cancer, CRC)是临床最常见的恶性肿瘤之一,其发病率和死亡率均逐年升高[1]。CRC多由结直肠良性息肉发展而来,早期结直肠良性息肉无明显症状,主要通过全结肠镜检查发现并肠镜下息肉切除术干预。虽然近年我国肠镜筛查率有所上升,但息肉切除术后随访周期的制定问题日渐突出,随访不及时会导致结直肠息肉复发、恶变和间期癌(interval colorectal cancer, ICRC)等情况的发生,随访时间过短又会出现医疗资源浪费、患者依从性不高等问题。大量高质量研究及Meta分析提示,结肠镜检查质量、息肉情况、家族史、既往史、个人情况、饮食习惯等均可影响结直肠肿瘤的发生[2-4]。但是,现有息肉切除术后指南的制定主要基于既往肠镜检查结果[5-6],而忽视患者饮食生活习惯、肠镜检查质量、息肉切除方式等问题。因此,有必要进一步探索结直肠息肉切除术后息肉复发及恶变的高危因素,用于制定更完善的随访系统,指导个体化的肠镜下诊疗。
1 结直肠肿瘤特征腺瘤是最常见的结直肠良性肿瘤之一。依据Morson提出的CRC发生的“腺瘤-癌”顺序学说及大量临床研究,腺瘤被公认为CRC的癌前病变。一般认为腺瘤平均10~15年可演变为CRC。按其数目、大小及病理类型,腺瘤被划分为低风险腺瘤(1~2枚管状腺瘤且直径 < 10 mm)和高风险腺瘤(3枚或以上管状腺瘤且直径≥10 mm,或含有绒毛样组织,或有高级别上皮内瘤变)[5]。美国2012版及欧洲2013版结直肠息肉切除术后随访指南均依据患者既往肠镜检查发现息肉的数目、大小、病理等情况制定随访周期[5-6]。因此,既往肠镜检查结果普遍被认为是影响结直肠肿瘤随访最重要的因素。
研究发现,低风险腺瘤者术后内镜随访时进展期肿瘤(即腺瘤直径≥10 mm,或含绒毛组织,或高级别上皮内瘤变,或CRC)发生风险显著高于既往肠镜检查未见息肉者(RR=1.8, 95%CI: 1.3~2.6)[7]。高风险腺瘤者术后内镜随访时进展期肿瘤的风险也显著高于未见息肉者(SIR=4.26, 95%CI: 2.89~6.04)[8]。此外,初次肠镜发现腺瘤的数目、大小、有无绒毛状改变等均可独立影响结直肠肿瘤的发生。特点为:(1)腺瘤数目越多,随访肠镜发现进展期肿瘤的风险越高。Saini等[9]发现初次肠镜检查发现管状腺瘤≥3枚者比仅有1~2枚者,内镜随访发现进展期肿瘤的发生风险显著升高(RR=2.52, 95%CI: 1.07~5.97)。同时,Martinez等[10]通过对8个临床研究的分析发现初次结肠镜检出2、3、4、5枚及以上腺瘤患者,内镜随访发现进展期肿瘤的风险是初次肠镜检查仅检出1枚腺瘤患者的1.39、1.85、2.23、3.87倍。(2)腺瘤直径越大,随访肠镜发现进展期肿瘤的风险越高。Lieberman等[11]发现直径 < 10 mm的腺瘤发展为异时进展期肿瘤的风险与无息肉者差异无统计学差异;但与既往肠镜未见息肉者相比,直径≥10 mm的腺瘤患者随访肠镜发现异时进展期肿瘤的风险是其6.4倍。(3)含绒毛状组织的腺瘤与无绒毛状组织的腺瘤相比,其内镜随访发现进展期肿瘤的风险更高。2012年美国《结肠镜检查与息肉切除术后随访指南》[5]中指出,与管状腺瘤患者相比,绒毛状腺瘤及管状-绒毛状腺瘤患者肠镜随访时发现进展期肿瘤的风险是其1.28倍。(4)合并高级别上皮内瘤变的腺瘤随访内镜发现进展期肿瘤的风险更高。有研究报道,高级别上皮内瘤变腺瘤者内镜随访时再次发现高级别上皮内瘤变息肉的风险是初次内镜未见上皮内瘤变者的1.84倍[9]。
此外,锯齿状息肉也是结直肠肿瘤的高危因素之一。Gao等[12]通过Meta分析发现锯齿状息肉患者异时进展期肿瘤的发生风险是无锯齿状息肉者的2.05倍。但是,增生性息肉不增加内镜随访时进展期肿瘤的风险[6]。
2 家族史及既往病史大量基础研究报道CRC的发生与癌基因激活、抑癌基因失活及错配修复基因突变有关,并提示CRC发病具有家族遗传倾向。一级亲属有CRC病史普遍被认为是结直肠肿瘤发生的高危因素,其肿瘤发生率是无家族史者的1.8倍[13]。此外,家族性腺瘤性息肉病和遗传性非息肉病性大肠癌也是已明确易患CRC的遗传性综合征。
以结直肠慢性炎症为特征的炎性肠病可能在肉芽肿、炎性息肉的基础上发生癌变。Lutgens等[14]对炎性肠病患病10年的累计风险进行统计,分析发现炎症性肠病患者CRC的标化发病率为1.7。作为炎性肠病的主要类型,溃疡性结肠炎、克罗恩病患者CRC的发生风险均显著高于无炎性肠病者[15-16]。
多种常见的全身性疾病也可增加结直肠肿瘤的发生风险。Jinjuvadia等[17]对18项研究进行Meta分析,结果提示代谢综合征为结直肠肿瘤的高危因素,有代谢综合征患者结直肠肿瘤发生率是无代谢综合征者的1.34倍。此外,研究发现代谢综合征多个组分均可独立增加结直肠肿瘤的发生风险。Wu等[18]对北美、欧洲、亚洲等地方开展的29项研究进行Meta分析,结果提示有糖尿病者发生CRC的风险是无糖尿病者的1.22倍。Esposito等[19]发现高血压患者CRC的发生风险也明显升高(RR=1.09, 95%CI: 1.01~1.18)。
一项纳入3 450例腺癌、1 304例腺瘤及4 000例对照患者的Meta分析提示,幽门螺旋杆菌感染将增加患者结直肠腺癌(OR=1.24, 95%CI: 1.12~1.37)及腺瘤(OR=1.87, 95%CI : 1.53~2.28)的发生风险[20]。此外,巴雷特食管(OR=1.90, 95%CI: 1.35~2.67)、胆石症(OR=1.33, 95%CI: 1.02~1.73)、肝移植术后状态(RR=2.6, 95%CI: 1.7~4.1)、肢端肥大症(OR=4.351, 95%CI: 1.533~12.354)、人乳头瘤病毒感染(OR=6.0, 95%CI: 2.0~17.9)等均与结直肠肿瘤的发生密切相关[21-25]。
3 个人情况与饮食习惯男性、高龄、肥胖、吸烟、长期饮酒等均为结直肠肿瘤发生的高危因素。一项纳入924 932名患者的Meta分析提示男性CRC的发生风险显著高于女性(RR=1.83, 95%CI: 1.69~1.97)[26]。有研究表明,年龄 > 65~70岁者ICRC的发生风险比年龄 < 65~70岁者高15%[27]。Omata等[28]发现肥胖者(BMI≥30)结直肠腺瘤的发生风险显著高于非肥胖者(OR=1.47, 95%CI: 1.18~1.83)。一项合并24个前瞻性研究的Meta分析提示,与不吸烟者相比,目前未戒烟者结肠癌(colon cancer, CC)和直肠癌(rectal cancer, RC)的风险明显升高(CC: SRR=1.09, 95%CI: 1.01~1.18; RC: SRR=1.24, 95%CI: 1.16~1.39),但与已戒烟者相比无明显差异[29]。另外一项合并25个研究的Meta分析发现长期饮酒者结直肠腺瘤发生率比从不饮酒及偶尔饮酒者高17%,而平均每日摄入酒精50 g、100 g者结直肠腺瘤发生风险分别为其1.16和1.61倍[30]。此外,久坐也将增加结肠癌的发病风险(RR=1.30, 95%CI: 1.22~1.39),但对结肠癌发病率的影响尚不确定[31]。便秘既往被认为是CRC的高危因素,但近年的Meta分析提示便秘并不增加CRC的发病风险[32-33]。
大量流行病学调查发现饮食与消化道肿瘤的发生有密切的关系。有研究显示,经常食用红肉者结肠腺瘤的发生风险为偶尔食用红肉者的1.24倍,并发现每增加100克/日的红肉摄入,结肠腺瘤的风险将增加24%[34]。这可能因红肉有较高的含铁量,引起肠道脂质过氧化,从而增加结直肠肿瘤的发病风险[35]。此外,过多食用加工肉类也将增加结肠腺瘤的风险[34],这可能与加工肉类含有较多亚硝酸盐有关。
4 内镜下诊疗的因素虽然内镜下黏膜切除术(Endoscopic mucosal resection, EMR)和内镜黏膜下剥离术(Endoscopic submucosal dissection, ESD)均为结肠息肉切除术的常用方法,但两者息肉切除的完整率有显著的差别。Wang等[36]发现ESD息肉切除的完整率明显高于EMR(OR=7.94, 95%CI: 3.96~15.91)。因息肉切除不完全,EMR术后随访检出结直肠肿瘤的风险明显高于使用ESD切除息肉者。经Meta分析发现,在大于2 cm的扁平息肉和锯齿状腺瘤的切除方法中,ESD在整块切除(RR=1.93, P < 0.001)和R0切除(RR=2.01, P < 0.001)方面均明显优于EMR。虽然ESD远期复发率低,但是操作时间、难度以及设备等因素制约了技术的普及。因此,技术的选择与息肉的特征、部位、患者病情和医师经验都相关,仍须重视术后的随访。
此外,肠道准备情况直接影响内镜下视野,从而影响结直肠腺瘤的检出率[37]。因此,初次肠镜检查肠道准备不佳的患者结直肠肿瘤漏诊率明显增加,导致其肠镜随访结直肠肿瘤的风险也将明显增加。
随着内镜技术的发展,放大染色内镜已经逐步普及。Meta分析发现,窄光谱成像(narrow-band imaging, NBI)等电子染色内镜对于白光内镜并无绝对优势,而NBI在发现扁平息肉方面则略优于白光(RR: 1.96, 95%CI: 1.09~3.52)[38]。而对于新推出的BLI及BIL-bright功能的染色内镜,在没有使用放大功能的情况下,诊断肿瘤和非肿瘤息肉(< 10 mm)的准确率优于白光内镜(95.2% vs. 83.2%)[39],但目前尚无进一步的大样本数据结果。在同样使用NBI的情况下,不管使用放大功能与否,对于区分结直肠息肉性质的准确率是相当的[40]。然而,NBI联合放大内镜对比色素染色联合放大内镜在判断肿瘤浸润深度上并无明显优势[41]。
5 小结综上所述,结直肠肿瘤内镜术后随访的部分常见高危因素见表 1。结直肠肿瘤内镜切除术后的复发及恶变与多种因素均相关,包括初次肠镜检查结果、家族史、既往病史、个人情况、饮食、肠道检查质量、息肉切除方式等。其中,以息肉的病理类型、数量、直径以及克罗恩病、人乳头状瘤病毒感染等病史相关度最高。
由于相关因素众多,有待进一步深入研究,以确立结直肠息肉内镜切除术后息肉复发及恶变的高危因素,并建立科学、有效、个体化的结直肠息肉内镜切除术后评估及预测体系。而合理且具有个体化特征的随访系统将更有利于节约医疗资源、增加患者的依从性及早期诊治结直肠肿瘤。
作者贡献
钟豪杰: 设计及撰写文章
罗文辉: 协助书写文章并进行后期修改
刘永佳、林达、薛兰凤: 数据获取及解读
陈羽: 构思文章及指导修改
[1] | Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy[J]. N Engl J Med, 2013, 369(12): 1095–105. DOI:10.1056/NEJMoa1301969 |
[2] | Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies[J]. BMJ, 2014, 348: g2467. DOI:10.1136/bmj.g2467 |
[3] | Feng YL, Shu L, Zheng PF, et al. Dietary patterns and colorectal cancer risk: a meta-analysis[J]. Eur J Cancer Prev, 2017, 26(3): 201–11. DOI:10.1097/CEJ.0000000000000245 |
[4] | Fuccio L, Rex D, Ponchon T, et al. New and Recurrent Colorectal Cancers After Resection: a Systematic Review and Meta-analysis of Endoscopic Surveillance Studies[J]. Gastroenterology, 2018.[Epub ahead of print] |
[5] | Lieberman DA, Rex DK, Winawer SJ, et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer[J]. Gastroenterology, 2012, 143(3): 844–57. DOI:10.1053/j.gastro.2012.06.001 |
[6] | Hassan C, Quintero E, Dumonceau JM, et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline[J]. Endoscopy, 2013, 45(10): 842–51. DOI:10.1055/s-00000012 |
[7] | Hassan C, Gimeno-Garcia A, Kalager M, et al. Systematic review with meta-analysis: the incidence of advanced neoplasia after polypectomy in patients with and without low-risk adenomas[J]. Aliment Pharmacol Ther, 2014, 39(9): 905–12. DOI:10.1111/apt.2014.39.issue-9 |
[8] | Cottet V, Jooste V, Fournel I, et al. Long-term risk of colorectal cancer after adenoma removal: a population-based cohort study[J]. Gut, 2012, 61(8): 1180–6. DOI:10.1136/gutjnl-2011-300295 |
[9] | Saini SD, Kim HM, Schoenfeld P. Incidence of advanced adenomas at surveillance colonoscopy in patients with a personal history of colon adenomas: a meta-analysis and systematic review[J]. Gastrointest Endosc, 2006, 64(4): 614–26. DOI:10.1016/j.gie.2006.06.057 |
[10] | Martinez ME, Baron JA, Lieberman DA, et al. A pooled analysis of advanced colorectal neoplasia diagnoses after colonoscopic polypectomy[J]. Gastroenterology, 2009, 136(3): 832–41. DOI:10.1053/j.gastro.2008.12.007 |
[11] | Lieberman DA, Weiss DG, Harford WV, et al. Five-year colon surveillance after screening colonoscopy[J]. Gastroenterology, 2007, 133(4): 1077–85. DOI:10.1053/j.gastro.2007.07.006 |
[12] | Gao Q, Tsoi KK, Hirai HW, et al. Serrated polyps and the risk of synchronous colorectal advanced neoplasia: a systematic review and meta-analysis[J]. Am J Gastroenterol, 2015, 110(4): 501–9; quiz 510. DOI:10.1038/ajg.2015.49 |
[13] | Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors[J]. Cancer Causes Control, 2013, 24(6): 1207–22. DOI:10.1007/s10552-013-0201-5 |
[14] | Lutgens MW, van Oijen MG, van der Heijden GJ, et al. Declining risk of colorectal cancer in inflammatory bowel disease: an updated meta-analysis of population-based cohort studies[J]. Inflamm Bowel Dis, 2013, 19(4): 789–99. DOI:10.1097/MIB.0b013e31828029c0 |
[15] | Canavan C, Abrams KR, Mayberry J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn's disease[J]. Aliment Pharmacol Ther, 2006, 23(8): 1097–104. DOI:10.1111/apt.2006.23.issue-8 |
[16] | Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies[J]. Clin Gastroenterol Hepatol, 2012, 10(6): 639–45. DOI:10.1016/j.cgh.2012.01.010 |
[17] | Jinjuvadia R, Lohia P, Jinjuvadia C, et al. The association between metabolic syndrome and colorectal neoplasm: systemic review and meta-analysis[J]. J Clin Gastroenterol, 2013, 47(1): 33–44. DOI:10.1097/MCG.0b013e3182688c15 |
[18] | Wu L, Yu C, Jiang H, et al. Diabetes mellitus and the occurrence of colorectal cancer: an updated meta-analysis of cohort studies[J]. Diabetes Technol Ther, 2013, 15(5): 419–27. DOI:10.1089/dia.2012.0263 |
[19] | Esposito K, Chiodini P, Capuano A, et al. Colorectal cancer association with metabolic syndrome and its components: a systematic review with meta-analysis[J]. Endocrine, 2013, 44(3): 634–47. DOI:10.1007/s12020-013-9939-5 |
[20] | Wang F, Sun MY, Shi SL, et al. Helicobacter pylori infection and normal colorectal mucosa-adenomatous polyp-adenocarcinoma sequence: a meta-analysis of 27 case-control studies[J]. Colorectal Dis, 2014, 16(4): 246–52. DOI:10.1111/codi.2014.16.issue-4 |
[21] | Andrici J, Tio M, Cox MR, et al. Meta-analysis: Barrett's oesophagus and the risk of colonic tumours[J]. Aliment Pharmacol Ther, 2013, 37(4): 401–10. DOI:10.1111/apt.12146 |
[22] | Chiong C, Cox MR, Eslick GD. Gallstone disease is associated with rectal cancer: a meta-analysis[J]. Scand J Gastroenterol, 2012, 47(5): 553–64. DOI:10.3109/00365521.2012.660538 |
[23] | Sint Nicolaas J, de Jonge V, Steyerberg EW, et al. Risk of colorectal carcinoma in post-liver transplant patients: a systematic review and meta-analysis[J]. Am J Transplant, 2010, 10(4): 868–76. DOI:10.1111/ajt.2010.10.issue-4 |
[24] | Rokkas T, Pistiolas D, Sechopoulos P, et al. Risk of colorectal neoplasm in patients with acromegaly: a meta-analysis[J]. World J Gastroenterol, 2008, 14(22): 3484–9. DOI:10.3748/wjg.14.3484 |
[25] | Baandrup L, Thomsen LT, Olesen TB, et al. The prevalence of human papillomavirus in colorectal adenomas and adenocarcinomas: a systematic review and meta-analysis[J]. Eur J Cancer, 2014, 50(8): 1446–61. DOI:10.1016/j.ejca.2014.01.019 |
[26] | Nguyen SP, Bent S, Chen YH, et al. Gender as a risk factor for advanced neoplasia and colorectal cancer: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2009, 7(6): 676–81. e1-3. DOI:10.1016/j.cgh.2009.01.008 |
[27] | Singh S, Singh PP, Murad MH, et al. Prevalence, risk factors, and outcomes of interval colorectal cancers: a systematic review and meta-analysis[J]. Am J Gastroenterol, 2014, 109(9): 1375–89. DOI:10.1038/ajg.2014.171 |
[28] | Omata F, Deshpande GA, Ohde S, et al. The association between obesity and colorectal adenoma: systematic review and meta-analysis[J]. Scand J Gastroenterol, 2013, 48(2): 136–46. DOI:10.3109/00365521.2012.737364 |
[29] | Cheng J, Chen Y, Wang X, et al. Meta-analysis of prospective cohort studies of cigarette smoking and the incidence of colon and rectal cancers[J]. Eur J Cancer Prev, 2015, 24(1): 6–15. |
[30] | Zhu JZ, Wang YM, Zhou QY, et al. Systematic review with meta-analysis: alcohol consumption and the risk of colorectal adenoma[J]. Aliment Pharmacol Ther, 2014, 40(4): 325–37. DOI:10.1111/apt.2014.40.issue-4 |
[31] | Cong YJ, Gan Y, Sun HL, et al. Association of sedentary behaviour with colon and rectal cancer: a meta-analysis of observational studies[J]. Br J Cancer, 2014, 110(3): 817–26. DOI:10.1038/bjc.2013.709 |
[32] | Power AM, Talley NJ, Ford AC. Association between constipation and colorectal cancer: systematic review and meta-analysis of observational studies[J]. Am J Gastroenterol, 2013, 108(6): 894–903; quiz 4. DOI:10.1038/ajg.2013.52 |
[33] | Sonnenberg A, Muller AD. Constipation and cathartics as risk factors of colorectal cancer: a meta-analysis[J]. Pharmacology, 1993, 47(Suppl 1): 224–33. |
[34] | Xu X, Yu E, Gao X, et al. Red and processed meat intake and risk of colorectal adenomas: a meta-analysis of observational studies[J]. Int J Cancer, 2013, 132(2): 437–48. DOI:10.1002/ijc.27625 |
[35] | Qiao L, Feng Y. Intakes of heme iron and zinc and colorectal cancer incidence: a meta-analysis of prospective studies[J]. Cancer Causes Control, 2013, 24(6): 1175–83. DOI:10.1007/s10552-013-0197-x |
[36] | Wang J, Zhang XH, Ge J, et al. Endoscopic submucosal dissection vs endoscopic mucosal resection for colorectal tumors: a meta-analysis[J]. World J Gastroenterol, 2014, 20(25): 8282–7. DOI:10.3748/wjg.v20.i25.8282 |
[37] | Clark BT, Rustagi T, Laine L. What level of bowel prep quality requires early repeat colonoscopy: systematic review and meta-analysis of the impact of preparation quality on adenoma detection rate[J]. Am J Gastroenterol, 2014, 109(11): 1714–23; quiz 24. DOI:10.1038/ajg.2014.232 |
[38] | Rameshshanker R, Wilson A. Electronic Imaging in Colonoscopy: Clinical Applications and Future Prospects[J]. Curr Treat Options Gastroenterol, 2016, 14(1): 140–51. DOI:10.1007/s11938-016-0075-1 |
[39] | Yoshida N, Yagi N, Inada Y, et al. Ability of a novel blue laser imaging system for the diagnosis of colorectal polyps[J]. Dig Endosc, 2014, 26(2): 250–8. DOI:10.1111/den.2014.26.issue-2 |
[40] | Kim JJ, Hong KS, Kim JS, et al. A Randomized Controlled Clinical Study Comparing the Diagnostic Accuracy of the Histologic Prediction for Colorectal Polyps Depending on the Use of Either Magnified or Nonmagnified Narrow Band Imaging[J]. Clin Endosc, 2015, 48(6): 528–33. DOI:10.5946/ce.2015.48.6.528 |
[41] | Utsumi T, Iwatate M, Sano W, et al. Polyp Detection, Characterization, and Management Using Narrow-Band Imaging with/without Magnification[J]. Clin endosc, 2015, 48(6): 491–7. DOI:10.5946/ce.2015.48.6.491 |