文章信息
- miR-198靶向MAPK1调控宫颈癌HeLa细胞增殖、凋亡和侵袭
- miR-198 Targets MAPK1 to Regulate Proliferation, Apoptosis and Invasion of Cervical Cancer HeLa Cells
- 肿瘤防治研究, 2018, 45(12): 959-964
- Cancer Research on Prevention and Treatment, 2018, 45(12): 959-964
- http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2018.18.0537
- 收稿日期: 2018-04-19
- 修回日期: 2018-08-10
2. 453000 新乡,新乡医学院第一附属医院感染科
2. Department of Infection, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
宫颈癌是妇科常见恶性肿瘤,是导致女性因癌症死亡的主要原因之一[1-2]。据统计,全球每年宫颈癌的新发病例高达529 800人,有275 100人死于宫颈癌[3]。发展中国家是宫颈癌的高发地区,超过80%的宫颈癌患者都出现在发展中国家[1]。放化疗及手术是目前治疗宫颈癌的常用方法,但并未能提高宫颈癌患者的生存率[4]。阐明宫颈癌发生发展机制是治疗宫颈癌的关键。近年来研究表明,微小型RNA(microRNAs, miRNAs)在调控细胞增殖、凋亡、分化和侵袭的过程中发挥重要作用,也可通过调控下游靶基因的表达影响癌症的发展[5]。miR-198是一类抑癌基因,在肝癌、胃癌及肺癌等多种癌症中表达下调[6-8]。上调miR-198表达可通过调控CDCP1表达抑制乳腺癌细胞增殖和侵袭,还可通过下调FGFR1表达抑制肺癌细胞增殖、诱导肺癌细胞凋亡[9-10]。但miR-198在宫颈癌细胞中的表达及对宫颈癌细胞增殖、凋亡和侵袭的作用还未见报道。本研究以宫颈癌细胞HeLa为对象,探讨miR-198对HeLa细胞增殖、凋亡和侵袭的作用及机制。
1 材料与方法 1.1 试剂与仪器RPMI1640培养液、胎牛血清和胰蛋白酶购自美国Gibco公司;TRIzol试剂、TaqMan miRNA反转录试剂盒、TaqMan miRNA定量PCR试剂盒和Lipofectamine 2000转染试剂盒购自美国Thermo Fisher公司;TaKaRa 6210A反转录试剂盒和实时定量PCR试剂盒购自日本TaKaRa公司;miR-198 mimic购自美国Invitrogen公司;pcDNA3.0-丝裂原活化蛋白激酶1(Mitogen-activated protein kinase 1, MAPK1)重组质粒构建由北京BioGeek公司设计完成;抗核糖体S6激酶2(Ribosomal S6 kinase 2, RSK2)、c-Myc和c-fos抗体购自英国Abcam公司,货号分别为ab32123,ab39688和ab190289;辣根过氧化物酶(Horseradish peroxidase, HRP)标记的山羊抗兔二抗购自北京博奥森生物技术有限公司。PCR扩增仪购自美国Applied Biosystems公司,CytoFLEX流式细胞仪购自美国Beckman Coulter公司,电泳仪、转膜仪和凝胶成像系统购自美国Bio-Rad公司。
1.2 细胞培养人宫颈癌细胞系HeLa细胞购自中国科学院细胞库(上海)。用含有10%胎牛血清的RPMI 1640培养液将HeLa细胞培养于37℃、5%CO2的恒温培养箱中,隔天换液一次。细胞融合度达到85%以上时进行传代培养。
1.3 细胞转染将细胞以每毫升1×106个的密度传代培养于12孔板中,24 h后取出细胞,根据转染试剂盒说明书用Lipofectamine 2000将miR-198 mimic和pc-MAPK1转染入HeLa细胞。转染4 h后更换正常细胞培养液继续培养。
1.4 qRT-PCR检测将细胞分为HeLa组、miR-198 scram组和miR-198 mimic组。用不含目标基因的载体转染miR-198 scram组细胞,miR-198 mimic转染miR-198 mimic组细胞。48 h后,用TRIzol试剂提取各组细胞总RNA,用TaqMan miRNA反转录试剂盒或Takara反转录试剂盒合成cDNA,用PCR进行扩增,根据试剂盒说明书用TaqMan miRNA定量PCR试剂盒或实时定量PCR试剂盒进行定量分析。实验所用到的引物均由上海生工设计合成。以GAPDH为参照,实验至少重复3次。
1.5 荧光素酶报告实验通过生物信息预测miR-198上存在MAPK1的结合位点,用RT-PCR扩增MAPK1上miR-198的结合位点基因片段,将该片段插入pMIR-REPORT荧光素酶载体,构建MAPK1野生质粒;再利用基因位点图片技术对结合位点的部分核苷酸进行突变,构建MAPK1突变质粒。用MAPK1野生质粒或MAPK1突变质粒与miR-198 mimic对HeLa细胞进行共转染,根据Dual Luciferase报告基因试剂盒说明书避光测定荧光素酶活性。
1.6 CCK-8检测细胞活性将细胞传代培养于96孔板中,随机分为HeLa组、miR-198 mimic组、pc-MAPK1组和mimic+pc-MAPK1组,用miR-198 mimic和pc-MAPK1分别或同时转染细胞后,分别于转染后的第0、1、2、3和4 d用MTT法检测细胞增殖活性。每孔加入10 μl CCK-8试剂,于37℃继续孵育2 h后用酶标仪检测细胞吸光度。
1.7 流式细胞术检测细胞凋亡用胰酶收集后转染细胞,将细胞密度调整至1×106个每毫升,用结合缓冲液清洗细胞三次后,将100 μl细胞加入到Falcon试管中,分别加入Annexin V和PI试剂,室温避光孵育15 min后,各试管分别加入400 μl结合缓冲液,用流式细胞仪检测细胞凋亡情况。
1.8 Transwell检测细胞侵袭能力将转染后的HeLa细胞用无血清培养液培养12 h后,传代于基质胶包被的Transwell小室上层,细胞密度为每毫升1×105个,小室下层则加入含胎牛血清的正常细胞培养液。继续培养24 h后用无菌棉签刮去上层细胞,用结晶紫对小室下层细胞染色,每孔随机选取5个视野进行计数统计。
1.9 Western blot检测蛋白表达用RIPA裂解液提取各组细胞蛋白。用BCA试剂盒检测各组总蛋白浓度,调平蛋白浓度后,取等量蛋白用10%SDS-PAGE分离蛋白,半干法转移蛋白至PVDF膜。5%脱脂牛奶室温封闭PVDF膜2 h,随后加入一抗,4℃封闭过夜,第2 d弃去一抗,加入HRP标记的山羊抗兔二抗室温封闭1 h,滴加显色液显色,用凝胶成像系统获取蛋白质条带图片。
1.10 统计学方法用SPSS19.0对实验数据进行统计分析,实验结果用均数±标准差表示,组间差异用One-Way ANOVA检测。P < 0.05为差异有统计学意义。
2 结果 2.1 miR-198过表达对宫颈癌细胞MAPK1表达的影响用miR-198 mimic转染细胞后,miR-198 mimic组细胞miR-198表达水平与miR-198 scram组比较明显升高(P=0.0012);miR-198 mimic组细胞MAPK1 mRNA表达水平明显低于miR-198 scram组,差异有统计学意义(P=0.0004),见图 1。
2.2 miR-198与MAPK1的靶向关系生物信息预测结果表明,miR-198序列上存在MAPK1连续的结合位点。荧光素酶报告实验结果表明,miR-198 mimic能显著减弱MAPK1野生质粒的荧光素酶活性(P=0.011);结合位点突变后,miR-198 mimic对MAPK1荧光素酶活性的调控作用消失,表明miR-198和MAPK1之间存在靶向调控关系,见图 2。
2.3 miR-198过表达对宫颈癌细胞增殖的影响miR-198 mimic转染细胞4 d后,miR-198 mimic组HeLa细胞增殖倍数显著低于HeLa组(P=0.016);pc-MAPK1能显著促进HeLa细胞增殖(P=0.023);与miR-198 mimic组比较,mimic+pc-MAPK1组细胞增殖倍数明显升高(P=0.019),见图 3。
2.4 miR-198过表达对宫颈癌细胞凋亡的影响与HeLa组比较,miR-198 mimic组宫颈癌细胞凋亡率明显升高(P=0.001),pc-MAPK1组细胞凋亡率明显降低(P=0.0024);与miR-198 mimic组比较,mimic+pc-MAPK1组HeLa细胞凋亡率明显降低(P=0.0031),见图 4。
2.5 miR-198过表达对宫颈癌细胞侵袭能力的影响miR-198 mimic组HeLa细胞侵袭数显著低于HeLa组(P=0.026),pc-MAPK1组细胞侵袭数明显高于HeLa组(P=0.012),差异有统计学意义。与miR-198 mimic组比较,mimic+pc-MAPK1组HeLa细胞侵袭数明显升高(P=0.0036),见图 5。
2.6 miR-198过表达对MAPK1下游蛋白表达的影响Western blot实验结果表明,miR-198高表达能显著抑制MAPK1下游蛋白RSK2、c-Myc和c-fos的表达(P=0.00045, 0.00020, 0.00016);MAPK1能显著升高RSK2、c-Myc和c-fos的蛋白表达水平(P=0.00024, 0.00036, 0.00086);pc-MAPK1能显著减弱miR-198 mimic对RSK2、c-Myc和c-fos表达的抑制作用(P=0.00048, 0.00022, 0.00031),见图 6。
3 讨论大量研究表明,miRNAs的异常表达与癌症的发生发展有关[11]。miRNAs通过调控下游靶基因的表达影响癌症的发展,可作为预测癌症发生发展的指标[12-13]。因此,寻找与癌症发生相关的miRNAs及下游靶标将有助于癌症的治疗。本研究中,我们发现miR-198在宫颈癌细胞中表达异常减少,上调miR-198表达能显著降低宫颈癌细胞MAPK1的mRNA表达水平,提示miR-198可能可靶向调控MAPK1的表达。MAPK1是MAPK的下游靶基因,主要参与细胞增殖、凋亡和侵袭的调控[14]。miRNAs可通过调控MAPK1活性影响癌细胞增殖、凋亡和迁移的过程[15]。为了验证miR-198与MAPK1的靶向调控关系,本研究首先采用生物信息预测两者之间的关系,表明miR-198序列上存在MAPK1连续的结合位点。荧光素酶报告实验进一步表明miR-198与MAPK1之间存在靶向调控关系,提示MAPK1是miR-198的下游靶基因。
miR-198是一类癌症抑制基因,在多种癌细胞中表达降低[11, 16-17]。在结肠癌中,miR-198的表达水平与患者的预后呈负相关,上调miR-198表达水平能通过抑制岩藻糖转移酶8的表达抑制结肠癌皮下瘤的生长[18]。miR-198还与胰腺导管腺癌患者的生存率及生存时间长短密切相关[19]。Wu等研究发现,miR-198在47例肺腺癌患者癌组织中表达水平均明显降低[20]。本研究发现,miR-198 mimic转染细胞后4 d,宫颈癌细胞增殖速度明显降低,提示miR-198过表达能抑制宫颈癌细胞增殖。同时转染pc-MAPK1后,宫颈癌细胞增殖速度有所升高,表明miR-198抑制宫颈癌细胞增殖与靶向抑制MAPK1表达有关。
研究表明,miR-198调控癌症发展还与诱导癌细胞凋亡有关。上调miR-198表达能通过调控纤维生长因子受体的表达诱导肺癌细胞增殖,从而降低肺癌细胞活性[10]。miR-198表达下调可降低胶质瘤细胞凋亡率,与胶质瘤患者较差的预后密切相关[21]。但miR-198对宫颈癌细胞凋亡的作用还未见报道。本研究采用miR-198 mimic转染细胞,用流式细胞术检测转染后宫颈癌细胞的凋亡率,发现上调miR-198表达能显著升高HeLa细胞凋亡率,表明miR-198能诱导宫颈癌细胞凋亡。上调MAPK1表达后,miR-198诱导细胞凋亡的作用明显被减弱,提示miR-198能通过抑制MAPK1表达诱导宫颈癌细胞凋亡,从而减缓宫颈癌发展。
大量研究表明,miR-198高表达能抑制癌细胞的转移[9, 22]。癌细胞转移是导致癌症恶化和癌症患者死亡的主要原因。上调miR-198表达能降低肝癌细胞侵袭和迁移能力,作用机制与抑制肝细胞生长因子、下调p44/42 MAPK活性有关[23]。miR-198还可通过靶向调控ROCK1的表达降低骨肉瘤细胞的转移率[24]。本研究发现,上调miR-198表达水平能显著降低宫颈癌细胞HeLa的侵袭能力,表明miR-198低表达可能是宫颈癌出现远端转移的机制之一。MAPK1能显著减弱miR-198 mimic对宫颈癌细胞侵袭能力的抑制作用,表明miR-198可通过抑制MAPK1表达来抑制宫颈癌细胞转移。
MAPK信号通路是调控细胞增殖、凋亡、分化和转录的基本信号通路,MAPK1是MAPK的下游靶标,又称为p42 MAPK、ERK2[25]。抑制MAPK1表达可抑制肺癌细胞侵袭和迁移,研究表明敲除MAPK1下游靶基因RSK2后,癌细胞侵袭和转移能力明显减弱[26]。此外,RSK2激活可直接诱导c-Myc和c-fos表达,诱导细胞增殖及癌症的发生[27]。Li等研究发现,长链非编码RNA促进前列腺癌细胞增殖和转移与下调miR-198表达促进MAPK1信号通路激活有关[28]。本研究发现上调miR-198表达能显著抑制MAPK1下游蛋白RSK2、c-Myc和c-fos表达,上调MAPK1表达后,miR-198对RSK2、c-Myc和c-fos蛋白表达的抑制作用明显减弱,进一步表明miR-198抑制宫颈癌细胞增殖、侵袭,诱导癌细胞凋亡与靶向下调MAPK1的表达有关。
综上所述,miR-198可抑制宫颈癌HeLa细胞增殖和侵袭,并诱导宫颈癌细胞凋亡,作用机制与miR-198靶向调控MAPK1的表达有关。本研究阐明了miR-198在宫颈癌中的表达及miR-198对宫颈癌细胞增殖、凋亡和侵袭的作用,并初步探讨了miR-198对宫颈癌细胞的作用机制,可能为宫颈癌的治疗提供了又一新的治疗靶标。
[1] | Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69–90. DOI:10.3322/caac.v61:2 |
[2] | Forouzanfar MH, Foreman KJ, Delossantos AM, et al. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis[J]. Lancet, 2011, 379(9801): 1461–84. |
[3] | Liu P, Xin F, Ma CF. Clinical significance of serum miR-196a in cervical intraepithelial neoplasia and cervical cancer[J]. Genet Mol Res, 2015, 14(4): 17995–8002. DOI:10.4238/2015.December.22.25 |
[4] | Meijer CJ, Snijders PJ. Cervical cancer in 2013: Screening comes of age and treatment progress continues[J]. Nat Rev Clin Oncol, 2014, 11(2): 77–8. DOI:10.1038/nrclinonc.2013.252 |
[5] | Guo D, Li Q, Lv Q, et al. MiR-27a Targets sFRP1 in hFOB Cells to Regulate Proliferation, Apoptosis and Differentiation[J]. PLoS One, 2014, 9(3): e91354. DOI:10.1371/journal.pone.0091354 |
[6] | Huang WT, Wang HL, Yang H, et al. Lower expressed miR-198 and its potential targets in hepatocellular carcinoma: a clinicopathological and in silico study[J]. Onco Targets Ther, 2016, 9: 5163–80. DOI:10.2147/OTT |
[7] | Cui Z, Zheng X, Kong D. Decreased miR-198 expression and its prognostic significance in human gastric cancer[J]. World J Surg Oncol, 2016, 14: 33. DOI:10.1186/s12957-016-0784-x |
[8] | Han HS, Yun J, Lim SN, et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion[J]. Int J Cancer, 2013, 133(3): 645–52. DOI:10.1002/ijc.v133.3 |
[9] | Hu Y, Tang Z, Jiang B, et al. miR-198 functions as a tumor suppressor in breast cancer by targeting CUB domain-containing protein 1[J]. Oncol Lett, 2017, 13(3): 1753–60. DOI:10.3892/ol.2017.5673 |
[10] | Yang J, Zhao H, Xin Y, et al. MicroRNA-198 Inhibits Proliferation and Induces Apoptosis of Lung Cancer Cells Via Targeting FGFR1[J]. J Cell Biochem, 2014, 115(5): 987–95. DOI:10.1002/jcb.v115.5 |
[11] | Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies[J]. Adv Drug Deliv Rev, 2015, 81: 128–41. DOI:10.1016/j.addr.2014.05.009 |
[12] | Meng XR, Lu P, Mei JZ, et al. Expression analysis of miRNA and target mRNAs in esophageal cancer[J]. Braz J Med Biol Res, 2014, 47(9): 811–7. DOI:10.1590/1414-431X20143906 |
[13] | Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer[J]. World J Surg Oncol, 2014, 20(30): 10432–9. |
[14] | Yiwei T, Hua H, Hui G, et al. HOTAIR Interacting with MAPK1 Regulates Ovarian Cancer skov3 Cell Proliferation, Migration, and Invasion[J]. Med Sci Monit, 2015, 21: 1856–63. DOI:10.12659/MSM.893528 |
[15] | Zhao X, Bai X, Guan L, et al. microRNA-4331 Promotes Transmissible Gastroenteritis Virus (TGEV)-induced Mitochondrial Damage Via Targeting RB1, Upregulating Interleukin-1 Receptor Accessory Protein (IL1RAP), and Activating p38 MAPK Pathway In Vitro[J]. Mol Cell Proteomics, 2018, 17(2): 190–204. DOI:10.1074/mcp.RA117.000432 |
[16] | Park H, Lee MJ, Jeong JY, et al. Dysregulated microRNA expression in adenocarcinoma of the uterine cervix: clinical impact of miR-363-3p[J]. Gynecol Oncol, 2014, 135(3): 565–72. |
[17] | Tutar L, Tutar E, Özgür A, et al. Therapeutic Targeting of microRNAs in Cancer: Future Perspectives[J]. Drug Dev Res, 2015, 76(7): 382–8. DOI:10.1002/ddr.v76.7 |
[18] | Wang M, Wang J, Kong X, et al. MiR-198 represses tumor growth and metastasis in colorectal cancer by targeting fucosyl transferase 8[J]. Sci Rep, 2014, 4: 6145. |
[19] | Vychytilova-faltejskova P, Kiss I, Klusova S, et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma[J]. Diagn Pathol, 2015, 10: 38. DOI:10.1186/s13000-015-0272-6 |
[20] | Wu S, Zhang G, Li P, et al. miR-198 targets SHMT1 to inhibit cell proliferation and enhance cell apoptosis in lung adenocarcinoma[J]. Tumor Biol, 2016, 37(4): 5193–202. DOI:10.1007/s13277-015-4369-z |
[21] | Man HB, Bi WP, Man HH. Decreased microRNA-198 expression and its prognostic significance in human glioma[J]. Genet Mol Res, 2016, 15(2). |
[22] | Marin-muller C, Li D, Bharadwaj U, et al. A Tumorigenic Factor Interactome Connected through Tumor Suppressor MicroRNA-198 in Human Pancreatic Cancer[J]. Clin Cancer Res, 2013, 19(21): 5901–13. DOI:10.1158/1078-0432.CCR-12-3776 |
[23] | Tan S, Li R, Ding K, et al. miR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway[J]. FEBS Lett, 2011, 585(14): 2229–34. DOI:10.1016/j.febslet.2011.05.042 |
[24] | Zhang S, Zhao Y, Wang L. MicroRNA-198 inhibited tumorous behaviors of human osteosarcoma through directly targeting ROCK1[J]. Biochem Biophys Res Commun, 2016, 472(3): 557–65. DOI:10.1016/j.bbrc.2016.03.040 |
[25] | Zhao J, Li L, Peng L. MAPK1 up-regulates the expression of MALAT1 to promote the proliferation of cardiomyocytes through PI3K/AKT signaling pathway[J]. Int J Clin Exp Pathol, 2015, 8(12): 15947–53. |
[26] | Lee CJ, Lee MH, Yoo SM, et al. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway[J]. BMC Cancer, 2015, 15: 576. DOI:10.1186/s12885-015-1580-7 |
[27] | Yoo SM, Cho SJ, Cho YY. Molecular Targeting of ERKs/RSK2 Signaling Axis in Cancer Prevention[J]. J Cancer Prev, 2015, 20(3): 165–71. |
[28] | Li Y, Luo H, Xiao N, et al. Long Noncoding RNA SChLAP1 Accelerates the Proliferation and Metastasis of Prostate Cancer Via Targeting miR-198 and Promoting the MAPK1 Pathway[J]. Oncol Res, 2018, 26(1): 131–43. |