肿瘤防治研究  2018, Vol. 45 Issue (8): 545-549
本刊由国家卫生和计划生育委员会主管,湖北省卫生厅、中国抗癌协会、湖北省肿瘤医院主办。
0

文章信息

LSD1调控Foxo3a对卵巢癌细胞增殖和迁移的影响
Effect of LSD1 on Proliferation and Metastasis of Ovarian Cancer Cells by Regulating Foxo3a
肿瘤防治研究, 2018, 45(8): 545-549
Cancer Research on Prevention and Treatment, 2018, 45(8): 545-549
http://www.zlfzyj.com/CN/10.3971/j.issn.1000-8578.2018.17.1548
收稿日期: 2017-12-05
修回日期: 2018-02-22
LSD1调控Foxo3a对卵巢癌细胞增殖和迁移的影响
王品昊1, 钱尧1, 周昱霖1, 魏野1, 吴朝阳2     
1. 212000 镇江,江苏大学医学院;
2. 212000 镇江,江苏大学附属医院肿瘤科
摘要: 目的 探讨赖氨酸特异性去甲基化酶1(LSD1)如何通过调控转录因子Foxo3a影响卵巢癌细胞增殖和迁移。方法 实验组A:取诱导型稳定干扰LSD1表达的人卵巢癌HO8910细胞株(HO8910-LSD1-shRNA)分为观察组和对照组,蛋白质印迹法检测LSD1和Foxo3a蛋白表达水平;实验组B:将HO8910-LSD1-shRNA细胞分为对照组、Dox组、A6730组和联合组,CCK-8检测各组细胞增殖抑制率,Transwell小室检测各组细胞迁移能力,蛋白质印迹法检测EMT相关蛋白表达。结果 在实验组A中,观察组LSD1蛋白水平随Dox浓度增加逐渐下降,而Foxo3a蛋白表达水平逐渐升高。在实验组B中,与对照组比较,Dox组、A6730组和联合组细胞增殖抑制率、细胞迁移率均显著减少(均P < 0.05);联合组较Dox组,细胞增殖抑制率、细胞迁移率均显著减少(均P < 0.05)。与对照组比较,Dox组、A6730组和联合组E-cadherin蛋白表达水平明显升高,而N-cadherin和Snail蛋白水平降低。与Dox组和A6730组比较,联合组E-cadherin表达量增加,而N-cadherin及Snail表达量减少。结论 敲低LSD1基因表达可以上调转录因子Foxo3a蛋白水平,从而抑制卵巢癌HO8910细胞增殖和转移。
关键词: 卵巢癌     增殖     转移     LSD1     Foxo3a    
Effect of LSD1 on Proliferation and Metastasis of Ovarian Cancer Cells by Regulating Foxo3a
WANG Pinhao1, QIAN Yao1, ZHOU Yulin1, WEI Ye1, WU Chaoyang2     
1. Medical College of Jiangsu University, Zhenjiang 212000, China;
2. Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, China
Corresponding author: WU Chaoyang, E-mail:wuchaoyang9@163.com.
Abstract: Objective To investigate the effects of lysine-specific demethylation 1 (LSD1) on the proliferation and metastasis of ovarian cancer cells by regulating Foxo3a. Methods In test group A, the human ovarian cancer cell line HO8910 (HO8910-LSD1-shRNA) with inducible stable knockdown of LSD1 expressions were divided into the observation groups and the control group. The expression levels of LSD1 and Foxo3a proteins were detected by Western blot. Then in test group B, the HO8910-LSD1-shRNA cells were divided into Control group, Dox group, A6730 group and Dox+A6730 group. The cell proliferation inhibition rate of each group was detected by CCK-8, and the metastasis levels of each group were detected by Transwell assay. The EMT-related proteins expressions were detected by Western blot. Results In test group A, with the increasing Dox concentration in the observation groups, the expression level of LSD1 protein was gradually decreased, while the expression level of Foxo3a protein was gradually increased. In test group B, compared with the control group, the proliferation inhibition rates, cell migration rates of Dox group, A6730 group and combination group were significantly lower (P < 0.05); cell proliferation inhibition rate and cell migration rate of the Dox+A6730 group were significantly lower than those of Dox group (both P < 0.05). Compared with the control group, the expression levels of E-cadherin protein in Dox group, A6730 group and combination group were increased significantly, while the levels of N-cadherin and Snail protein were decreased. Compared with Dox and A6730 groups, the expression of E-cadherin was increased, while the expression of N-cadherin and Snail were decreased in the combination group. Conclusion Knocking down the expression of LSD1 gene could upregulate the transcription factor Foxo3a protein level, thereby inhibiting the proliferation metastasis of ovarian cancer HO8910 cells.
Key words: Ovarian cancer     Proliferation     Metastasis     LSD1     Foxo3a    
0 引言

卵巢癌是女性生殖系统的三大恶性肿瘤之一,在妇科肿瘤中死亡率最高,高达63%[1]。晚期患者的5年生存率仅为20%[2]。因此,如何控制卵巢癌转移是肿瘤临床治疗中迫切需要解决的问题。

赖氨酸特异性去甲基化酶1(lysine specific demethylase 1, LSD1)是一种黄素腺嘌呤二核苷酸依赖的胺氧化酶,可特异性去除组蛋白(histones)H3上第4位(H3K4)和第9位(H3K9)赖氨酸残基上的单甲基和二甲基修饰。LSD1在细胞中发挥多种生物学功能,影响了多种肿瘤的发生和发展。在一些恶性肿瘤,如乳腺癌[3]、胃癌、神经母细胞瘤[4]、肝癌[5]、肺癌[6]、膀胱癌[7]和急性髓系白血病[8]中LSD1均高表达;近期的研究表明,LSD1在卵巢癌组织中高表达[9]。本课题组前期研究[10]表明,稳定敲低LSD1表达能够抑制卵巢癌HO8910细胞侵袭和转移,然而LSD1在卵巢癌细胞侵袭转移中的作用机制,尚不清楚。

Foxo3a是细胞内重要的转录因子,参与细胞的增殖、分化、新陈代谢等多个方面的调控[11-12],对肿瘤细胞分化、侵袭和转移起关键性作用。Foxo3a被证实在多种肿瘤中起到抑癌基因的作用,如在乳腺癌细胞中,Foxo3a能够抑制乳腺癌细胞上皮间质转化(EMT),从而抑制细胞侵袭与迁移。

1 材料与方法 1.1 细胞和试剂

诱导型稳定转染LSD1-shRNA的HO8910细胞株(HO8910-LSD1-shRNA)为本实验室保存。兔抗人LSD1购自美国Cell Signaling Technology公司,兔抗人Foxo3a购自Epitomics公司,兔抗人E-cadherin、兔抗人N-cadherin、兔抗人Snail购自Cell Signaling Technology公司,兔抗人α-tubulin单克隆抗体、羊抗兔二抗购自美国Bioworld公司;ECL显影试剂购自美国Millipore公司,聚凝胺(polybrene)、Dox和嘌呤霉素(puromycin)购自美国Sigma-Aldrich公司,LipofectAMINE2000试剂购自美国Invitrogen公司,Foxo3a过表达试剂A6730-5MG购自美国Sigma公司。PVDF膜购自美国Bio-Rad公司。

1.2 细胞培养

细胞培养于含10%胎牛血清、青霉素(100 u/ml)和链霉素(100 μg/ml)的DMEM培养液(均购自美国Gibco公司),环境为37℃、5%CO2的饱和湿度条件下进行培养。

1.3 蛋白质印迹法检测LSD1、Foxo3a和EMT相关基因表达

将稳定沉默LSD1基因的HO8910细胞(HO8910-LSD1-shRNA)以8 000个/孔的密度接种于6孔板中,12 h细胞贴壁后,加入浓度为1、10和100 ng/ml的Dox处理(以加入1 μl/ml蒸馏水处理的细胞作为对照组);继续培养48 h后采用蛋白质印迹法检测Foxo3a及LSD1蛋白的表达水平。用预冷的PBS洗涤细胞2次,加入100 μl含蛋白酶抑制剂和磷酸酶抑制剂的裂解液,置于冰上5~10 min,将裂解的细胞液转移至EP管中,每隔5 min涡旋15 s,共3次,离心机上12 000×g,4℃离心15 min,收集上清液(总蛋白)。蛋白浓度采用BCA(上海康成生物工程有限公司产品)法检测。各取50 ng蛋白,在浓度为10%的SDS-PAGE分离胶分离蛋白,然后将分离后的蛋白在300 mA恒流的条件下(1~2 h)转移至PVDF膜(美国Bio-Rad公司产品)上。PVDF膜在5%脱脂奶粉中封闭1 h,分别加入一抗为兔抗人LSD1多克隆抗体(体积稀释比为1:1 000)、兔抗人α-tubulin单克隆抗体(内参照)(体积稀释比为1:4 000)、兔抗人Foxo3a多克隆抗体(体积稀释比为1:2 000),4℃反应过夜。第二天用TBST洗膜3次,接着加入二抗[辣根过氧化物酶标记的羊抗兔IgG(体积稀释比均为1:1 000)],室温条件下反应1 h,TBST洗膜3次,ECL显影。蛋白质印迹法检测EMT相关蛋白的表达水平,实验方法同上。一抗分别加入兔抗人LSD1多克隆抗体(体积稀释比为1:1 000)、兔抗人α-tubulin单克隆抗体(内参照)(体积稀释比为1:4 000)、兔抗人Foxo3a多克隆抗体(体积稀释比为1:2 000)、兔抗人E-cadherin抗体(体积稀释比为1:1 000)、兔抗人N-cadherin抗体(体积稀释比为1:1 000)、兔抗人Snail抗体(体积稀释比为1:1 000)。

1.4 CCK-8方法检测细胞增殖能力

取对数生长期HO8910-LSD1-shRNA细胞,PBS缓冲液洗2遍,胰酶消化3~4 min,加入含10%胎牛血清的DMEM培养液3~5 ml吹打,调整细胞密度为8×105个/毫升后将细胞接种至96孔板中,每孔种植约8 000个细胞,在37℃、5%CO2条件下培养24 h。待细胞贴壁后分别加入蒸馏水(1 μl/ml)、Dox(100 ng/ml)、A6730(20 µmol/L)、Dox(100 ng/ml)+A6730(20 µmol/L),以此分为4组,每组3个复孔。孵育(0、24、48和72 h),A6730(20 µmol/L)每天重复加一次,Dox(100 ng/ml)每两天加一次。检测前每孔加入10 µl CCK-8溶液,将培养板在37℃、5%CO2条件下孵育2 h,用酶标仪在450 nm波长处测定吸光度值,实验重复3次。

1.5 Transwell检测细胞迁移能力

ECM胶提前一天放于4℃冰箱融化过夜。铺胶(冰上操作):枪头在使用前需先在冰上预冷半小时,每孔加入稀释好的ECM胶30 μl,37℃、5%CO2孵育5 h。水化基底膜:吸去小室内的ECM胶,每个小室加入50 μl无血清DMEM培养液,37℃、5%CO2孵育30 min后吸去培养液。制备细胞悬液:将HO8910-LSD1-shRNA细胞用胰酶消化3~4 min,吸去胰酶,无血清DMEM悬浮,细胞调至1×105个/毫升,每孔加入150 μl细胞悬液。下室加入600 µl含10%血清的DMEM,设置4组小室,每组重复3次。待细胞贴壁后分别在4组小室中加入Dox(100 ng/ml)+A6730(20 μmol/L)、Dox(100 ng/ml)、A6730(20 µmol/L)、蒸馏水(1 μl/ml)。继续培养24 h后吸弃小室中液体,取出小室,置于500 μl 4%多聚甲醛中室温固定30 min,吸弃小室内液体,置于500 μl 0.1%结晶紫液体中室温15 min,将小室于PBS中洗数次至透明,用棉签轻轻擦掉上层未迁移的细胞,注意不要擦去下层已经迁移的细胞,在显微镜下随机选取5个视野观察细胞,计数取平均值。

1.6 统计学方法

应用SPSS13.0和GraphPad Prism 5统计学软件对所有的实验数据进行统计学分析和做图整理,所有实验均独立重复3次,数据以(x±s)表示。Student t检验用于2组数据间的比较,多组间均数比较采用单因素方差分析,组内两两比较采用LSD-t检验,P < 0.05为差异有统计学意义。

2 结果 2.1 干扰LSD1表达上调Foxo3a蛋白水平

蛋白质印迹法结果显示,与对照组比较,观察组随Dox浓度增加LSD1蛋白水平逐渐下降,而Foxo3a蛋白表达水平逐渐增加。100 ng/ml Dox处理的细胞中LSD1表达水平下降及Foxo3a表达水平增加最显著。表明抑制LSD1表达可上调Foxo3a蛋白水平,见图 1

1: control group; 2-4: 1, 10 and 100 ng/ml Dox groups 图 1 干扰LSD1表达后Foxo3a蛋白水平变化 Figure 1 Knockdown of LSD1 upregulated Foxo3a protein levels
2.2 Foxo3a在LSD1诱导的HO8910细胞增殖中的作用

CCK-8结果表明,与对照组比较,联合组、Dox组、A6730组细胞增殖率均显著下降(抑制率分别为29.8%、47.6%、36.9%),差异有统计学意义(P=0.019、0.002、0.013)。

联合组与Dox组和A6730组比较,细胞增殖率均显著下降(抑制率分别为62.5%、80.6%),差异有统计学意义(P=0.003、0.016),见表 1

表 1 四组卵巢癌细胞的生长抑制情况(x±s) Table 1 Proliferation of ovarian cancer cells in four groups(x±s)
2.3 Foxo3a在LSD1诱导的HO8910细胞迁移中的作用

Transwell结果显示,与对照组比较,Dox组、A6730组、联合组细胞穿过小室基底膜数间差异有统计学意义(P=0.001、0.001、0.000)。此外,与Dox组和A6730组比较,联合组细胞迁移率显著降低(P=0.000、0.001)。提示LSD1通过抑制Foxo3a,增强了卵巢癌细胞的迁移能力,见表 2图 2

表 2 四组卵巢癌细胞的迁移情况(x±s) Table 2 Metastasis of ovarian cancer cells in four groups (x±s)

图 2 Transwell实验检测四组卵巢癌细胞的迁移情况(×200) Figure 2 Metastasis of ovarian cancer cells in four groups detected by Transwell assay (×200)
2.4 Foxo3a介导LSD1对EMT相关基因表达的调控

蛋白质印迹法结果显示,Dox组和A6730组与对照组相比,E-cadherin表达量增加,而N-cadherin及Snail表达量下降。此外,与Dox组或A6730组比较,联合组Foxo3a和E-cadherin表达量明显增加,而N-cadherin和Snail表达量下降。表明Foxo3a介导了LSD1对EMT标志物表达具有调节作用,见图 3

1: control group; 2: A6730 group; 3: Dox group; 4: Dox+A6730 group 图 3 Foxo3a介导LSD1对EMT相关蛋白表达的调控 Figure 3 Foxo3a mediated the regulation of LSD1 on EMT-related protein expression
3 讨论

LSD1的调控涉及肿瘤的多个病理过程,在肿瘤的发生、增殖、转移和凋亡过程中都起着举足轻重的作用,并且对肿瘤细胞的维持必不可少。LSD1首先被证实与肿瘤的分化及生长有关,Schulte等[13]研究提示,LSD1与成神经细胞瘤分化密切相关,LSD1在低分化的成神经细胞瘤中高表达,实验采用siRNA干扰LSD1基因的表达后,肿瘤细胞的生长受到明显抑制;体内研究进一步证实,沉默LSD1基因的表达可以抑制成神经细胞瘤的生长。接着LSD1被证实与肿瘤的凋亡相关,Huang等[14]研究提示,LSD1的特异性抑制物能够诱导人结肠癌细胞的凋亡,并导致异常沉默的基因恢复表达。进一步LSD1被证实与肿瘤的侵袭与转移相关,Lv等[15]发现,LSD1可以促进肺癌细胞的增殖、侵袭和转移。

Fox转录因子家族的共同特征是拥有Fox(Forkhead Box)结构域,Fox是一个保守的DNA结合结构域,该结构域由3个α螺旋、3个β折叠以及2个翼状结构组成的翼螺旋结构域[16]。Fox家族成员众多,分为A-S共19个亚族,Foxo3a即属于FoxO家族。Foxo3a是研究最为完善的成员,现已发现,Foxo3a在几乎所有常见肿瘤中均表达,如肝癌[17]、肺癌[18]、胃癌[19]、前列腺癌[20]、乳腺癌[21]、淋巴瘤[22]、白血病等。如在乳腺癌细胞[23]中,Foxo3a能够抑制乳腺癌细胞上皮间质转化从而抑制细胞的侵袭与转移;同时在尿路上皮细胞肿瘤[24]中,Foxo3a下调促进TWIST1、YBX1表达增高,抑制了E-cadherin的表达从而抑制肿瘤细胞迁移。由此可见,Foxo3a调控肿瘤细胞的侵袭与转移能力在不同肿瘤中调控的结果有所不同。据此我们推测LSD1是否通过调控Foxo3a表达来调控卵巢癌细胞的侵袭与迁移。

本研究发现,抑制LSD1表达可以上调Foxo3a转录因子的表达,从而抑制卵巢癌HO8910细胞的迁移能力。有研究表明,LSD1能够通过Akt通路影响肿瘤细胞的侵袭与转移[25],同时Akt通路能够通过促进Foxo3a从细胞核内迁移至胞质内[26],从而抑制Foxo3a转录因子的作用。结合本研究的数据推测,LSD1可能通过Akt通路,抑制Foxo3a表达,从而促进了卵巢癌细胞的迁移。但LSD1是如何通过Akt通路调控Foxo3a的表达,以及LSD1-AKT-Foxo3a通路在卵巢癌细胞侵袭转移的作用还有待进一步研究。

综上所述,LSD1与Foxo3a对卵巢癌的发生与发展起着重要的作用,LSD1通过抑制Foxo3a表达促进卵巢癌HO8910细胞增殖与迁移,LSD1-Foxo3a通路有望为卵巢癌的治疗提供新依据。

参考文献
[1] Maldonado L, Hoque MO. Epigenomics and ovarian carcinoma[J]. Biomark Med, 2010, 4(4): 543–70. DOI:10.2217/bmm.10.72
[2] Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010[J]. CA Cancer J Clin, 2010, 60(5): 277–300. DOI:10.3322/caac.20073
[3] Cao C, Vasilatos SN, Bhargava R, et al. Functional interaction of histone deacetylase 5 (hdac5) and lysine-specific demethylase 1 (lsd1) promotes breast cancer progression[J]. Oncogene, 2017, 36(1): 133–45. DOI:10.1038/onc.2016.186
[4] Amente S, Milazzo G, Sorrentino MC, et al. Lysine-specific demethylase (lsd1/kdm1a) and mycn cooperatively repress tumor suppressor genes in neuroblastoma J][J]. Oncotarget, 2015, 6(16): 14572–83.
[5] Sakamoto A, Hino S, Nagaoka K, et al. Lysine demethylase lsd1 coordinates glycolytic and mitochondrial metabolism in hepatocellular carcinoma cells[J]. Cancer Res, 2015, 75(7): 1445–56. DOI:10.1158/0008-5472.CAN-14-1560
[6] Zhang X, Zhang X, Yu B, et al. Oncogene lsd1 is epigenetically suppressed by mir-137 overexpression in human non-small cell lung cancer[J]. Biochimie, 2017, 137: 12–9. DOI:10.1016/j.biochi.2017.02.010
[7] Kauffman EC, Robinson BD, Downes MJ, et al. Role of androgen receptor and associated lysine-demethylase coregulators, lsd1 and jmjd2a, in localized and advanced human bladder cancer[J]. Mol Carcinog, 2011, 50(12): 931–44. DOI:10.1002/mc.20758
[8] Mould DP, McGonagle AE, Wiseman DH, et al. Reversible inhibitors of lsd1 as therapeutic agents in acute myeloid leukemia: Clinical significance and progress to date[J]. Med Res Rev, 2015, 35(3): 586–618. DOI:10.1002/med.2015.35.issue-3
[9] Konovalov S, Garcia-bassets I. Analysis of the levels of lysine-specific demethylase 1 (lsd1) mrna in human ovarian tumors and the effects of chemical lsd1 inhibitors in ovarian cancer cell lines[J]. J Ovarian Res, 2013, 6(1): 75. DOI:10.1186/1757-2215-6-75
[10] 刘秀文, 魏野, 李袁霞, 等. 沉默LSD1基因的表达可抑制卵巢癌H0890细胞的增殖并诱导其凋亡[J]. 肿瘤, 2016, 36(5): 485–95. [ Liu XW, Wei Y, Li YX, et al. LSD1 gene-silencing inhibits proliferation and promotes apoptosis of ovarian cancer H08910 cells[J]. Zhong Liu, 2016, 36(5): 485–95. ]
[11] Lin H, Dai T, Xiong H, et al. Unregulated mir-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor foxo3a[J]. PLoS One, 2010, 5(12): [1] Maldonado L, Hoque MO. Epigenomics and ovarian carcinoma[J]. Biomark Med, 2010, 4(4): 543-70..
[12] Mandinova A, Lefort K, Tommasi di Vignano A, et al. The FoxO3a gene is a key negative target of canonical notch signalling in the keratinocyte UVB response[J]. EMBO J, 2008, 27(8): 1243–54. DOI:10.1038/emboj.2008.45
[13] Schulte JH, Lim S, Schramm A, et al. Lysine-specific demethy lase1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy[J]. Cancer Res, 2009, 65(5): 2065–71.
[14] Huang Y, Nayak S, Jankowitz R, et al. Epigenetics in breast cancer: What's new?[J]. Breast Cancer Res, 2011, 13(6): 225. DOI:10.1186/bcr2925
[15] Lv T, Yuan D, Miao X, et al. Over-expression of lsd1 promotes proliferation, migration and invasion in non-small cell lung cancer[J]. PLoS One, 2012, 7(4): e35065. DOI:10.1371/journal.pone.0035065
[16] Katoh M, Igarashi M, Fukuda H, et al. Cancer genetics and genomics of human fox family genes[J]. Cancer Lett, 2013, 328(2): 198–206. DOI:10.1016/j.canlet.2012.09.017
[17] Boix L, López-Oliva JM, Rhodes AC, et al. Restoring mir122 in human stem-like hepatocarcinoma cells, prompts tumor dormancy through smad-independent tgf-β pathway[J]. Oncotarget, 2016, 7(44): 71309–29.
[18] Cheng CW, Chen PM, Hsien YH, et al. Foxo3a-mediated overexpression of microrna-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in erk-responsive lung cancer[J]. Oncotarget, 2015, 6(42): 44222–38.
[19] Yang XB, Zhao JJ, Huang CY, et al. Decreased expression of the foxo3a gene is associated with poor prognosis in primary gastric adenocarcinoma patients[J]. PLoS One, 2013, 8(10): e78158. DOI:10.1371/journal.pone.0078158
[20] Das TP, Suman S, Alatassi H, et al. Inhibition of akt promotes foxo3a-dependent apoptosis in prostate cancer[J]. Cell Death Dis, 2016, 7: e2111. DOI:10.1038/cddis.2015.403
[21] Kocak C, Kocak FE, Bayhan Z, et al. Value of immunohistochemical detection of foxo3a as a prognostic marker in human breast carcinoma[J]. Inter J Clin Expe Pathol, 2016, 9(10): 9938–50.
[22] Obradorhevia A, Serra-sitjar M, Rodríguez J, et al. The tumour suppressor foxo3 is a key regulator of mantle cell lymphoma proliferation and survival[J]. Br J Haematol, 2012, 156(3): 334–45. DOI:10.1111/bjh.2012.156.issue-3
[23] Jiang Y, Zou L, Lu WQ, et al. Foxo3a expression is a prognostic marker in breast cancer[J]. PLoS One, 2013, 8(8): e70746. DOI:10.1371/journal.pone.0070746
[24] Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease[J]. Brain Res, 2010, 1338: 89–99. DOI:10.1016/j.brainres.2010.03.035
[25] Feng S, Jin Y, Cui M, et al. Lysine-specific demethylase 1 (lsd1) inhibitor s2101 induces autophagy via the akt/mtor pathway in skov3 ovarian cancer cells[J]. Med Sci Monit, 2016, 22: 4742–8. DOI:10.12659/MSM.898825
[26] Marlow LA, von Roemeling CA, Cooper SJ, et al. Foxo3a drives proliferation in anaplastic thyroid carcinoma through transcriptional regulation of cyclin a1: A paradigm shift that impacts current therapeutic strategies[J]. J Cell Sci, 2012, 125(18): 4253–63. DOI:10.1242/jcs.097428